1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_WX 13 select ARCH_BINFMT_ELF_STATE 14 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 15 select ARCH_ENABLE_MEMORY_HOTPLUG 16 select ARCH_ENABLE_MEMORY_HOTREMOVE 17 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 18 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 19 select ARCH_HAS_CACHE_LINE_SIZE 20 select ARCH_HAS_DEBUG_VIRTUAL 21 select ARCH_HAS_DEBUG_VM_PGTABLE 22 select ARCH_HAS_DMA_PREP_COHERENT 23 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 24 select ARCH_HAS_FAST_MULTIPLIER 25 select ARCH_HAS_FORTIFY_SOURCE 26 select ARCH_HAS_GCOV_PROFILE_ALL 27 select ARCH_HAS_GIGANTIC_PAGE 28 select ARCH_HAS_KCOV 29 select ARCH_HAS_KEEPINITRD 30 select ARCH_HAS_MEMBARRIER_SYNC_CORE 31 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 32 select ARCH_HAS_PTE_DEVMAP 33 select ARCH_HAS_PTE_SPECIAL 34 select ARCH_HAS_SETUP_DMA_OPS 35 select ARCH_HAS_SET_DIRECT_MAP 36 select ARCH_HAS_SET_MEMORY 37 select ARCH_STACKWALK 38 select ARCH_HAS_STRICT_KERNEL_RWX 39 select ARCH_HAS_STRICT_MODULE_RWX 40 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 41 select ARCH_HAS_SYNC_DMA_FOR_CPU 42 select ARCH_HAS_SYSCALL_WRAPPER 43 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 44 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 45 select ARCH_HAS_ZONE_DMA_SET if EXPERT 46 select ARCH_HAVE_ELF_PROT 47 select ARCH_HAVE_NMI_SAFE_CMPXCHG 48 select ARCH_INLINE_READ_LOCK if !PREEMPTION 49 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 50 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 51 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 52 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 53 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 54 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 55 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 56 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 57 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 58 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 59 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 60 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 61 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 62 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 63 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 64 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 65 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 66 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 67 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 68 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 69 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 70 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 71 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 72 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 73 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 74 select ARCH_KEEP_MEMBLOCK 75 select ARCH_USE_CMPXCHG_LOCKREF 76 select ARCH_USE_GNU_PROPERTY 77 select ARCH_USE_MEMTEST 78 select ARCH_USE_QUEUED_RWLOCKS 79 select ARCH_USE_QUEUED_SPINLOCKS 80 select ARCH_USE_SYM_ANNOTATIONS 81 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 82 select ARCH_SUPPORTS_HUGETLBFS 83 select ARCH_SUPPORTS_MEMORY_FAILURE 84 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 85 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 86 select ARCH_SUPPORTS_LTO_CLANG_THIN 87 select ARCH_SUPPORTS_CFI_CLANG 88 select ARCH_SUPPORTS_ATOMIC_RMW 89 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG) 90 select ARCH_SUPPORTS_NUMA_BALANCING 91 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 92 select ARCH_WANT_DEFAULT_BPF_JIT 93 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 94 select ARCH_WANT_FRAME_POINTERS 95 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 96 select ARCH_WANT_LD_ORPHAN_WARN 97 select ARCH_WANTS_NO_INSTR 98 select ARCH_HAS_UBSAN_SANITIZE_ALL 99 select ARM_AMBA 100 select ARM_ARCH_TIMER 101 select ARM_GIC 102 select AUDIT_ARCH_COMPAT_GENERIC 103 select ARM_GIC_V2M if PCI 104 select ARM_GIC_V3 105 select ARM_GIC_V3_ITS if PCI 106 select ARM_PSCI_FW 107 select BUILDTIME_TABLE_SORT 108 select CLONE_BACKWARDS 109 select COMMON_CLK 110 select CPU_PM if (SUSPEND || CPU_IDLE) 111 select CRC32 112 select DCACHE_WORD_ACCESS 113 select DMA_DIRECT_REMAP 114 select EDAC_SUPPORT 115 select FRAME_POINTER 116 select GENERIC_ALLOCATOR 117 select GENERIC_ARCH_TOPOLOGY 118 select GENERIC_CLOCKEVENTS_BROADCAST 119 select GENERIC_CPU_AUTOPROBE 120 select GENERIC_CPU_VULNERABILITIES 121 select GENERIC_EARLY_IOREMAP 122 select GENERIC_FIND_FIRST_BIT 123 select GENERIC_IDLE_POLL_SETUP 124 select GENERIC_IRQ_IPI 125 select GENERIC_IRQ_PROBE 126 select GENERIC_IRQ_SHOW 127 select GENERIC_IRQ_SHOW_LEVEL 128 select GENERIC_LIB_DEVMEM_IS_ALLOWED 129 select GENERIC_PCI_IOMAP 130 select GENERIC_PTDUMP 131 select GENERIC_SCHED_CLOCK 132 select GENERIC_SMP_IDLE_THREAD 133 select GENERIC_STRNCPY_FROM_USER 134 select GENERIC_STRNLEN_USER 135 select GENERIC_TIME_VSYSCALL 136 select GENERIC_GETTIMEOFDAY 137 select GENERIC_VDSO_TIME_NS 138 select HANDLE_DOMAIN_IRQ 139 select HARDIRQS_SW_RESEND 140 select HAVE_MOVE_PMD 141 select HAVE_MOVE_PUD 142 select HAVE_PCI 143 select HAVE_ACPI_APEI if (ACPI && EFI) 144 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 145 select HAVE_ARCH_AUDITSYSCALL 146 select HAVE_ARCH_BITREVERSE 147 select HAVE_ARCH_COMPILER_H 148 select HAVE_ARCH_HUGE_VMAP 149 select HAVE_ARCH_JUMP_LABEL 150 select HAVE_ARCH_JUMP_LABEL_RELATIVE 151 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 152 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN 153 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 154 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE) 155 select HAVE_ARCH_KFENCE 156 select HAVE_ARCH_KGDB 157 select HAVE_ARCH_MMAP_RND_BITS 158 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 159 select HAVE_ARCH_PREL32_RELOCATIONS 160 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 161 select HAVE_ARCH_SECCOMP_FILTER 162 select HAVE_ARCH_STACKLEAK 163 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 164 select HAVE_ARCH_TRACEHOOK 165 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 166 select HAVE_ARCH_VMAP_STACK 167 select HAVE_ARM_SMCCC 168 select HAVE_ASM_MODVERSIONS 169 select HAVE_EBPF_JIT 170 select HAVE_C_RECORDMCOUNT 171 select HAVE_CMPXCHG_DOUBLE 172 select HAVE_CMPXCHG_LOCAL 173 select HAVE_CONTEXT_TRACKING 174 select HAVE_DEBUG_KMEMLEAK 175 select HAVE_DMA_CONTIGUOUS 176 select HAVE_DYNAMIC_FTRACE 177 select HAVE_DYNAMIC_FTRACE_WITH_REGS \ 178 if $(cc-option,-fpatchable-function-entry=2) 179 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 180 if DYNAMIC_FTRACE_WITH_REGS 181 select HAVE_EFFICIENT_UNALIGNED_ACCESS 182 select HAVE_FAST_GUP 183 select HAVE_FTRACE_MCOUNT_RECORD 184 select HAVE_FUNCTION_TRACER 185 select HAVE_FUNCTION_ERROR_INJECTION 186 select HAVE_FUNCTION_GRAPH_TRACER 187 select HAVE_GCC_PLUGINS 188 select HAVE_HW_BREAKPOINT if PERF_EVENTS 189 select HAVE_IRQ_TIME_ACCOUNTING 190 select HAVE_NMI 191 select HAVE_PATA_PLATFORM 192 select HAVE_PERF_EVENTS 193 select HAVE_PERF_REGS 194 select HAVE_PERF_USER_STACK_DUMP 195 select HAVE_REGS_AND_STACK_ACCESS_API 196 select HAVE_FUNCTION_ARG_ACCESS_API 197 select HAVE_FUTEX_CMPXCHG if FUTEX 198 select MMU_GATHER_RCU_TABLE_FREE 199 select HAVE_RSEQ 200 select HAVE_STACKPROTECTOR 201 select HAVE_SYSCALL_TRACEPOINTS 202 select HAVE_KPROBES 203 select HAVE_KRETPROBES 204 select HAVE_GENERIC_VDSO 205 select IOMMU_DMA if IOMMU_SUPPORT 206 select IRQ_DOMAIN 207 select IRQ_FORCED_THREADING 208 select KASAN_VMALLOC if KASAN_GENERIC 209 select MODULES_USE_ELF_RELA 210 select NEED_DMA_MAP_STATE 211 select NEED_SG_DMA_LENGTH 212 select OF 213 select OF_EARLY_FLATTREE 214 select PCI_DOMAINS_GENERIC if PCI 215 select PCI_ECAM if (ACPI && PCI) 216 select PCI_SYSCALL if PCI 217 select POWER_RESET 218 select POWER_SUPPLY 219 select SPARSE_IRQ 220 select SWIOTLB 221 select SYSCTL_EXCEPTION_TRACE 222 select THREAD_INFO_IN_TASK 223 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 224 help 225 ARM 64-bit (AArch64) Linux support. 