xref: /openbmc/linux/arch/arm64/Kconfig (revision e481ff3f)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_STATE
14	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
15	select ARCH_ENABLE_MEMORY_HOTPLUG
16	select ARCH_ENABLE_MEMORY_HOTREMOVE
17	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
18	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
19	select ARCH_HAS_CACHE_LINE_SIZE
20	select ARCH_HAS_DEBUG_VIRTUAL
21	select ARCH_HAS_DEBUG_VM_PGTABLE
22	select ARCH_HAS_DMA_PREP_COHERENT
23	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
24	select ARCH_HAS_FAST_MULTIPLIER
25	select ARCH_HAS_FORTIFY_SOURCE
26	select ARCH_HAS_GCOV_PROFILE_ALL
27	select ARCH_HAS_GIGANTIC_PAGE
28	select ARCH_HAS_KCOV
29	select ARCH_HAS_KEEPINITRD
30	select ARCH_HAS_MEMBARRIER_SYNC_CORE
31	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
32	select ARCH_HAS_PTE_DEVMAP
33	select ARCH_HAS_PTE_SPECIAL
34	select ARCH_HAS_SETUP_DMA_OPS
35	select ARCH_HAS_SET_DIRECT_MAP
36	select ARCH_HAS_SET_MEMORY
37	select ARCH_STACKWALK
38	select ARCH_HAS_STRICT_KERNEL_RWX
39	select ARCH_HAS_STRICT_MODULE_RWX
40	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
41	select ARCH_HAS_SYNC_DMA_FOR_CPU
42	select ARCH_HAS_SYSCALL_WRAPPER
43	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
44	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
45	select ARCH_HAS_ZONE_DMA_SET if EXPERT
46	select ARCH_HAVE_ELF_PROT
47	select ARCH_HAVE_NMI_SAFE_CMPXCHG
48	select ARCH_INLINE_READ_LOCK if !PREEMPTION
49	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
50	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
51	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
52	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
53	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
54	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
55	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
56	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
57	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
58	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
59	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
60	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
61	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
62	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
63	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
64	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
65	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
66	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
67	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
68	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
69	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
70	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
71	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
72	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
73	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
74	select ARCH_KEEP_MEMBLOCK
75	select ARCH_USE_CMPXCHG_LOCKREF
76	select ARCH_USE_GNU_PROPERTY
77	select ARCH_USE_MEMTEST
78	select ARCH_USE_QUEUED_RWLOCKS
79	select ARCH_USE_QUEUED_SPINLOCKS
80	select ARCH_USE_SYM_ANNOTATIONS
81	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
82	select ARCH_SUPPORTS_HUGETLBFS
83	select ARCH_SUPPORTS_MEMORY_FAILURE
84	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
85	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
86	select ARCH_SUPPORTS_LTO_CLANG_THIN
87	select ARCH_SUPPORTS_CFI_CLANG
88	select ARCH_SUPPORTS_ATOMIC_RMW
89	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG)
90	select ARCH_SUPPORTS_NUMA_BALANCING
91	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
92	select ARCH_WANT_DEFAULT_BPF_JIT
93	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
94	select ARCH_WANT_FRAME_POINTERS
95	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
96	select ARCH_WANT_LD_ORPHAN_WARN
97	select ARCH_WANTS_NO_INSTR
98	select ARCH_HAS_UBSAN_SANITIZE_ALL
99	select ARM_AMBA
100	select ARM_ARCH_TIMER
101	select ARM_GIC
102	select AUDIT_ARCH_COMPAT_GENERIC
103	select ARM_GIC_V2M if PCI
104	select ARM_GIC_V3
105	select ARM_GIC_V3_ITS if PCI
106	select ARM_PSCI_FW
107	select BUILDTIME_TABLE_SORT
108	select CLONE_BACKWARDS
109	select COMMON_CLK
110	select CPU_PM if (SUSPEND || CPU_IDLE)
111	select CRC32
112	select DCACHE_WORD_ACCESS
113	select DMA_DIRECT_REMAP
114	select EDAC_SUPPORT
115	select FRAME_POINTER
116	select GENERIC_ALLOCATOR
117	select GENERIC_ARCH_TOPOLOGY
118	select GENERIC_CLOCKEVENTS_BROADCAST
119	select GENERIC_CPU_AUTOPROBE
120	select GENERIC_CPU_VULNERABILITIES
121	select GENERIC_EARLY_IOREMAP
122	select GENERIC_FIND_FIRST_BIT
123	select GENERIC_IDLE_POLL_SETUP
124	select GENERIC_IRQ_IPI
125	select GENERIC_IRQ_PROBE
126	select GENERIC_IRQ_SHOW
127	select GENERIC_IRQ_SHOW_LEVEL
128	select GENERIC_LIB_DEVMEM_IS_ALLOWED
129	select GENERIC_PCI_IOMAP
130	select GENERIC_PTDUMP
131	select GENERIC_SCHED_CLOCK
132	select GENERIC_SMP_IDLE_THREAD
133	select GENERIC_STRNCPY_FROM_USER
134	select GENERIC_STRNLEN_USER
135	select GENERIC_TIME_VSYSCALL
136	select GENERIC_GETTIMEOFDAY
137	select GENERIC_VDSO_TIME_NS
138	select HANDLE_DOMAIN_IRQ
139	select HARDIRQS_SW_RESEND
140	select HAVE_MOVE_PMD
141	select HAVE_MOVE_PUD
142	select HAVE_PCI
143	select HAVE_ACPI_APEI if (ACPI && EFI)
144	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
145	select HAVE_ARCH_AUDITSYSCALL
146	select HAVE_ARCH_BITREVERSE
147	select HAVE_ARCH_COMPILER_H
148	select HAVE_ARCH_HUGE_VMAP
149	select HAVE_ARCH_JUMP_LABEL
150	select HAVE_ARCH_JUMP_LABEL_RELATIVE
151	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
152	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
153	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
154	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
155	select HAVE_ARCH_KFENCE
156	select HAVE_ARCH_KGDB
157	select HAVE_ARCH_MMAP_RND_BITS
158	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
159	select HAVE_ARCH_PREL32_RELOCATIONS
160	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
161	select HAVE_ARCH_SECCOMP_FILTER
162	select HAVE_ARCH_STACKLEAK
163	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