226 227config 64BIT 228 def_bool y 229 230config MMU 231 def_bool y 232 233config ARM64_PAGE_SHIFT 234 int 235 default 16 if ARM64_64K_PAGES 236 default 14 if ARM64_16K_PAGES 237 default 12 238 239config ARM64_CONT_PTE_SHIFT 240 int 241 default 5 if ARM64_64K_PAGES 242 default 7 if ARM64_16K_PAGES 243 default 4 244 245config ARM64_CONT_PMD_SHIFT 246 int 247 default 5 if ARM64_64K_PAGES 248 default 5 if ARM64_16K_PAGES 249 default 4 250 251config ARCH_MMAP_RND_BITS_MIN 252 default 14 if ARM64_64K_PAGES 253 default 16 if ARM64_16K_PAGES 254 default 18 255 256# max bits determined by the following formula: 257# VA_BITS - PAGE_SHIFT - 3 258config ARCH_MMAP_RND_BITS_MAX 259 default 19 if ARM64_VA_BITS=36 260 default 24 if ARM64_VA_BITS=39 261 default 27 if ARM64_VA_BITS=42 262 default 30 if ARM64_VA_BITS=47 263 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 264 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 265 default 33 if ARM64_VA_BITS=48 266 default 14 if ARM64_64K_PAGES 267 default 16 if ARM64_16K_PAGES 268 default 18 269 270config ARCH_MMAP_RND_COMPAT_BITS_MIN 271 default 7 if ARM64_64K_PAGES 272 default 9 if ARM64_16K_PAGES 273 default 11 274 275config ARCH_MMAP_RND_COMPAT_BITS_MAX 276 default 16 277 278config NO_IOPORT_MAP 279 def_bool y if !PCI 280 281config STACKTRACE_SUPPORT 282 def_bool y 283 284config ILLEGAL_POINTER_VALUE 285 hex 286 default 0xdead000000000000 287 288config LOCKDEP_SUPPORT 289 def_bool y 290 291config TRACE_IRQFLAGS_SUPPORT 292 def_bool y 293 294config GENERIC_BUG 295 def_bool y 296 depends on BUG 297 298config GENERIC_BUG_RELATIVE_POINTERS 299 def_bool y 300 depends on GENERIC_BUG 301 302config GENERIC_HWEIGHT 303 def_bool y 304 305config GENERIC_CSUM 306 def_bool y 307 308config GENERIC_CALIBRATE_DELAY 309 def_bool y 310 311config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 312 def_bool y 313 314config SMP 315 def_bool y 316 317config KERNEL_MODE_NEON 318 def_bool y 319 320config FIX_EARLYCON_MEM 321 def_bool y 322 323config PGTABLE_LEVELS 324 int 325 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 326 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 327 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 328 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 329 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 330 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 331 332config ARCH_SUPPORTS_UPROBES 333 def_bool y 334 335config ARCH_PROC_KCORE_TEXT 336 def_bool y 337 338config BROKEN_GAS_INST 339 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 340 341config KASAN_SHADOW_OFFSET 342 hex 343 depends on KASAN_GENERIC || KASAN_SW_TAGS 344 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 345 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 346 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 347 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 348 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 349 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 350 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 351 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 352 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 353 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 354 default 0xffffffffffffffff 355 356source "arch/arm64/Kconfig.platforms" 357 358menu "Kernel Features" 359 360menu "ARM errata workarounds via the alternatives framework" 361 362config ARM64_WORKAROUND_CLEAN_CACHE 363 bool 364 365config ARM64_ERRATUM_826319 366 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 367 default y 368 select ARM64_WORKAROUND_CLEAN_CACHE 369 help 370 This option adds an alternative code sequence to work around ARM 371 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 372 AXI master interface and an L2 cache. 373 374 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 375 and is unable to accept a certain write via this interface, it will 376 not progress on read data presented on the read data channel and the 377 system can deadlock. 378 379 The workaround promotes data cache clean instructions to 380 data cache clean-and-invalidate. 381 Please note that this does not necessarily enable the workaround, 382 as it depends on the alternative framework, which will only patch 383 the kernel if an affected CPU is detected. 384 385 If unsure, say Y. 386 387config ARM64_ERRATUM_827319 388 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 389 default y 390 select ARM64_WORKAROUND_CLEAN_CACHE 391 help 392 This option adds an alternative code sequence to work around ARM 393 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 394 master interface and an L2 cache. 395 396 Under certain conditions this erratum can cause a clean line eviction 397 to occur at the same time as another transaction to the same address 398 on the AMBA 5 CHI interface, which can cause data corruption if the 399 interconnect reorders the two transactions. 400 401 The workaround promotes data cache clean instructions to 402 data cache clean-and-invalidate. 403 Please note that this does not necessarily enable the workaround, 404 as it depends on the alternative framework, which will only patch 405 the kernel if an affected CPU is detected. 406 407 If unsure, say Y. 408 409config ARM64_ERRATUM_824069 410 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 411 default y 412 select ARM64_WORKAROUND_CLEAN_CACHE 413 help 414 This option adds an alternative code sequence to work around ARM 415 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 416 to a coherent interconnect. 417 418 If a Cortex-A53 processor is executing a store or prefetch for 419 write instruction at the same time as a processor in another 420 cluster is executing a cache maintenance operation to the same 421 address, then this erratum might cause a clean cache line to be 422 incorrectly marked as dirty. 423 424 The workaround promotes data cache clean instructions to 425 data cache clean-and-invalidate. 426 Please note that this option does not necessarily enable the 427 workaround, as it depends on the alternative framework, which will 428 only patch the kernel if an affected CPU is detected. 429 430 If unsure, say Y. 431 432config ARM64_ERRATUM_819472 433 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 434 default y 435 select ARM64_WORKAROUND_CLEAN_CACHE 436 help 437 This option adds an alternative code sequence to work around ARM 438 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 439 present when it is connected to a coherent interconnect. 440 441 If the processor is executing a load and store exclusive sequence at 442 the same time as a processor in another cluster is executing a cache 443 maintenance operation to the same address, then this erratum might 444 cause data corruption. 445 446 The workaround promotes data cache clean instructions to 447 data cache clean-and-invalidate. 448 Please note that this does not necessarily enable the workaround, 449 as it depends on the alternative framework, which will only patch 450 the kernel if an affected CPU is detected. 451 452 If unsure, say Y. 453 454config ARM64_ERRATUM_832075 455 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 456 default y 457 help 458 This option adds an alternative code sequence to work around ARM 459 erratum 832075 on Cortex-A57 parts up to r1p2. 460 461 Affected Cortex-A57 parts might deadlock when exclusive load/store 462 instructions to Write-Back memory are mixed with Device loads. 463 464 The workaround is to promote device loads to use Load-Acquire 465 semantics. 466 Please note that this does not necessarily enable the workaround, 467 as it depends on the alternative framework, which will only patch 468 the kernel if an affected CPU is detected. 469 470 If unsure, say Y. 471 472config ARM64_ERRATUM_834220 473 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 474 depends on KVM 475 default y 476 help 477 This option adds an alternative code sequence to work around ARM 478 erratum 834220 on Cortex-A57 parts up to r1p2. 479 480 Affected Cortex-A57 parts might report a Stage 2 translation 481 fault as the result of a Stage 1 fault for load crossing a 482 page boundary when there is a permission or device memory 483 alignment fault at Stage 1 and a translation fault at Stage 2. 484 485 The workaround is to verify that the Stage 1 translation 486 doesn't generate a fault before handling the Stage 2 fault. 487 Please note that this does not necessarily enable the workaround, 488 as it depends on the alternative framework, which will only patch 489 the kernel if an affected CPU is detected. 490 491 If unsure, say Y. 492 493config ARM64_ERRATUM_845719 494 bool "Cortex-A53: 845719: a load might read incorrect data" 495 depends on COMPAT 496 default y 497 help 498 This option adds an alternative code sequence to work around ARM 499 erratum 845719 on Cortex-A53 parts up to r0p4. 