164	select HAVE_ARCH_TRACEHOOK
165	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
166	select HAVE_ARCH_VMAP_STACK
167	select HAVE_ARM_SMCCC
168	select HAVE_ASM_MODVERSIONS
169	select HAVE_EBPF_JIT
170	select HAVE_C_RECORDMCOUNT
171	select HAVE_CMPXCHG_DOUBLE
172	select HAVE_CMPXCHG_LOCAL
173	select HAVE_CONTEXT_TRACKING
174	select HAVE_DEBUG_KMEMLEAK
175	select HAVE_DMA_CONTIGUOUS
176	select HAVE_DYNAMIC_FTRACE
177	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
178		if $(cc-option,-fpatchable-function-entry=2)
179	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
180		if DYNAMIC_FTRACE_WITH_REGS
181	select HAVE_EFFICIENT_UNALIGNED_ACCESS
182	select HAVE_FAST_GUP
183	select HAVE_FTRACE_MCOUNT_RECORD
184	select HAVE_FUNCTION_TRACER
185	select HAVE_FUNCTION_ERROR_INJECTION
186	select HAVE_FUNCTION_GRAPH_TRACER
187	select HAVE_GCC_PLUGINS
188	select HAVE_HW_BREAKPOINT if PERF_EVENTS
189	select HAVE_IRQ_TIME_ACCOUNTING
190	select HAVE_NMI
191	select HAVE_PATA_PLATFORM
192	select HAVE_PERF_EVENTS
193	select HAVE_PERF_REGS
194	select HAVE_PERF_USER_STACK_DUMP
195	select HAVE_REGS_AND_STACK_ACCESS_API
196	select HAVE_FUNCTION_ARG_ACCESS_API
197	select HAVE_FUTEX_CMPXCHG if FUTEX
198	select MMU_GATHER_RCU_TABLE_FREE
199	select HAVE_RSEQ
200	select HAVE_STACKPROTECTOR
201	select HAVE_SYSCALL_TRACEPOINTS
202	select HAVE_KPROBES
203	select HAVE_KRETPROBES
204	select HAVE_GENERIC_VDSO
205	select IOMMU_DMA if IOMMU_SUPPORT
206	select IRQ_DOMAIN
207	select IRQ_FORCED_THREADING
208	select KASAN_VMALLOC if KASAN_GENERIC
209	select MODULES_USE_ELF_RELA
210	select NEED_DMA_MAP_STATE
211	select NEED_SG_DMA_LENGTH
212	select OF
213	select OF_EARLY_FLATTREE
214	select PCI_DOMAINS_GENERIC if PCI
215	select PCI_ECAM if (ACPI && PCI)
216	select PCI_SYSCALL if PCI
217	select POWER_RESET
218	select POWER_SUPPLY
219	select SPARSE_IRQ
220	select SWIOTLB
221	select SYSCTL_EXCEPTION_TRACE
222	select THREAD_INFO_IN_TASK
223	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
224	help
225	  ARM 64-bit (AArch64) Linux support.
226
227config 64BIT
228	def_bool y
229
230config MMU
231	def_bool y
232
233config ARM64_PAGE_SHIFT
234	int
235	default 16 if ARM64_64K_PAGES
236	default 14 if ARM64_16K_PAGES
237	default 12
238
239config ARM64_CONT_PTE_SHIFT
240	int
241	default 5 if ARM64_64K_PAGES
242	default 7 if ARM64_16K_PAGES
243	default 4
244
245config ARM64_CONT_PMD_SHIFT
246	int
247	default 5 if ARM64_64K_PAGES
248	default 5 if ARM64_16K_PAGES
249	default 4
250
251config ARCH_MMAP_RND_BITS_MIN
252       default 14 if ARM64_64K_PAGES
253       default 16 if ARM64_16K_PAGES
254       default 18
255
256# max bits determined by the following formula:
257#  VA_BITS - PAGE_SHIFT - 3
258config ARCH_MMAP_RND_BITS_MAX
259       default 19 if ARM64_VA_BITS=36
260       default 24 if ARM64_VA_BITS=39
261       default 27 if ARM64_VA_BITS=42
262       default 30 if ARM64_VA_BITS=47
263       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
264       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
265       default 33 if ARM64_VA_BITS=48
266       default 14 if ARM64_64K_PAGES
267       default 16 if ARM64_16K_PAGES
268       default 18
269
270config ARCH_MMAP_RND_COMPAT_BITS_MIN
271       default 7 if ARM64_64K_PAGES
272       default 9 if ARM64_16K_PAGES
273       default 11
274
275config ARCH_MMAP_RND_COMPAT_BITS_MAX
276       default 16
277
278config NO_IOPORT_MAP
279	def_bool y if !PCI
280
281config STACKTRACE_SUPPORT
282	def_bool y
283
284config ILLEGAL_POINTER_VALUE
285	hex
286	default 0xdead000000000000
287
288config LOCKDEP_SUPPORT
289	def_bool y
290
291config TRACE_IRQFLAGS_SUPPORT
292	def_bool y
293
294config GENERIC_BUG
295	def_bool y
296	depends on BUG
297
298config GENERIC_BUG_RELATIVE_POINTERS
299	def_bool y
300	depends on GENERIC_BUG
301
302config GENERIC_HWEIGHT
303	def_bool y
304
305config GENERIC_CSUM
306        def_bool y
307
308config GENERIC_CALIBRATE_DELAY
309	def_bool y
310
311config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
312	def_bool y
313
314config SMP
315	def_bool y
316
317config KERNEL_MODE_NEON
318	def_bool y
319
320config FIX_EARLYCON_MEM
321	def_bool y
322
323config PGTABLE_LEVELS
324	int
325	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
326	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
327	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
328	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
329	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
330	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
331
332config ARCH_SUPPORTS_UPROBES
333	def_bool y
334
335config ARCH_PROC_KCORE_TEXT
336	def_bool y
337
338config BROKEN_GAS_INST
339	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
340
341config KASAN_SHADOW_OFFSET
342	hex
343	depends on KASAN_GENERIC || KASAN_SW_TAGS
344	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
345	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
346	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
347	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
348	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
349	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
350	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
351	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
352	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
353	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
354	default 0xffffffffffffffff
355
356source "arch/arm64/Kconfig.platforms"
357
358menu "Kernel Features"
359
360menu "ARM errata workarounds via the alternatives framework"
361
362config ARM64_WORKAROUND_CLEAN_CACHE
363	bool
364
365config ARM64_ERRATUM_826319
366	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
367	default y
368	select ARM64_WORKAROUND_CLEAN_CACHE
369	help
370	  This option adds an alternative code sequence to work around ARM
371	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
372	  AXI master interface and an L2 cache.
373
374	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
375	  and is unable to accept a certain write via this interface, it will
376	  not progress on read data presented on the read data channel and the
377	  system can deadlock.
378
379	  The workaround promotes data cache clean instructions to
380	  data cache clean-and-invalidate.
381	  Please note that this does not necessarily enable the workaround,
382	  as it depends on the alternative framework, which will only patch
383	  the kernel if an affected CPU is detected.
384
385	  If unsure, say Y.
386
387config ARM64_ERRATUM_827319
388	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
389	default y
390	select ARM64_WORKAROUND_CLEAN_CACHE
391	help
392	  This option adds an alternative code sequence to work around ARM
393	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
394	  master interface and an L2 cache.
395
396	  Under certain conditions this erratum can cause a clean line eviction
397	  to occur at the same time as another transaction to the same address
398	  on the AMBA 5 CHI interface, which can cause data corruption if the
399	  interconnect reorders the two transactions.
400
401	  The workaround promotes data cache clean instructions to
402	  data cache clean-and-invalidate.
403	  Please note that this does not necessarily enable the workaround,
404	  as it depends on the alternative framework, which will only patch
405	  the kernel if an affected CPU is detected.
406
407	  If unsure, say Y.
408
409config ARM64_ERRATUM_824069
410	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
411	default y
412	select ARM64_WORKAROUND_CLEAN_CACHE
413	help
414	  This option adds an alternative code sequence to work around ARM
415	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
416	  to a coherent interconnect.
417
418	  If a Cortex-A53 processor is executing a store or prefetch for
419	  write instruction at the same time as a processor in another
420	  cluster is executing a cache maintenance operation to the same
421	  address, then this erratum might cause a clean cache line to be
422	  incorrectly marked as dirty.
423
424	  The workaround promotes data cache clean instructions to
425	  data cache clean-and-invalidate.
426	  Please note that this option does not necessarily enable the
427	  workaround, as it depends on the alternative framework, which will
428	  only patch the kernel if an affected CPU is detected.
429
430	  If unsure, say Y.
431
432config ARM64_ERRATUM_819472
433	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
434	default y
435	select ARM64_WORKAROUND_CLEAN_CACHE
436	help
437	  This option adds an alternative code sequence to work around ARM
438	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
439	  present when it is connected to a coherent interconnect.
440
441	  If the processor is executing a load and store exclusive sequence at
442	  the same time as a processor in another cluster is executing a cache
443	  maintenance operation to the same address, then this erratum might
444	  cause data corruption.
445
446	  The workaround promotes data cache clean instructions to
447	  data cache clean-and-invalidate.
448	  Please note that this does not necessarily enable the workaround,
449	  as it depends on the alternative framework, which will only patch
450	  the kernel if an affected CPU is detected.
451
452	  If unsure, say Y.
453
454config ARM64_ERRATUM_832075
455	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
456	default y
457	help
458	  This option adds an alternative code sequence to work around ARM
459	  erratum 832075 on Cortex-A57 parts up to r1p2.
460
461	  Affected Cortex-A57 parts might deadlock when exclusive load/store
462	  instructions to Write-Back memory are mixed with Device loads.
463
464	  The workaround is to promote device loads to use Load-Acquire
465	  semantics.
466	  Please note that this does not necessarily enable the workaround,
467	  as it depends on the alternative framework, which will only patch
468	  the kernel if an affected CPU is detected.
469
470	  If unsure, say Y.
471
472config ARM64_ERRATUM_834220
473	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
474	depends on KVM
475	default y
476	help
477	  This option adds an alternative code sequence to work around ARM
478	  erratum 834220 on Cortex-A57 parts up to r1p2.
479
480	  Affected Cortex-A57 parts might report a Stage 2 translation
481	  fault as the result of a Stage 1 fault for load crossing a
482	  page boundary when there is a permission or device memory
483	  alignment fault at Stage 1 and a translation fault at Stage 2.
484
485	  The workaround is to verify that the Stage 1 translation
486	  doesn't generate a fault before handling the Stage 2 fault.
487	  Please note that this does not necessarily enable the workaround,
488	  as it depends on the alternative framework, which will only patch
489	  the kernel if an affected CPU is detected.
490
491	  If unsure, say Y.
492
493config ARM64_ERRATUM_845719
494	bool "Cortex-A53: 845719: a load might read incorrect data"
495	depends on COMPAT
496	default y
497	help
498	  This option adds an alternative code sequence to work around ARM
499	  erratum 845719 on Cortex-A53 parts up to r0p4.
500
501	  When running a compat (AArch32) userspace on an affected Cortex-A53
502	  part, a load at EL0 from a virtual address that matches the bottom 32
503	  bits of the virtual address used by a recent load at (AArch64) EL1
504	  might return incorrect data.
505
506	  The workaround is to write the contextidr_el1 register on exception
507	  return to a 32-bit task.
508	  Please note that this does not necessarily enable the workaround,
509	  as it depends on the alternative framework, which will only patch
510	  the kernel if an affected CPU is detected.
511
512	  If unsure, say Y.
513
514config ARM64_ERRATUM_843419
515	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
516	default y
517	select ARM64_MODULE_PLTS if MODULES
518	help
519	  This option links the kernel with '--fix-cortex-a53-843419' and
520	  enables PLT support to replace certain ADRP instructions, which can
521	  cause subsequent memory accesses to use an incorrect address on
522	  Cortex-A53 parts up to r0p4.
523
524	  If unsure, say Y.
525
526config ARM64_LD_HAS_FIX_ERRATUM_843419
527	def_bool $(ld-option,--fix-cortex-a53-843419)
528
529config ARM64_ERRATUM_1024718
530	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
531	default y
532	help
533	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
534
535	  Affected Cortex-A55 cores (all revisions) could cause incorrect
536	  update of the hardware dirty bit when the DBM/AP bits are updated
537	  without a break-before-make. The workaround is to disable the usage
538	  of hardware DBM locally on the affected cores. CPUs not affected by
539	  this erratum will continue to use the feature.
540
541	  If unsure, say Y.
542
543config ARM64_ERRATUM_1418040
544	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
545	default y
546	depends on COMPAT
547	help
548	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
549	  errata 1188873 and 1418040.
550
551	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
552	  cause register corruption when accessing the timer registers
553	  from AArch32 userspace.
554
555	  If unsure, say Y.
556
557config ARM64_WORKAROUND_SPECULATIVE_AT
558	bool
559
560config ARM64_ERRATUM_1165522
561	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
562	default y
563	select ARM64_WORKAROUND_SPECULATIVE_AT
564	help
565	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
566
567	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
568	  corrupted TLBs by speculating an AT instruction during a guest
569	  context switch.