500 501 When running a compat (AArch32) userspace on an affected Cortex-A53 502 part, a load at EL0 from a virtual address that matches the bottom 32 503 bits of the virtual address used by a recent load at (AArch64) EL1 504 might return incorrect data. 505 506 The workaround is to write the contextidr_el1 register on exception 507 return to a 32-bit task. 508 Please note that this does not necessarily enable the workaround, 509 as it depends on the alternative framework, which will only patch 510 the kernel if an affected CPU is detected. 511 512 If unsure, say Y. 513 514config ARM64_ERRATUM_843419 515 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 516 default y 517 select ARM64_MODULE_PLTS if MODULES 518 help 519 This option links the kernel with '--fix-cortex-a53-843419' and 520 enables PLT support to replace certain ADRP instructions, which can 521 cause subsequent memory accesses to use an incorrect address on 522 Cortex-A53 parts up to r0p4. 523 524 If unsure, say Y. 525 526config ARM64_LD_HAS_FIX_ERRATUM_843419 527 def_bool $(ld-option,--fix-cortex-a53-843419) 528 529config ARM64_ERRATUM_1024718 530 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 531 default y 532 help 533 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 534 535 Affected Cortex-A55 cores (all revisions) could cause incorrect 536 update of the hardware dirty bit when the DBM/AP bits are updated 537 without a break-before-make. The workaround is to disable the usage 538 of hardware DBM locally on the affected cores. CPUs not affected by 539 this erratum will continue to use the feature. 540 541 If unsure, say Y. 542 543config ARM64_ERRATUM_1418040 544 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 545 default y 546 depends on COMPAT 547 help 548 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 549 errata 1188873 and 1418040. 550 551 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 552 cause register corruption when accessing the timer registers 553 from AArch32 userspace. 554 555 If unsure, say Y. 556 557config ARM64_WORKAROUND_SPECULATIVE_AT 558 bool 559 560config ARM64_ERRATUM_1165522 561 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 562 default y 563 select ARM64_WORKAROUND_SPECULATIVE_AT 564 help 565 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 566 567 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 568 corrupted TLBs by speculating an AT instruction during a guest 569 context switch. 570 571 If unsure, say Y. 572 573config ARM64_ERRATUM_1319367 574 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 575 default y 576 select ARM64_WORKAROUND_SPECULATIVE_AT 577 help 578 This option adds work arounds for ARM Cortex-A57 erratum 1319537 579 and A72 erratum 1319367 580 581 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 582 speculating an AT instruction during a guest context switch. 583 584 If unsure, say Y. 585 586config ARM64_ERRATUM_1530923 587 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 588 default y 589 select ARM64_WORKAROUND_SPECULATIVE_AT 590 help 591 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 592 593 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 594 corrupted TLBs by speculating an AT instruction during a guest 595 context switch. 596 597 If unsure, say Y. 598 599config ARM64_WORKAROUND_REPEAT_TLBI 600 bool 601 602config ARM64_ERRATUM_1286807 603 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 604 default y 605 select ARM64_WORKAROUND_REPEAT_TLBI 606 help 607 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 608 609 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 610 address for a cacheable mapping of a location is being 611 accessed by a core while another core is remapping the virtual 612 address to a new physical page using the recommended 613 break-before-make sequence, then under very rare circumstances 614 TLBI+DSB completes before a read using the translation being 615 invalidated has been observed by other observers. The 616 workaround repeats the TLBI+DSB operation. 617 618config ARM64_ERRATUM_1463225 619 bool "Cortex-A76: Software Step might prevent interrupt recognition" 620 default y 621 help 622 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 623 624 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 625 of a system call instruction (SVC) can prevent recognition of 626 subsequent interrupts when software stepping is disabled in the 627 exception handler of the system call and either kernel debugging 628 is enabled or VHE is in use. 629 630 Work around the erratum by triggering a dummy step exception 631 when handling a system call from a task that is being stepped 632 in a VHE configuration of the kernel. 633 634 If unsure, say Y. 635 636config ARM64_ERRATUM_1542419 637 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 638 default y 639 help 640 This option adds a workaround for ARM Neoverse-N1 erratum 641 1542419. 642 643 Affected Neoverse-N1 cores could execute a stale instruction when 644 modified by another CPU. The workaround depends on a firmware 645 counterpart. 646 647 Workaround the issue by hiding the DIC feature from EL0. This 648 forces user-space to perform cache maintenance. 649 650 If unsure, say Y. 651 652config ARM64_ERRATUM_1508412 653 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 654 default y 655 help 656 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 657 658 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 659 of a store-exclusive or read of PAR_EL1 and a load with device or 660 non-cacheable memory attributes. The workaround depends on a firmware 661 counterpart. 662 663 KVM guests must also have the workaround implemented or they can 664 deadlock the system. 665 666 Work around the issue by inserting DMB SY barriers around PAR_EL1 667 register reads and warning KVM users. The DMB barrier is sufficient 668 to prevent a speculative PAR_EL1 read. 669 670 If unsure, say Y. 671 672config CAVIUM_ERRATUM_22375 673 bool "Cavium erratum 22375, 24313" 674 default y 675 help 676 Enable workaround for errata 22375 and 24313. 677 678 This implements two gicv3-its errata workarounds for ThunderX. Both 679 with a small impact affecting only ITS table allocation. 680 681 erratum 22375: only alloc 8MB table size 682 erratum 24313: ignore memory access type 683 684 The fixes are in ITS initialization and basically ignore memory access 685 type and table size provided by the TYPER and BASER registers. 686 687 If unsure, say Y. 688 689config CAVIUM_ERRATUM_23144 690 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 691 depends on NUMA 692 default y 693 help 694 ITS SYNC command hang for cross node io and collections/cpu mapping. 695 696 If unsure, say Y. 697 698config CAVIUM_ERRATUM_23154 699 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" 700 default y 701 help 702 The gicv3 of ThunderX requires a modified version for 703 reading the IAR status to ensure data synchronization 704 (access to icc_iar1_el1 is not sync'ed before and after). 705 706 If unsure, say Y. 707 708config CAVIUM_ERRATUM_27456 709 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 710 default y 711 help 712 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 713 instructions may cause the icache to become corrupted if it 714 contains data for a non-current ASID. The fix is to 715 invalidate the icache when changing the mm context. 716 717 If unsure, say Y. 718 719config CAVIUM_ERRATUM_30115 720 bool "Cavium erratum 30115: Guest may disable interrupts in host" 721 default y 722 help 723 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 724 1.2, and T83 Pass 1.0, KVM guest execution may disable 725 interrupts in host. Trapping both GICv3 group-0 and group-1 726 accesses sidesteps the issue. 727 728 If unsure, say Y. 729 730config CAVIUM_TX2_ERRATUM_219 731 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 732 default y 733 help 734 On Cavium ThunderX2, a load, store or prefetch instruction between a 735 TTBR update and the corresponding context synchronizing operation can 736 cause a spurious Data Abort to be delivered to any hardware thread in 737 the CPU core. 738 739 Work around the issue by avoiding the problematic code sequence and 740 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 741 trap handler performs the corresponding register access, skips the 742 instruction and ensures context synchronization by virtue of the 743 exception return. 744 745 If unsure, say Y. 746 747config FUJITSU_ERRATUM_010001 748 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 749 default y 750 help 751 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 752 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 753 accesses may cause undefined fault (Data abort, DFSC=0b111111). 754 This fault occurs under a specific hardware condition when a 755 load/store instruction performs an address translation using: 756 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 757 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 758 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 759 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 760 761 The workaround is to ensure these bits are clear in TCR_ELx. 762 The workaround only affects the Fujitsu-A64FX. 763 764 If unsure, say Y. 765 766config HISILICON_ERRATUM_161600802 767 bool "Hip07 161600802: Erroneous redistributor VLPI base" 768 default y 769 help 770 The HiSilicon Hip07 SoC uses the wrong redistributor base 771 when issued ITS commands such as VMOVP and VMAPP, and requires 772 a 128kB offset to be applied to the target address in this commands. 773 774 If unsure, say Y. 775 776config QCOM_FALKOR_ERRATUM_1003 777 bool "Falkor E1003: Incorrect translation due to ASID change" 778 default y 779 help 780 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 781 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 782 in TTBR1_EL1, this situation only occurs in the entry trampoline and 783 then only for entries in the walk cache, since the leaf translation 784 is unchanged. Work around the erratum by invalidating the walk cache 785 entries for the trampoline before entering the kernel proper. 786 787config QCOM_FALKOR_ERRATUM_1009 788 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 789 default y 790 select ARM64_WORKAROUND_REPEAT_TLBI 791 help 792 On Falkor v1, the CPU may prematurely complete a DSB following a 793 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 794 one more time to fix the issue. 795 796 If unsure, say Y. 797 798config QCOM_QDF2400_ERRATUM_0065 799 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 800 default y 801 help 802 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 803 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 804 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 805 806 If unsure, say Y. 807 808config QCOM_FALKOR_ERRATUM_E1041 809 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 810 default y 811 help 812 Falkor CPU may speculatively fetch instructions from an improper 813 memory location when MMU translation is changed from SCTLR_ELn[M]=1 814 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 815 816 If unsure, say Y. 817 818config NVIDIA_CARMEL_CNP_ERRATUM 819 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 820 default y 821 help 822 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 823 invalidate shared TLB entries installed by a different core, as it would 824 on standard ARM cores. 825 826 If unsure, say Y. 827 828config SOCIONEXT_SYNQUACER_PREITS 829 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 830 default y 831 help 832 Socionext Synquacer SoCs implement a separate h/w block to generate 833 MSI doorbell writes with non-zero values for the device ID. 834 835 If unsure, say Y. 836 837endmenu 838 839 840choice 841 prompt "Page size" 842 default ARM64_4K_PAGES 843 help 844 Page size (translation granule) configuration. 845 846config ARM64_4K_PAGES 847 bool "4KB" 848 help 849 This feature enables 4KB pages support. 850 851config ARM64_16K_PAGES 852 bool "16KB" 853 help 854 The system will use 16KB pages support. AArch32 emulation 855 requires applications compiled with 16K (or a multiple of 16K) 856 aligned segments. 857 858config ARM64_64K_PAGES 859 bool "64KB" 860 help 861 This feature enables 64KB pages support (4KB by default) 862 allowing only two levels of page tables and faster TLB 863 look-up. AArch32 emulation requires applications compiled 864 with 64K aligned segments. 865 866endchoice 867 868choice 869 prompt "Virtual address space size" 870 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 871 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 872 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 873 help 874 Allows choosing one of multiple possible virtual address 875 space sizes. The level of translation table is determined by 876 a combination of page size and virtual address space size. 877 878config ARM64_VA_BITS_36 879 bool "36-bit" if EXPERT 880 depends on ARM64_16K_PAGES 881 882config ARM64_VA_BITS_39 883 bool "39-bit" 884 depends on ARM64_4K_PAGES 885 886config ARM64_VA_BITS_42 887 bool "42-bit" 888 depends on ARM64_64K_PAGES 889 890config ARM64_VA_BITS_47 891 bool "47-bit" 892 depends on ARM64_16K_PAGES 893 894config ARM64_VA_BITS_48 895 bool "48-bit" 896 897config ARM64_VA_BITS_52 898 bool "52-bit" 899 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 900 help 901 Enable 52-bit virtual addressing for userspace when explicitly 902 requested via a hint to mmap(). The kernel will also use 52-bit 903 virtual addresses for its own mappings (provided HW support for 904 this feature is available, otherwise it reverts to 48-bit). 905 906 NOTE: Enabling 52-bit virtual addressing in conjunction with 907 ARMv8.3 Pointer Authentication will result in the PAC being 908 reduced from 7 bits to 3 bits, which may have a significant 909 impact on its susceptibility to brute-force attacks. 910 911 If unsure, select 48-bit virtual addressing instead. 912 913endchoice 914 915config ARM64_FORCE_52BIT 916 bool "Force 52-bit virtual addresses for userspace" 917 depends on ARM64_VA_BITS_52 && EXPERT 918 help 919 For systems with 52-bit userspace VAs enabled, the kernel will attempt 920 to maintain compatibility with older software by providing 48-bit VAs 921 unless a hint is supplied to mmap. 922 923 This configuration option disables the 48-bit compatibility logic, and 924 forces all userspace addresses to be 52-bit on HW that supports it. One 925 should only enable this configuration option for stress testing userspace 926 memory management code. If unsure say N here. 927 928config ARM64_VA_BITS 929 int 930 default 36 if ARM64_VA_BITS_36 931 default 39 if ARM64_VA_BITS_39 932 default 42 if ARM64_VA_BITS_42 933 default 47 if ARM64_VA_BITS_47 934 default 48 if ARM64_VA_BITS_48 935 default 52 if ARM64_VA_BITS_52 936 937choice 938 prompt "Physical address space size" 939 default ARM64_PA_BITS_48 940 help 941 Choose the maximum physical address range that the kernel will 942 support. 943 944config ARM64_PA_BITS_48 945 bool "48-bit" 946 947config ARM64_PA_BITS_52 948 bool "52-bit (ARMv8.2)" 949 depends on ARM64_64K_PAGES 950 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 951 help 952 Enable support for a 52-bit physical address space, introduced as 953 part of the ARMv8.2-LPA extension. 954 955 With this enabled, the kernel will also continue to work on CPUs that 956 do not support ARMv8.2-LPA, but with some added memory overhead (and 957 minor performance overhead). 958 959endchoice 960 961config ARM64_PA_BITS 962 int 963 default 48 if ARM64_PA_BITS_48 964 default 52 if ARM64_PA_BITS_52 965 966choice 967 prompt "Endianness" 968 default CPU_LITTLE_ENDIAN 969 help 970 Select the endianness of data accesses performed by the CPU. Userspace 971 applications will need to be compiled and linked for the endianness 972 that is selected here. 973 974config CPU_BIG_ENDIAN 975 bool "Build big-endian kernel" 976 depends on !LD_IS_LLD || LLD_VERSION >= 130000 977 help 978 Say Y if you plan on running a kernel with a big-endian userspace. 979 980config CPU_LITTLE_ENDIAN 981 bool "Build little-endian kernel" 982 help 983 Say Y if you plan on running a kernel with a little-endian userspace. 984 This is usually the case for distributions targeting arm64. 985 986endchoice 987 988config SCHED_MC 989 bool "Multi-core scheduler support" 990 help 991 Multi-core scheduler support improves the CPU scheduler's decision 992 making when dealing with multi-core CPU chips at a cost of slightly 993 increased overhead in some places. If unsure say N here. 994 995config SCHED_SMT 996 bool "SMT scheduler support" 997 help 998 Improves the CPU scheduler's decision making when dealing with 999 MultiThreading at a cost of slightly increased overhead in some 1000 places. If unsure say N here. 1001 1002config NR_CPUS 1003 int "Maximum number of CPUs (2-4096)" 1004 range 2 4096 1005 default "256" 1006 1007config HOTPLUG_CPU 1008 bool "Support for hot-pluggable CPUs" 1009 select GENERIC_IRQ_MIGRATION 1010 help 1011 Say Y here to experiment with turning CPUs off and on. CPUs 1012 can be controlled through /sys/devices/system/cpu. 1013 1014# Common NUMA Features 1015config NUMA 1016 bool "NUMA Memory Allocation and Scheduler Support" 1017 select GENERIC_ARCH_NUMA 1018 select ACPI_NUMA if ACPI 1019 select OF_NUMA 1020 help 1021 Enable NUMA (Non-Uniform Memory Access) support. 