570
571	  If unsure, say Y.
572
573config ARM64_ERRATUM_1319367
574	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
575	default y
576	select ARM64_WORKAROUND_SPECULATIVE_AT
577	help
578	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
579	  and A72 erratum 1319367
580
581	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
582	  speculating an AT instruction during a guest context switch.
583
584	  If unsure, say Y.
585
586config ARM64_ERRATUM_1530923
587	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
588	default y
589	select ARM64_WORKAROUND_SPECULATIVE_AT
590	help
591	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
592
593	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
594	  corrupted TLBs by speculating an AT instruction during a guest
595	  context switch.
596
597	  If unsure, say Y.
598
599config ARM64_WORKAROUND_REPEAT_TLBI
600	bool
601
602config ARM64_ERRATUM_1286807
603	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
604	default y
605	select ARM64_WORKAROUND_REPEAT_TLBI
606	help
607	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
608
609	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
610	  address for a cacheable mapping of a location is being
611	  accessed by a core while another core is remapping the virtual
612	  address to a new physical page using the recommended
613	  break-before-make sequence, then under very rare circumstances
614	  TLBI+DSB completes before a read using the translation being
615	  invalidated has been observed by other observers. The
616	  workaround repeats the TLBI+DSB operation.
617
618config ARM64_ERRATUM_1463225
619	bool "Cortex-A76: Software Step might prevent interrupt recognition"
620	default y
621	help
622	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
623
624	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
625	  of a system call instruction (SVC) can prevent recognition of
626	  subsequent interrupts when software stepping is disabled in the
627	  exception handler of the system call and either kernel debugging
628	  is enabled or VHE is in use.
629
630	  Work around the erratum by triggering a dummy step exception
631	  when handling a system call from a task that is being stepped
632	  in a VHE configuration of the kernel.
633
634	  If unsure, say Y.
635
636config ARM64_ERRATUM_1542419
637	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
638	default y
639	help
640	  This option adds a workaround for ARM Neoverse-N1 erratum
641	  1542419.
642
643	  Affected Neoverse-N1 cores could execute a stale instruction when
644	  modified by another CPU. The workaround depends on a firmware
645	  counterpart.
646
647	  Workaround the issue by hiding the DIC feature from EL0. This
648	  forces user-space to perform cache maintenance.
649
650	  If unsure, say Y.
651
652config ARM64_ERRATUM_1508412
653	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
654	default y
655	help
656	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
657
658	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
659	  of a store-exclusive or read of PAR_EL1 and a load with device or
660	  non-cacheable memory attributes. The workaround depends on a firmware
661	  counterpart.
662
663	  KVM guests must also have the workaround implemented or they can
664	  deadlock the system.
665
666	  Work around the issue by inserting DMB SY barriers around PAR_EL1
667	  register reads and warning KVM users. The DMB barrier is sufficient
668	  to prevent a speculative PAR_EL1 read.
669
670	  If unsure, say Y.
671
672config CAVIUM_ERRATUM_22375
673	bool "Cavium erratum 22375, 24313"
674	default y
675	help
676	  Enable workaround for errata 22375 and 24313.
677
678	  This implements two gicv3-its errata workarounds for ThunderX. Both
679	  with a small impact affecting only ITS table allocation.
680
681	    erratum 22375: only alloc 8MB table size
682	    erratum 24313: ignore memory access type
683
684	  The fixes are in ITS initialization and basically ignore memory access
685	  type and table size provided by the TYPER and BASER registers.
686
687	  If unsure, say Y.
688
689config CAVIUM_ERRATUM_23144
690	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
691	depends on NUMA
692	default y
693	help
694	  ITS SYNC command hang for cross node io and collections/cpu mapping.
695
696	  If unsure, say Y.
697
698config CAVIUM_ERRATUM_23154
699	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
700	default y
701	help
702	  The gicv3 of ThunderX requires a modified version for
703	  reading the IAR status to ensure data synchronization
704	  (access to icc_iar1_el1 is not sync'ed before and after).
705
706	  If unsure, say Y.
707
708config CAVIUM_ERRATUM_27456
709	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
710	default y
711	help
712	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
713	  instructions may cause the icache to become corrupted if it
714	  contains data for a non-current ASID.  The fix is to
715	  invalidate the icache when changing the mm context.
716
717	  If unsure, say Y.
718
719config CAVIUM_ERRATUM_30115
720	bool "Cavium erratum 30115: Guest may disable interrupts in host"
721	default y
722	help
723	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
724	  1.2, and T83 Pass 1.0, KVM guest execution may disable
725	  interrupts in host. Trapping both GICv3 group-0 and group-1
726	  accesses sidesteps the issue.
727
728	  If unsure, say Y.
729
730config CAVIUM_TX2_ERRATUM_219
731	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
732	default y
733	help
734	  On Cavium ThunderX2, a load, store or prefetch instruction between a
735	  TTBR update and the corresponding context synchronizing operation can
736	  cause a spurious Data Abort to be delivered to any hardware thread in
737	  the CPU core.
738
739	  Work around the issue by avoiding the problematic code sequence and
740	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
741	  trap handler performs the corresponding register access, skips the
742	  instruction and ensures context synchronization by virtue of the
743	  exception return.
744
745	  If unsure, say Y.
746
747config FUJITSU_ERRATUM_010001
748	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
749	default y
750	help
751	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
752	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
753	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
754	  This fault occurs under a specific hardware condition when a
755	  load/store instruction performs an address translation using:
756	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
757	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
758	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
759	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
760
761	  The workaround is to ensure these bits are clear in TCR_ELx.
762	  The workaround only affects the Fujitsu-A64FX.
763
764	  If unsure, say Y.
765
766config HISILICON_ERRATUM_161600802
767	bool "Hip07 161600802: Erroneous redistributor VLPI base"
768	default y
769	help
770	  The HiSilicon Hip07 SoC uses the wrong redistributor base
771	  when issued ITS commands such as VMOVP and VMAPP, and requires
772	  a 128kB offset to be applied to the target address in this commands.
773
774	  If unsure, say Y.
775
776config QCOM_FALKOR_ERRATUM_1003
777	bool "Falkor E1003: Incorrect translation due to ASID change"
778	default y
779	help
780	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
781	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
782	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
783	  then only for entries in the walk cache, since the leaf translation
784	  is unchanged. Work around the erratum by invalidating the walk cache
785	  entries for the trampoline before entering the kernel proper.