1022 1023 The kernel will try to allocate memory used by a CPU on the 1024 local memory of the CPU and add some more 1025 NUMA awareness to the kernel. 1026 1027config NODES_SHIFT 1028 int "Maximum NUMA Nodes (as a power of 2)" 1029 range 1 10 1030 default "4" 1031 depends on NUMA 1032 help 1033 Specify the maximum number of NUMA Nodes available on the target 1034 system. Increases memory reserved to accommodate various tables. 1035 1036config USE_PERCPU_NUMA_NODE_ID 1037 def_bool y 1038 depends on NUMA 1039 1040config HAVE_SETUP_PER_CPU_AREA 1041 def_bool y 1042 depends on NUMA 1043 1044config NEED_PER_CPU_EMBED_FIRST_CHUNK 1045 def_bool y 1046 depends on NUMA 1047 1048source "kernel/Kconfig.hz" 1049 1050config ARCH_SPARSEMEM_ENABLE 1051 def_bool y 1052 select SPARSEMEM_VMEMMAP_ENABLE 1053 select SPARSEMEM_VMEMMAP 1054 1055config HW_PERF_EVENTS 1056 def_bool y 1057 depends on ARM_PMU 1058 1059config ARCH_HAS_FILTER_PGPROT 1060 def_bool y 1061 1062# Supported by clang >= 7.0 1063config CC_HAVE_SHADOW_CALL_STACK 1064 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1065 1066config PARAVIRT 1067 bool "Enable paravirtualization code" 1068 help 1069 This changes the kernel so it can modify itself when it is run 1070 under a hypervisor, potentially improving performance significantly 1071 over full virtualization. 1072 1073config PARAVIRT_TIME_ACCOUNTING 1074 bool "Paravirtual steal time accounting" 1075 select PARAVIRT 1076 help 1077 Select this option to enable fine granularity task steal time 1078 accounting. Time spent executing other tasks in parallel with 1079 the current vCPU is discounted from the vCPU power. To account for 1080 that, there can be a small performance impact. 1081 1082 If in doubt, say N here. 1083 1084config KEXEC 1085 depends on PM_SLEEP_SMP 1086 select KEXEC_CORE 1087 bool "kexec system call" 1088 help 1089 kexec is a system call that implements the ability to shutdown your 1090 current kernel, and to start another kernel. It is like a reboot 1091 but it is independent of the system firmware. And like a reboot 1092 you can start any kernel with it, not just Linux. 1093 1094config KEXEC_FILE 1095 bool "kexec file based system call" 1096 select KEXEC_CORE 1097 select HAVE_IMA_KEXEC if IMA 1098 help 1099 This is new version of kexec system call. This system call is 1100 file based and takes file descriptors as system call argument 1101 for kernel and initramfs as opposed to list of segments as 1102 accepted by previous system call. 1103 1104config KEXEC_SIG 1105 bool "Verify kernel signature during kexec_file_load() syscall" 1106 depends on KEXEC_FILE 1107 help 1108 Select this option to verify a signature with loaded kernel 1109 image. If configured, any attempt of loading a image without 1110 valid signature will fail. 1111 1112 In addition to that option, you need to enable signature 1113 verification for the corresponding kernel image type being 1114 loaded in order for this to work. 1115 1116config KEXEC_IMAGE_VERIFY_SIG 1117 bool "Enable Image signature verification support" 1118 default y 1119 depends on KEXEC_SIG 1120 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1121 help 1122 Enable Image signature verification support. 1123 1124comment "Support for PE file signature verification disabled" 1125 depends on KEXEC_SIG 1126 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1127 1128config CRASH_DUMP 1129 bool "Build kdump crash kernel" 1130 help 1131 Generate crash dump after being started by kexec. This should 1132 be normally only set in special crash dump kernels which are 1133 loaded in the main kernel with kexec-tools into a specially 1134 reserved region and then later executed after a crash by 1135 kdump/kexec. 1136 1137 For more details see Documentation/admin-guide/kdump/kdump.rst 1138 1139config TRANS_TABLE 1140 def_bool y 1141 depends on HIBERNATION 1142 1143config XEN_DOM0 1144 def_bool y 1145 depends on XEN 1146 1147config XEN 1148 bool "Xen guest support on ARM64" 1149 depends on ARM64 && OF 1150 select SWIOTLB_XEN 1151 select PARAVIRT 1152 help 1153 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1154 1155config FORCE_MAX_ZONEORDER 1156 int 1157 default "14" if ARM64_64K_PAGES 1158 default "12" if ARM64_16K_PAGES 1159 default "11" 1160 help 1161 The kernel memory allocator divides physically contiguous memory 1162 blocks into "zones", where each zone is a power of two number of 1163 pages. This option selects the largest power of two that the kernel 1164 keeps in the memory allocator. If you need to allocate very large 1165 blocks of physically contiguous memory, then you may need to 1166 increase this value. 1167 1168 This config option is actually maximum order plus one. For example, 1169 a value of 11 means that the largest free memory block is 2^10 pages. 1170 1171 We make sure that we can allocate upto a HugePage size for each configuration. 1172 Hence we have : 1173 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1174 1175 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1176 4M allocations matching the default size used by generic code. 1177 1178config UNMAP_KERNEL_AT_EL0 1179 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1180 default y 1181 help 1182 Speculation attacks against some high-performance processors can 1183 be used to bypass MMU permission checks and leak kernel data to 1184 userspace. This can be defended against by unmapping the kernel 1185 when running in userspace, mapping it back in on exception entry 1186 via a trampoline page in the vector table. 1187 1188 If unsure, say Y. 1189 1190config RODATA_FULL_DEFAULT_ENABLED 1191 bool "Apply r/o permissions of VM areas also to their linear aliases" 1192 default y 1193 help 1194 Apply read-only attributes of VM areas to the linear alias of 1195 the backing pages as well. This prevents code or read-only data 1196 from being modified (inadvertently or intentionally) via another 1197 mapping of the same memory page. This additional enhancement can 1198 be turned off at runtime by passing rodata=[off|on] (and turned on 1199 with rodata=full if this option is set to 'n') 1200 1201 This requires the linear region to be mapped down to pages, 1202 which may adversely affect performance in some cases. 1203 1204config ARM64_SW_TTBR0_PAN 1205 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1206 help 1207 Enabling this option prevents the kernel from accessing 1208 user-space memory directly by pointing TTBR0_EL1 to a reserved 1209 zeroed area and reserved ASID. The user access routines 1210 restore the valid TTBR0_EL1 temporarily. 1211 1212config ARM64_TAGGED_ADDR_ABI 1213 bool "Enable the tagged user addresses syscall ABI" 1214 default y 1215 help 1216 When this option is enabled, user applications can opt in to a 1217 relaxed ABI via prctl() allowing tagged addresses to be passed 1218 to system calls as pointer arguments. For details, see 1219 Documentation/arm64/tagged-address-abi.rst. 1220 1221menuconfig COMPAT 1222 bool "Kernel support for 32-bit EL0" 1223 depends on ARM64_4K_PAGES || EXPERT 1224 select HAVE_UID16 1225 select OLD_SIGSUSPEND3 1226 select COMPAT_OLD_SIGACTION 1227 help 1228 This option enables support for a 32-bit EL0 running under a 64-bit 1229 kernel at EL1. AArch32-specific components such as system calls, 1230 the user helper functions, VFP support and the ptrace interface are 1231 handled appropriately by the kernel. 1232 1233 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1234 that you will only be able to execute AArch32 binaries that were compiled 1235 with page size aligned segments. 1236 1237 If you want to execute 32-bit userspace applications, say Y. 1238 1239if COMPAT 1240 1241config KUSER_HELPERS 1242 bool "Enable kuser helpers page for 32-bit applications" 1243 default y 1244 help 1245 Warning: disabling this option may break 32-bit user programs. 1246 1247 Provide kuser helpers to compat tasks. The kernel provides 1248 helper code to userspace in read only form at a fixed location 1249 to allow userspace to be independent of the CPU type fitted to 1250 the system. This permits binaries to be run on ARMv4 through 1251 to ARMv8 without modification. 1252 1253 See Documentation/arm/kernel_user_helpers.rst for details. 