786
787config QCOM_FALKOR_ERRATUM_1009
788	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
789	default y
790	select ARM64_WORKAROUND_REPEAT_TLBI
791	help
792	  On Falkor v1, the CPU may prematurely complete a DSB following a
793	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
794	  one more time to fix the issue.
795
796	  If unsure, say Y.
797
798config QCOM_QDF2400_ERRATUM_0065
799	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
800	default y
801	help
802	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
803	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
804	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
805
806	  If unsure, say Y.
807
808config QCOM_FALKOR_ERRATUM_E1041
809	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
810	default y
811	help
812	  Falkor CPU may speculatively fetch instructions from an improper
813	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
814	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
815
816	  If unsure, say Y.
817
818config NVIDIA_CARMEL_CNP_ERRATUM
819	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
820	default y
821	help
822	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
823	  invalidate shared TLB entries installed by a different core, as it would
824	  on standard ARM cores.
825
826	  If unsure, say Y.
827
828config SOCIONEXT_SYNQUACER_PREITS
829	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
830	default y
831	help
832	  Socionext Synquacer SoCs implement a separate h/w block to generate
833	  MSI doorbell writes with non-zero values for the device ID.
834
835	  If unsure, say Y.
836
837endmenu
838
839
840choice
841	prompt "Page size"
842	default ARM64_4K_PAGES
843	help
844	  Page size (translation granule) configuration.
845
846config ARM64_4K_PAGES
847	bool "4KB"
848	help
849	  This feature enables 4KB pages support.
850
851config ARM64_16K_PAGES
852	bool "16KB"
853	help
854	  The system will use 16KB pages support. AArch32 emulation
855	  requires applications compiled with 16K (or a multiple of 16K)
856	  aligned segments.
857
858config ARM64_64K_PAGES
859	bool "64KB"
860	help
861	  This feature enables 64KB pages support (4KB by default)
862	  allowing only two levels of page tables and faster TLB
863	  look-up. AArch32 emulation requires applications compiled
864	  with 64K aligned segments.
865
866endchoice
867
868choice
869	prompt "Virtual address space size"
870	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
871	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
872	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
873	help
874	  Allows choosing one of multiple possible virtual address
875	  space sizes. The level of translation table is determined by
876	  a combination of page size and virtual address space size.
877
878config ARM64_VA_BITS_36
879	bool "36-bit" if EXPERT
880	depends on ARM64_16K_PAGES
881
882config ARM64_VA_BITS_39
883	bool "39-bit"
884	depends on ARM64_4K_PAGES
885
886config ARM64_VA_BITS_42
887	bool "42-bit"
888	depends on ARM64_64K_PAGES
889
890config ARM64_VA_BITS_47
891	bool "47-bit"
892	depends on ARM64_16K_PAGES
893
894config ARM64_VA_BITS_48
895	bool "48-bit"
896
897config ARM64_VA_BITS_52
898	bool "52-bit"
899	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
900	help
901	  Enable 52-bit virtual addressing for userspace when explicitly
902	  requested via a hint to mmap(). The kernel will also use 52-bit
903	  virtual addresses for its own mappings (provided HW support for
904	  this feature is available, otherwise it reverts to 48-bit).
905
906	  NOTE: Enabling 52-bit virtual addressing in conjunction with
907	  ARMv8.3 Pointer Authentication will result in the PAC being
908	  reduced from 7 bits to 3 bits, which may have a significant
909	  impact on its susceptibility to brute-force attacks.
910
911	  If unsure, select 48-bit virtual addressing instead.
912
913endchoice
914
915config ARM64_FORCE_52BIT
916	bool "Force 52-bit virtual addresses for userspace"
917	depends on ARM64_VA_BITS_52 && EXPERT
918	help
919	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
920	  to maintain compatibility with older software by providing 48-bit VAs
921	  unless a hint is supplied to mmap.
922
923	  This configuration option disables the 48-bit compatibility logic, and
924	  forces all userspace addresses to be 52-bit on HW that supports it. One
925	  should only enable this configuration option for stress testing userspace
926	  memory management code. If unsure say N here.
927
928config ARM64_VA_BITS
929	int
930	default 36 if ARM64_VA_BITS_36
931	default 39 if ARM64_VA_BITS_39
932	default 42 if ARM64_VA_BITS_42
933	default 47 if ARM64_VA_BITS_47
934	default 48 if ARM64_VA_BITS_48
935	default 52 if ARM64_VA_BITS_52
936
937choice
938	prompt "Physical address space size"
939	default ARM64_PA_BITS_48
940	help
941	  Choose the maximum physical address range that the kernel will
942	  support.
943
944config ARM64_PA_BITS_48
945	bool "48-bit"
946
947config ARM64_PA_BITS_52
948	bool "52-bit (ARMv8.2)"
949	depends on ARM64_64K_PAGES
950	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
951	help
952	  Enable support for a 52-bit physical address space, introduced as
953	  part of the ARMv8.2-LPA extension.
954
955	  With this enabled, the kernel will also continue to work on CPUs that
956	  do not support ARMv8.2-LPA, but with some added memory overhead (and
957	  minor performance overhead).
958
959endchoice
960
961config ARM64_PA_BITS
962	int
963	default 48 if ARM64_PA_BITS_48
964	default 52 if ARM64_PA_BITS_52
965
966choice
967	prompt "Endianness"
968	default CPU_LITTLE_ENDIAN
969	help
970	  Select the endianness of data accesses performed by the CPU. Userspace
971	  applications will need to be compiled and linked for the endianness
972	  that is selected here.
973
974config CPU_BIG_ENDIAN
975	bool "Build big-endian kernel"
976	depends on !LD_IS_LLD || LLD_VERSION >= 130000
977	help
978	  Say Y if you plan on running a kernel with a big-endian userspace.
979
980config CPU_LITTLE_ENDIAN
981	bool "Build little-endian kernel"
982	help
983	  Say Y if you plan on running a kernel with a little-endian userspace.
984	  This is usually the case for distributions targeting arm64.
985
986endchoice
987
988config SCHED_MC
989	bool "Multi-core scheduler support"
990	help
991	  Multi-core scheduler support improves the CPU scheduler's decision
992	  making when dealing with multi-core CPU chips at a cost of slightly
993	  increased overhead in some places. If unsure say N here.
994
995config SCHED_SMT
996	bool "SMT scheduler support"
997	help
998	  Improves the CPU scheduler's decision making when dealing with
999	  MultiThreading at a cost of slightly increased overhead in some
1000	  places. If unsure say N here.