1254 1255 However, the fixed address nature of these helpers can be used 1256 by ROP (return orientated programming) authors when creating 1257 exploits. 1258 1259 If all of the binaries and libraries which run on your platform 1260 are built specifically for your platform, and make no use of 1261 these helpers, then you can turn this option off to hinder 1262 such exploits. However, in that case, if a binary or library 1263 relying on those helpers is run, it will not function correctly. 1264 1265 Say N here only if you are absolutely certain that you do not 1266 need these helpers; otherwise, the safe option is to say Y. 1267 1268config COMPAT_VDSO 1269 bool "Enable vDSO for 32-bit applications" 1270 depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != "" 1271 select GENERIC_COMPAT_VDSO 1272 default y 1273 help 1274 Place in the process address space of 32-bit applications an 1275 ELF shared object providing fast implementations of gettimeofday 1276 and clock_gettime. 1277 1278 You must have a 32-bit build of glibc 2.22 or later for programs 1279 to seamlessly take advantage of this. 1280 1281config THUMB2_COMPAT_VDSO 1282 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1283 depends on COMPAT_VDSO 1284 default y 1285 help 1286 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1287 otherwise with '-marm'. 1288 1289menuconfig ARMV8_DEPRECATED 1290 bool "Emulate deprecated/obsolete ARMv8 instructions" 1291 depends on SYSCTL 1292 help 1293 Legacy software support may require certain instructions 1294 that have been deprecated or obsoleted in the architecture. 1295 1296 Enable this config to enable selective emulation of these 1297 features. 1298 1299 If unsure, say Y 1300 1301if ARMV8_DEPRECATED 1302 1303config SWP_EMULATION 1304 bool "Emulate SWP/SWPB instructions" 1305 help 1306 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1307 they are always undefined. Say Y here to enable software 1308 emulation of these instructions for userspace using LDXR/STXR. 1309 This feature can be controlled at runtime with the abi.swp 1310 sysctl which is disabled by default. 1311 1312 In some older versions of glibc [<=2.8] SWP is used during futex 1313 trylock() operations with the assumption that the code will not 1314 be preempted. This invalid assumption may be more likely to fail 1315 with SWP emulation enabled, leading to deadlock of the user 1316 application. 1317 1318 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1319 on an external transaction monitoring block called a global 1320 monitor to maintain update atomicity. If your system does not 1321 implement a global monitor, this option can cause programs that 1322 perform SWP operations to uncached memory to deadlock. 1323 1324 If unsure, say Y 1325 1326config CP15_BARRIER_EMULATION 1327 bool "Emulate CP15 Barrier instructions" 1328 help 1329 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1330 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1331 strongly recommended to use the ISB, DSB, and DMB 1332 instructions instead. 1333 1334 Say Y here to enable software emulation of these 1335 instructions for AArch32 userspace code. When this option is 1336 enabled, CP15 barrier usage is traced which can help 1337 identify software that needs updating. This feature can be 1338 controlled at runtime with the abi.cp15_barrier sysctl. 1339 1340 If unsure, say Y 1341 1342config SETEND_EMULATION 1343 bool "Emulate SETEND instruction" 1344 help 1345 The SETEND instruction alters the data-endianness of the 1346 AArch32 EL0, and is deprecated in ARMv8. 1347 1348 Say Y here to enable software emulation of the instruction 1349 for AArch32 userspace code. This feature can be controlled 1350 at runtime with the abi.setend sysctl. 1351 1352 Note: All the cpus on the system must have mixed endian support at EL0 1353 for this feature to be enabled. If a new CPU - which doesn't support mixed 1354 endian - is hotplugged in after this feature has been enabled, there could 1355 be unexpected results in the applications. 1356 1357 If unsure, say Y 1358endif 1359 1360endif 1361 1362menu "ARMv8.1 architectural features" 1363 1364config ARM64_HW_AFDBM 1365 bool "Support for hardware updates of the Access and Dirty page flags" 1366 default y 1367 help 1368 The ARMv8.1 architecture extensions introduce support for 1369 hardware updates of the access and dirty information in page 1370 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1371 capable processors, accesses to pages with PTE_AF cleared will 1372 set this bit instead of raising an access flag fault. 1373 Similarly, writes to read-only pages with the DBM bit set will 1374 clear the read-only bit (AP[2]) instead of raising a 1375 permission fault. 1376 1377 Kernels built with this configuration option enabled continue 1378 to work on pre-ARMv8.1 hardware and the performance impact is 1379 minimal. If unsure, say Y. 1380 1381config ARM64_PAN 1382 bool "Enable support for Privileged Access Never (PAN)" 1383 default y 1384 help 1385 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1386 prevents the kernel or hypervisor from accessing user-space (EL0) 1387 memory directly. 1388 1389 Choosing this option will cause any unprotected (not using 1390 copy_to_user et al) memory access to fail with a permission fault. 1391 1392 The feature is detected at runtime, and will remain as a 'nop' 1393 instruction if the cpu does not implement the feature. 1394 1395config AS_HAS_LDAPR 1396 def_bool $(as-instr,.arch_extension rcpc) 1397 1398config AS_HAS_LSE_ATOMICS 1399 def_bool $(as-instr,.arch_extension lse) 1400 1401config ARM64_LSE_ATOMICS 1402 bool 1403 default ARM64_USE_LSE_ATOMICS 1404 depends on AS_HAS_LSE_ATOMICS 1405 1406config ARM64_USE_LSE_ATOMICS 1407 bool "Atomic instructions" 1408 depends on JUMP_LABEL 1409 default y 1410 help 1411 As part of the Large System Extensions, ARMv8.1 introduces new 1412 atomic instructions that are designed specifically to scale in 1413 very large systems. 1414 1415 Say Y here to make use of these instructions for the in-kernel 1416 atomic routines. This incurs a small overhead on CPUs that do 1417 not support these instructions and requires the kernel to be 1418 built with binutils >= 2.25 in order for the new instructions 1419 to be used. 1420 1421endmenu 1422 1423menu "ARMv8.2 architectural features" 1424 1425config ARM64_PMEM 1426 bool "Enable support for persistent memory" 1427 select ARCH_HAS_PMEM_API 1428 select ARCH_HAS_UACCESS_FLUSHCACHE 1429 help 1430 Say Y to enable support for the persistent memory API based on the 1431 ARMv8.2 DCPoP feature. 1432 1433 The feature is detected at runtime, and the kernel will use DC CVAC 1434 operations if DC CVAP is not supported (following the behaviour of 1435 DC CVAP itself if the system does not define a point of persistence). 1436 1437config ARM64_RAS_EXTN 1438 bool "Enable support for RAS CPU Extensions" 1439 default y 1440 help 1441 CPUs that support the Reliability, Availability and Serviceability 1442 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1443 errors, classify them and report them to software. 1444 1445 On CPUs with these extensions system software can use additional 1446 barriers to determine if faults are pending and read the 1447 classification from a new set of registers. 1448 1449 Selecting this feature will allow the kernel to use these barriers 1450 and access the new registers if the system supports the extension. 1451 Platform RAS features may additionally depend on firmware support. 1452 1453config ARM64_CNP 1454 bool "Enable support for Common Not Private (CNP) translations" 1455 default y 1456 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1457 help 1458 Common Not Private (CNP) allows translation table entries to 1459 be shared between different PEs in the same inner shareable 1460 domain, so the hardware can use this fact to optimise the 1461 caching of such entries in the TLB. 1462 1463 Selecting this option allows the CNP feature to be detected 1464 at runtime, and does not affect PEs that do not implement 1465 this feature. 1466 1467endmenu 1468 1469menu "ARMv8.3 architectural features" 1470 1471config ARM64_PTR_AUTH 1472 bool "Enable support for pointer authentication" 1473 default y 1474 help 1475 Pointer authentication (part of the ARMv8.3 Extensions) provides 1476 instructions for signing and authenticating pointers against secret 1477 keys, which can be used to mitigate Return Oriented Programming (ROP) 1478 and other attacks. 1479 1480 This option enables these instructions at EL0 (i.e. for userspace). 