1001
1002config NR_CPUS
1003	int "Maximum number of CPUs (2-4096)"
1004	range 2 4096
1005	default "256"
1006
1007config HOTPLUG_CPU
1008	bool "Support for hot-pluggable CPUs"
1009	select GENERIC_IRQ_MIGRATION
1010	help
1011	  Say Y here to experiment with turning CPUs off and on.  CPUs
1012	  can be controlled through /sys/devices/system/cpu.
1013
1014# Common NUMA Features
1015config NUMA
1016	bool "NUMA Memory Allocation and Scheduler Support"
1017	select GENERIC_ARCH_NUMA
1018	select ACPI_NUMA if ACPI
1019	select OF_NUMA
1020	help
1021	  Enable NUMA (Non-Uniform Memory Access) support.
1022
1023	  The kernel will try to allocate memory used by a CPU on the
1024	  local memory of the CPU and add some more
1025	  NUMA awareness to the kernel.
1026
1027config NODES_SHIFT
1028	int "Maximum NUMA Nodes (as a power of 2)"
1029	range 1 10
1030	default "4"
1031	depends on NUMA
1032	help
1033	  Specify the maximum number of NUMA Nodes available on the target
1034	  system.  Increases memory reserved to accommodate various tables.
1035
1036config USE_PERCPU_NUMA_NODE_ID
1037	def_bool y
1038	depends on NUMA
1039
1040config HAVE_SETUP_PER_CPU_AREA
1041	def_bool y
1042	depends on NUMA
1043
1044config NEED_PER_CPU_EMBED_FIRST_CHUNK
1045	def_bool y
1046	depends on NUMA
1047
1048source "kernel/Kconfig.hz"
1049
1050config ARCH_SPARSEMEM_ENABLE
1051	def_bool y
1052	select SPARSEMEM_VMEMMAP_ENABLE
1053	select SPARSEMEM_VMEMMAP
1054
1055config HW_PERF_EVENTS
1056	def_bool y
1057	depends on ARM_PMU
1058
1059config ARCH_HAS_FILTER_PGPROT
1060	def_bool y
1061
1062# Supported by clang >= 7.0
1063config CC_HAVE_SHADOW_CALL_STACK
1064	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1065
1066config PARAVIRT
1067	bool "Enable paravirtualization code"
1068	help
1069	  This changes the kernel so it can modify itself when it is run
1070	  under a hypervisor, potentially improving performance significantly
1071	  over full virtualization.
1072
1073config PARAVIRT_TIME_ACCOUNTING
1074	bool "Paravirtual steal time accounting"
1075	select PARAVIRT
1076	help
1077	  Select this option to enable fine granularity task steal time
1078	  accounting. Time spent executing other tasks in parallel with
1079	  the current vCPU is discounted from the vCPU power. To account for
1080	  that, there can be a small performance impact.
1081
1082	  If in doubt, say N here.
1083
1084config KEXEC
1085	depends on PM_SLEEP_SMP
1086	select KEXEC_CORE
1087	bool "kexec system call"
1088	help
1089	  kexec is a system call that implements the ability to shutdown your
1090	  current kernel, and to start another kernel.  It is like a reboot
1091	  but it is independent of the system firmware.   And like a reboot
1092	  you can start any kernel with it, not just Linux.
1093
1094config KEXEC_FILE
1095	bool "kexec file based system call"
1096	select KEXEC_CORE
1097	select HAVE_IMA_KEXEC if IMA
1098	help
1099	  This is new version of kexec system call. This system call is
1100	  file based and takes file descriptors as system call argument
1101	  for kernel and initramfs as opposed to list of segments as
1102	  accepted by previous system call.
1103
1104config KEXEC_SIG
1105	bool "Verify kernel signature during kexec_file_load() syscall"
1106	depends on KEXEC_FILE
1107	help
1108	  Select this option to verify a signature with loaded kernel
1109	  image. If configured, any attempt of loading a image without
1110	  valid signature will fail.
1111
1112	  In addition to that option, you need to enable signature
1113	  verification for the corresponding kernel image type being
1114	  loaded in order for this to work.
1115
1116config KEXEC_IMAGE_VERIFY_SIG
1117	bool "Enable Image signature verification support"
1118	default y
1119	depends on KEXEC_SIG
1120	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1121	help
1122	  Enable Image signature verification support.
1123
1124comment "Support for PE file signature verification disabled"
1125	depends on KEXEC_SIG
1126	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1127
1128config CRASH_DUMP
1129	bool "Build kdump crash kernel"
1130	help
1131	  Generate crash dump after being started by kexec. This should
1132	  be normally only set in special crash dump kernels which are
1133	  loaded in the main kernel with kexec-tools into a specially
1134	  reserved region and then later executed after a crash by
1135	  kdump/kexec.
1136
1137	  For more details see Documentation/admin-guide/kdump/kdump.rst
1138
1139config TRANS_TABLE
1140	def_bool y
1141	depends on HIBERNATION
1142
1143config XEN_DOM0
1144	def_bool y
1145	depends on XEN
1146
1147config XEN
1148	bool "Xen guest support on ARM64"
1149	depends on ARM64 && OF
1150	select SWIOTLB_XEN
1151	select PARAVIRT
1152	help
1153	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1154
1155config FORCE_MAX_ZONEORDER
1156	int
1157	default "14" if ARM64_64K_PAGES
1158	default "12" if ARM64_16K_PAGES
1159	default "11"
1160	help
1161	  The kernel memory allocator divides physically contiguous memory
1162	  blocks into "zones", where each zone is a power of two number of
1163	  pages.  This option selects the largest power of two that the kernel
1164	  keeps in the memory allocator.  If you need to allocate very large
1165	  blocks of physically contiguous memory, then you may need to
1166	  increase this value.
1167
1168	  This config option is actually maximum order plus one. For example,
1169	  a value of 11 means that the largest free memory block is 2^10 pages.
1170
1171	  We make sure that we can allocate upto a HugePage size for each configuration.
1172	  Hence we have :
1173		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1174
1175	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1176	  4M allocations matching the default size used by generic code.
1177
1178config UNMAP_KERNEL_AT_EL0
1179	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1180	default y
1181	help
1182	  Speculation attacks against some high-performance processors can
1183	  be used to bypass MMU permission checks and leak kernel data to
1184	  userspace. This can be defended against by unmapping the kernel
1185	  when running in userspace, mapping it back in on exception entry
1186	  via a trampoline page in the vector table.
1187
1188	  If unsure, say Y.
1189
1190config RODATA_FULL_DEFAULT_ENABLED
1191	bool "Apply r/o permissions of VM areas also to their linear aliases"
1192	default y
1193	help
1194	  Apply read-only attributes of VM areas to the linear alias of
1195	  the backing pages as well. This prevents code or read-only data
1196	  from being modified (inadvertently or intentionally) via another
1197	  mapping of the same memory page. This additional enhancement can
1198	  be turned off at runtime by passing rodata=[off|on] (and turned on
1199	  with rodata=full if this option is set to 'n')
1200
1201	  This requires the linear region to be mapped down to pages,
1202	  which may adversely affect performance in some cases.
1203
1204config ARM64_SW_TTBR0_PAN
1205	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1206	help
1207	  Enabling this option prevents the kernel from accessing
1208	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1209	  zeroed area and reserved ASID. The user access routines
1210	  restore the valid TTBR0_EL1 temporarily.
1211
1212config ARM64_TAGGED_ADDR_ABI
1213	bool "Enable the tagged user addresses syscall ABI"
1214	default y
1215	help
1216	  When this option is enabled, user applications can opt in to a
1217	  relaxed ABI via prctl() allowing tagged addresses to be passed
1218	  to system calls as pointer arguments. For details, see
1219	  Documentation/arm64/tagged-address-abi.rst.
1220
1221menuconfig COMPAT
1222	bool "Kernel support for 32-bit EL0"
1223	depends on ARM64_4K_PAGES || EXPERT
1224	select HAVE_UID16
1225	select OLD_SIGSUSPEND3
1226	select COMPAT_OLD_SIGACTION
1227	help
1228	  This option enables support for a 32-bit EL0 running under a 64-bit
1229	  kernel at EL1. AArch32-specific components such as system calls,
1230	  the user helper functions, VFP support and the ptrace interface are
1231	  handled appropriately by the kernel.
1232
1233	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1234	  that you will only be able to execute AArch32 binaries that were compiled
1235	  with page size aligned segments.
1236
1237	  If you want to execute 32-bit userspace applications, say Y.
1238
1239if COMPAT
1240
1241config KUSER_HELPERS
1242	bool "Enable kuser helpers page for 32-bit applications"
1243	default y
1244	help
1245	  Warning: disabling this option may break 32-bit user programs.
1246
1247	  Provide kuser helpers to compat tasks. The kernel provides
1248	  helper code to userspace in read only form at a fixed location
1249	  to allow userspace to be independent of the CPU type fitted to
1250	  the system. This permits binaries to be run on ARMv4 through
1251	  to ARMv8 without modification.
1252
1253	  See Documentation/arm/kernel_user_helpers.rst for details.
1254
1255	  However, the fixed address nature of these helpers can be used
1256	  by ROP (return orientated programming) authors when creating
1257	  exploits.
1258
1259	  If all of the binaries and libraries which run on your platform
1260	  are built specifically for your platform, and make no use of
1261	  these helpers, then you can turn this option off to hinder
1262	  such exploits. However, in that case, if a binary or library
1263	  relying on those helpers is run, it will not function correctly.
1264
1265	  Say N here only if you are absolutely certain that you do not
1266	  need these helpers; otherwise, the safe option is to say Y.
1267
1268config COMPAT_VDSO
1269	bool "Enable vDSO for 32-bit applications"
1270	depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
1271	select GENERIC_COMPAT_VDSO
1272	default y
1273	help
1274	  Place in the process address space of 32-bit applications an
1275	  ELF shared object providing fast implementations of gettimeofday
1276	  and clock_gettime.
1277
1278	  You must have a 32-bit build of glibc 2.22 or later for programs
1279	  to seamlessly take advantage of this.
1280
1281config THUMB2_COMPAT_VDSO
1282	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1283	depends on COMPAT_VDSO
1284	default y
1285	help
1286	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1287	  otherwise with '-marm'.
1288
1289menuconfig ARMV8_DEPRECATED
1290	bool "Emulate deprecated/obsolete ARMv8 instructions"
1291	depends on SYSCTL
1292	help
1293	  Legacy software support may require certain instructions
1294	  that have been deprecated or obsoleted in the architecture.
1295
1296	  Enable this config to enable selective emulation of these
1297	  features.
1298
1299	  If unsure, say Y
1300
1301if ARMV8_DEPRECATED
1302
1303config SWP_EMULATION
1304	bool "Emulate SWP/SWPB instructions"
1305	help
1306	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1307	  they are always undefined. Say Y here to enable software
1308	  emulation of these instructions for userspace using LDXR/STXR.
1309	  This feature can be controlled at runtime with the abi.swp
1310	  sysctl which is disabled by default.
1311
1312	  In some older versions of glibc [<=2.8] SWP is used during futex
1313	  trylock() operations with the assumption that the code will not
1314	  be preempted. This invalid assumption may be more likely to fail
1315	  with SWP emulation enabled, leading to deadlock of the user
1316	  application.
1317
1318	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1319	  on an external transaction monitoring block called a global
1320	  monitor to maintain update atomicity. If your system does not
1321	  implement a global monitor, this option can cause programs that
1322	  perform SWP operations to uncached memory to deadlock.
1323
1324	  If unsure, say Y
1325
1326config CP15_BARRIER_EMULATION
1327	bool "Emulate CP15 Barrier instructions"
1328	help
1329	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1330	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1331	  strongly recommended to use the ISB, DSB, and DMB
1332	  instructions instead.
1333
1334	  Say Y here to enable software emulation of these
1335	  instructions for AArch32 userspace code. When this option is
1336	  enabled, CP15 barrier usage is traced which can help
1337	  identify software that needs updating. This feature can be
1338	  controlled at runtime with the abi.cp15_barrier sysctl.
1339
1340	  If unsure, say Y
1341
1342config SETEND_EMULATION
1343	bool "Emulate SETEND instruction"
1344	help
1345	  The SETEND instruction alters the data-endianness of the
1346	  AArch32 EL0, and is deprecated in ARMv8.
1347
1348	  Say Y here to enable software emulation of the instruction
1349	  for AArch32 userspace code. This feature can be controlled
1350	  at runtime with the abi.setend sysctl.
1351
1352	  Note: All the cpus on the system must have mixed endian support at EL0
1353	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1354	  endian - is hotplugged in after this feature has been enabled, there could
1355	  be unexpected results in the applications.