1481 Choosing this option will cause the kernel to initialise secret keys 1482 for each process at exec() time, with these keys being 1483 context-switched along with the process. 1484 1485 The feature is detected at runtime. If the feature is not present in 1486 hardware it will not be advertised to userspace/KVM guest nor will it 1487 be enabled. 1488 1489 If the feature is present on the boot CPU but not on a late CPU, then 1490 the late CPU will be parked. Also, if the boot CPU does not have 1491 address auth and the late CPU has then the late CPU will still boot 1492 but with the feature disabled. On such a system, this option should 1493 not be selected. 1494 1495config ARM64_PTR_AUTH_KERNEL 1496 bool "Use pointer authentication for kernel" 1497 default y 1498 depends on ARM64_PTR_AUTH 1499 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1500 # Modern compilers insert a .note.gnu.property section note for PAC 1501 # which is only understood by binutils starting with version 2.33.1. 1502 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1503 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1504 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1505 help 1506 If the compiler supports the -mbranch-protection or 1507 -msign-return-address flag (e.g. GCC 7 or later), then this option 1508 will cause the kernel itself to be compiled with return address 1509 protection. In this case, and if the target hardware is known to 1510 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1511 disabled with minimal loss of protection. 1512 1513 This feature works with FUNCTION_GRAPH_TRACER option only if 1514 DYNAMIC_FTRACE_WITH_REGS is enabled. 1515 1516config CC_HAS_BRANCH_PROT_PAC_RET 1517 # GCC 9 or later, clang 8 or later 1518 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1519 1520config CC_HAS_SIGN_RETURN_ADDRESS 1521 # GCC 7, 8 1522 def_bool $(cc-option,-msign-return-address=all) 1523 1524config AS_HAS_PAC 1525 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1526 1527config AS_HAS_CFI_NEGATE_RA_STATE 1528 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1529 1530endmenu 1531 1532menu "ARMv8.4 architectural features" 1533 1534config ARM64_AMU_EXTN 1535 bool "Enable support for the Activity Monitors Unit CPU extension" 1536 default y 1537 help 1538 The activity monitors extension is an optional extension introduced 1539 by the ARMv8.4 CPU architecture. This enables support for version 1 1540 of the activity monitors architecture, AMUv1. 1541 1542 To enable the use of this extension on CPUs that implement it, say Y. 1543 1544 Note that for architectural reasons, firmware _must_ implement AMU 1545 support when running on CPUs that present the activity monitors 1546 extension. The required support is present in: 1547 * Version 1.5 and later of the ARM Trusted Firmware 1548 1549 For kernels that have this configuration enabled but boot with broken 1550 firmware, you may need to say N here until the firmware is fixed. 1551 Otherwise you may experience firmware panics or lockups when 1552 accessing the counter registers. Even if you are not observing these 1553 symptoms, the values returned by the register reads might not 1554 correctly reflect reality. Most commonly, the value read will be 0, 1555 indicating that the counter is not enabled. 1556 1557config AS_HAS_ARMV8_4 1558 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1559 1560config ARM64_TLB_RANGE 1561 bool "Enable support for tlbi range feature" 1562 default y 1563 depends on AS_HAS_ARMV8_4 1564 help 1565 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1566 range of input addresses. 1567 1568 The feature introduces new assembly instructions, and they were 1569 support when binutils >= 2.30. 1570 1571endmenu 1572 1573menu "ARMv8.5 architectural features" 1574 1575config AS_HAS_ARMV8_5 1576 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 1577 1578config ARM64_BTI 1579 bool "Branch Target Identification support" 1580 default y 1581 help 1582 Branch Target Identification (part of the ARMv8.5 Extensions) 1583 provides a mechanism to limit the set of locations to which computed 1584 branch instructions such as BR or BLR can jump. 1585 1586 To make use of BTI on CPUs that support it, say Y. 1587 1588 BTI is intended to provide complementary protection to other control 1589 flow integrity protection mechanisms, such as the Pointer 1590 authentication mechanism provided as part of the ARMv8.3 Extensions. 1591 For this reason, it does not make sense to enable this option without 1592 also enabling support for pointer authentication. Thus, when 1593 enabling this option you should also select ARM64_PTR_AUTH=y. 1594 1595 Userspace binaries must also be specifically compiled to make use of 1596 this mechanism. If you say N here or the hardware does not support 1597 BTI, such binaries can still run, but you get no additional 1598 enforcement of branch destinations. 1599 1600config ARM64_BTI_KERNEL 1601 bool "Use Branch Target Identification for kernel" 1602 default y 1603 depends on ARM64_BTI 1604 depends on ARM64_PTR_AUTH_KERNEL 1605 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 1606 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 1607 depends on !CC_IS_GCC || GCC_VERSION >= 100100 1608 depends on !(CC_IS_CLANG && GCOV_KERNEL) 1609 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1610 help 1611 Build the kernel with Branch Target Identification annotations 1612 and enable enforcement of this for kernel code. When this option 1613 is enabled and the system supports BTI all kernel code including 1614 modular code must have BTI enabled. 1615 1616config CC_HAS_BRANCH_PROT_PAC_RET_BTI 1617 # GCC 9 or later, clang 8 or later 1618 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 1619 1620config ARM64_E0PD 1621 bool "Enable support for E0PD" 1622 default y 1623 help 1624 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1625 that EL0 accesses made via TTBR1 always fault in constant time, 1626 providing similar benefits to KASLR as those provided by KPTI, but 1627 with lower overhead and without disrupting legitimate access to 1628 kernel memory such as SPE. 1629 1630 This option enables E0PD for TTBR1 where available. 1631 1632config ARCH_RANDOM 1633 bool "Enable support for random number generation" 1634 default y 1635 help 1636 Random number generation (part of the ARMv8.5 Extensions) 1637 provides a high bandwidth, cryptographically secure 1638 hardware random number generator. 1639 1640config ARM64_AS_HAS_MTE 1641 # Initial support for MTE went in binutils 2.32.0, checked with 1642 # ".arch armv8.5-a+memtag" below. However, this was incomplete 1643 # as a late addition to the final architecture spec (LDGM/STGM) 1644 # is only supported in the newer 2.32.x and 2.33 binutils 1645 # versions, hence the extra "stgm" instruction check below. 1646 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 1647 1648config ARM64_MTE 1649 bool "Memory Tagging Extension support" 1650 default y 1651 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 1652 depends on AS_HAS_ARMV8_5 1653 depends on AS_HAS_LSE_ATOMICS 1654 # Required for tag checking in the uaccess routines 1655 depends on ARM64_PAN 1656 select ARCH_USES_HIGH_VMA_FLAGS 1657 help 1658 Memory Tagging (part of the ARMv8.5 Extensions) provides 1659 architectural support for run-time, always-on detection of 1660 various classes of memory error to aid with software debugging 1661 to eliminate vulnerabilities arising from memory-unsafe 1662 languages. 1663 1664 This option enables the support for the Memory Tagging 1665 Extension at EL0 (i.e. for userspace). 1666 1667 Selecting this option allows the feature to be detected at 1668 runtime. Any secondary CPU not implementing this feature will 1669 not be allowed a late bring-up. 1670 1671 Userspace binaries that want to use this feature must 1672 explicitly opt in. The mechanism for the userspace is 1673 described in: 1674 1675 Documentation/arm64/memory-tagging-extension.rst. 1676 1677endmenu 1678 1679menu "ARMv8.7 architectural features" 1680 1681config ARM64_EPAN 1682 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 1683 default y 1684 depends on ARM64_PAN 1685 help 1686 Enhanced Privileged Access Never (EPAN) allows Privileged 1687 Access Never to be used with Execute-only mappings. 1688 1689 The feature is detected at runtime, and will remain disabled 1690 if the cpu does not implement the feature. 1691endmenu 1692 1693config ARM64_SVE 1694 bool "ARM Scalable Vector Extension support" 1695 default y 1696 help 1697 The Scalable Vector Extension (SVE) is an extension to the AArch64 1698 execution state which complements and extends the SIMD functionality 1699 of the base architecture to support much larger vectors and to enable 1700 additional vectorisation opportunities. 1701 1702 To enable use of this extension on CPUs that implement it, say Y. 1703 1704 On CPUs that support the SVE2 extensions, this option will enable 1705 those too. 1706 1707 Note that for architectural reasons, firmware _must_ implement SVE 1708 support when running on SVE capable hardware. The required support 1709 is present in: 1710 1711 * version 1.5 and later of the ARM Trusted Firmware 1712 * the AArch64 boot wrapper since commit 5e1261e08abf 1713 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1714 1715 For other firmware implementations, consult the firmware documentation 1716 or vendor. 1717 1718 If you need the kernel to boot on SVE-capable hardware with broken 1719 firmware, you may need to say N here until you get your firmware 1720 fixed. Otherwise, you may experience firmware panics or lockups when 1721 booting the kernel. If unsure and you are not observing these 1722 symptoms, you should assume that it is safe to say Y. 1723 1724config ARM64_MODULE_PLTS 1725 bool "Use PLTs to allow module memory to spill over into vmalloc area" 1726 depends on MODULES 1727 select HAVE_MOD_ARCH_SPECIFIC 1728 help 1729 Allocate PLTs when loading modules so that jumps and calls whose 1730 targets are too far away for their relative offsets to be encoded 1731 in the instructions themselves can be bounced via veneers in the 1732 module's PLT. This allows modules to be allocated in the generic 1733 vmalloc area after the dedicated module memory area has been 1734 exhausted. 1735 1736 When running with address space randomization (KASLR), the module 1737 region itself may be too far away for ordinary relative jumps and 1738 calls, and so in that case, module PLTs are required and cannot be 1739 disabled. 1740 1741 Specific errata workaround(s) might also force module PLTs to be 1742 enabled (ARM64_ERRATUM_843419). 1743 1744config ARM64_PSEUDO_NMI 1745 bool "Support for NMI-like interrupts" 1746 select ARM_GIC_V3 1747 help 1748 Adds support for mimicking Non-Maskable Interrupts through the use of 1749 GIC interrupt priority. This support requires version 3 or later of 1750 ARM GIC. 1751 1752 This high priority configuration for interrupts needs to be 1753 explicitly enabled by setting the kernel parameter 1754 "irqchip.gicv3_pseudo_nmi" to 1. 1755 1756 If unsure, say N 1757 1758if ARM64_PSEUDO_NMI 1759config ARM64_DEBUG_PRIORITY_MASKING 1760 bool "Debug interrupt priority masking" 1761 help 1762 This adds runtime checks to functions enabling/disabling 1763 interrupts when using priority masking. The additional checks verify 1764 the validity of ICC_PMR_EL1 when calling concerned functions. 1765 1766 If unsure, say N 1767endif 1768 1769config RELOCATABLE 1770 bool "Build a relocatable kernel image" if EXPERT 1771 select ARCH_HAS_RELR 1772 default y 1773 help 1774 This builds the kernel as a Position Independent Executable (PIE), 1775 which retains all relocation metadata required to relocate the 1776 kernel binary at runtime to a different virtual address than the 1777 address it was linked at. 1778 Since AArch64 uses the RELA relocation format, this requires a 1779 relocation pass at runtime even if the kernel is loaded at the 1780 same address it was linked at. 1781 1782config RANDOMIZE_BASE 1783 bool "Randomize the address of the kernel image" 1784 select ARM64_MODULE_PLTS if MODULES 1785 select RELOCATABLE 1786 help 1787 Randomizes the virtual address at which the kernel image is 1788 loaded, as a security feature that deters exploit attempts 1789 relying on knowledge of the location of kernel internals. 1790 1791 It is the bootloader's job to provide entropy, by passing a 1792 random u64 value in /chosen/kaslr-seed at kernel entry. 1793 1794 When booting via the UEFI stub, it will invoke the firmware's 1795 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 1796 to the kernel proper. In addition, it will randomise the physical 1797 location of the kernel Image as well. 1798 1799 If unsure, say N. 1800 1801config RANDOMIZE_MODULE_REGION_FULL 1802 bool "Randomize the module region over a 4 GB range" 1803 depends on RANDOMIZE_BASE 1804 default y 1805 help 1806 Randomizes the location of the module region inside a 4 GB window 1807 covering the core kernel. This way, it is less likely for modules 1808 to leak information about the location of core kernel data structures 1809 but it does imply that function calls between modules and the core 1810 kernel will need to be resolved via veneers in the module PLT. 1811 1812 When this option is not set, the module region will be randomized over 1813 a limited range that contains the [_stext, _etext] interval of the 1814 core kernel, so branch relocations are always in range. 1815 1816config CC_HAVE_STACKPROTECTOR_SYSREG 1817 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 1818 1819config STACKPROTECTOR_PER_TASK 1820 def_bool y 1821 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 1822 1823endmenu 1824 1825menu "Boot options" 1826 1827config ARM64_ACPI_PARKING_PROTOCOL 1828 bool "Enable support for the ARM64 ACPI parking protocol" 1829 depends on ACPI 1830 help 1831 Enable support for the ARM64 ACPI parking protocol. If disabled 1832 the kernel will not allow booting through the ARM64 ACPI parking 1833 protocol even if the corresponding data is present in the ACPI 1834 MADT table. 1835 1836config CMDLINE 1837 string "Default kernel command string" 1838 default "" 1839 help 1840 Provide a set of default command-line options at build time by 1841 entering them here. As a minimum, you should specify the the 1842 root device (e.g. root=/dev/nfs). 1843 1844choice 1845 prompt "Kernel command line type" if CMDLINE != "" 1846 default CMDLINE_FROM_BOOTLOADER 1847 help 1848 Choose how the kernel will handle the provided default kernel 1849 command line string. 1850 1851config CMDLINE_FROM_BOOTLOADER 1852 bool "Use bootloader kernel arguments if available" 1853 help 1854 Uses the command-line options passed by the boot loader. If 1855 the boot loader doesn't provide any, the default kernel command 1856 string provided in CMDLINE will be used. 1857 1858config CMDLINE_FORCE 1859 bool "Always use the default kernel command string" 1860 help 1861 Always use the default kernel command string, even if the boot 1862 loader passes other arguments to the kernel. 1863 This is useful if you cannot or don't want to change the 1864 command-line options your boot loader passes to the kernel. 1865 1866endchoice 1867 1868config EFI_STUB 1869 bool 1870 1871config EFI 1872 bool "UEFI runtime support" 1873 depends on OF && !CPU_BIG_ENDIAN 1874 depends on KERNEL_MODE_NEON 1875 select ARCH_SUPPORTS_ACPI 1876 select LIBFDT 1877 select UCS2_STRING 1878 select EFI_PARAMS_FROM_FDT 1879 select EFI_RUNTIME_WRAPPERS 1880 select EFI_STUB 1881 select EFI_GENERIC_STUB 1882 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 1883 default y 1884 help 1885 This option provides support for runtime services provided 1886 by UEFI firmware (such as non-volatile variables, realtime 1887 clock, and platform reset). A UEFI stub is also provided to 1888 allow the kernel to be booted as an EFI application. This 1889 is only useful on systems that have UEFI firmware. 1890 1891config DMI 1892 bool "Enable support for SMBIOS (DMI) tables" 1893 depends on EFI 1894 default y 1895 help 1896 This enables SMBIOS/DMI feature for systems. 1897 1898 This option is only useful on systems that have UEFI firmware. 1899 However, even with this option, the resultant kernel should 1900 continue to boot on existing non-UEFI platforms. 1901 1902endmenu 1903 1904config SYSVIPC_COMPAT 1905 def_bool y 1906 depends on COMPAT && SYSVIPC 1907 1908menu "Power management options" 1909 1910source "kernel/power/Kconfig" 1911 1912config ARCH_HIBERNATION_POSSIBLE 1913 def_bool y 1914 depends on CPU_PM 1915 1916config ARCH_HIBERNATION_HEADER 1917 def_bool y 1918 depends on HIBERNATION 1919 1920config ARCH_SUSPEND_POSSIBLE 1921 def_bool y 1922 1923endmenu 1924 1925menu "CPU Power Management" 1926 1927source "drivers/cpuidle/Kconfig" 1928 1929source "drivers/cpufreq/Kconfig" 1930 1931endmenu 1932 1933source "drivers/firmware/Kconfig" 1934 1935source "drivers/acpi/Kconfig" 1936 1937source "arch/arm64/kvm/Kconfig" 1938 1939if CRYPTO 1940source "arch/arm64/crypto/Kconfig" 1941endif 1942