1356
1357	  If unsure, say Y
1358endif
1359
1360endif
1361
1362menu "ARMv8.1 architectural features"
1363
1364config ARM64_HW_AFDBM
1365	bool "Support for hardware updates of the Access and Dirty page flags"
1366	default y
1367	help
1368	  The ARMv8.1 architecture extensions introduce support for
1369	  hardware updates of the access and dirty information in page
1370	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1371	  capable processors, accesses to pages with PTE_AF cleared will
1372	  set this bit instead of raising an access flag fault.
1373	  Similarly, writes to read-only pages with the DBM bit set will
1374	  clear the read-only bit (AP[2]) instead of raising a
1375	  permission fault.
1376
1377	  Kernels built with this configuration option enabled continue
1378	  to work on pre-ARMv8.1 hardware and the performance impact is
1379	  minimal. If unsure, say Y.
1380
1381config ARM64_PAN
1382	bool "Enable support for Privileged Access Never (PAN)"
1383	default y
1384	help
1385	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1386	 prevents the kernel or hypervisor from accessing user-space (EL0)
1387	 memory directly.
1388
1389	 Choosing this option will cause any unprotected (not using
1390	 copy_to_user et al) memory access to fail with a permission fault.
1391
1392	 The feature is detected at runtime, and will remain as a 'nop'
1393	 instruction if the cpu does not implement the feature.
1394
1395config AS_HAS_LDAPR
1396	def_bool $(as-instr,.arch_extension rcpc)
1397
1398config AS_HAS_LSE_ATOMICS
1399	def_bool $(as-instr,.arch_extension lse)
1400
1401config ARM64_LSE_ATOMICS
1402	bool
1403	default ARM64_USE_LSE_ATOMICS
1404	depends on AS_HAS_LSE_ATOMICS
1405
1406config ARM64_USE_LSE_ATOMICS
1407	bool "Atomic instructions"
1408	depends on JUMP_LABEL
1409	default y
1410	help
1411	  As part of the Large System Extensions, ARMv8.1 introduces new
1412	  atomic instructions that are designed specifically to scale in
1413	  very large systems.
1414
1415	  Say Y here to make use of these instructions for the in-kernel
1416	  atomic routines. This incurs a small overhead on CPUs that do
1417	  not support these instructions and requires the kernel to be
1418	  built with binutils >= 2.25 in order for the new instructions
1419	  to be used.
1420
1421endmenu
1422
1423menu "ARMv8.2 architectural features"
1424
1425config ARM64_PMEM
1426	bool "Enable support for persistent memory"
1427	select ARCH_HAS_PMEM_API
1428	select ARCH_HAS_UACCESS_FLUSHCACHE
1429	help
1430	  Say Y to enable support for the persistent memory API based on the
1431	  ARMv8.2 DCPoP feature.
1432
1433	  The feature is detected at runtime, and the kernel will use DC CVAC
1434	  operations if DC CVAP is not supported (following the behaviour of
1435	  DC CVAP itself if the system does not define a point of persistence).
1436
1437config ARM64_RAS_EXTN
1438	bool "Enable support for RAS CPU Extensions"
1439	default y
1440	help
1441	  CPUs that support the Reliability, Availability and Serviceability
1442	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1443	  errors, classify them and report them to software.
1444
1445	  On CPUs with these extensions system software can use additional
1446	  barriers to determine if faults are pending and read the
1447	  classification from a new set of registers.
1448
1449	  Selecting this feature will allow the kernel to use these barriers
1450	  and access the new registers if the system supports the extension.
1451	  Platform RAS features may additionally depend on firmware support.
1452
1453config ARM64_CNP
1454	bool "Enable support for Common Not Private (CNP) translations"
1455	default y
1456	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1457	help
1458	  Common Not Private (CNP) allows translation table entries to
1459	  be shared between different PEs in the same inner shareable
1460	  domain, so the hardware can use this fact to optimise the
1461	  caching of such entries in the TLB.
1462
1463	  Selecting this option allows the CNP feature to be detected
1464	  at runtime, and does not affect PEs that do not implement
1465	  this feature.
1466
1467endmenu
1468
1469menu "ARMv8.3 architectural features"
1470
1471config ARM64_PTR_AUTH
1472	bool "Enable support for pointer authentication"
1473	default y
1474	help
1475	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1476	  instructions for signing and authenticating pointers against secret
1477	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1478	  and other attacks.
1479
1480	  This option enables these instructions at EL0 (i.e. for userspace).
1481	  Choosing this option will cause the kernel to initialise secret keys
1482	  for each process at exec() time, with these keys being
1483	  context-switched along with the process.
1484
1485	  The feature is detected at runtime. If the feature is not present in
1486	  hardware it will not be advertised to userspace/KVM guest nor will it
1487	  be enabled.
1488
1489	  If the feature is present on the boot CPU but not on a late CPU, then
1490	  the late CPU will be parked. Also, if the boot CPU does not have
1491	  address auth and the late CPU has then the late CPU will still boot
1492	  but with the feature disabled. On such a system, this option should
1493	  not be selected.
1494
1495config ARM64_PTR_AUTH_KERNEL
1496	bool "Use pointer authentication for kernel"
1497	default y
1498	depends on ARM64_PTR_AUTH
1499	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1500	# Modern compilers insert a .note.gnu.property section note for PAC
1501	# which is only understood by binutils starting with version 2.33.1.
1502	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1503	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1504	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1505	help
1506	  If the compiler supports the -mbranch-protection or
1507	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1508	  will cause the kernel itself to be compiled with return address
1509	  protection. In this case, and if the target hardware is known to
1510	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1511	  disabled with minimal loss of protection.
1512
1513	  This feature works with FUNCTION_GRAPH_TRACER option only if
1514	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1515
1516config CC_HAS_BRANCH_PROT_PAC_RET
1517	# GCC 9 or later, clang 8 or later
1518	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1519
1520config CC_HAS_SIGN_RETURN_ADDRESS
1521	# GCC 7, 8
1522	def_bool $(cc-option,-msign-return-address=all)
1523
1524config AS_HAS_PAC
1525	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1526
1527config AS_HAS_CFI_NEGATE_RA_STATE
1528	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1529
1530endmenu
1531
1532menu "ARMv8.4 architectural features"
1533
1534config ARM64_AMU_EXTN
1535	bool "Enable support for the Activity Monitors Unit CPU extension"
1536	default y
1537	help
1538	  The activity monitors extension is an optional extension introduced
1539	  by the ARMv8.4 CPU architecture. This enables support for version 1
1540	  of the activity monitors architecture, AMUv1.
1541
1542	  To enable the use of this extension on CPUs that implement it, say Y.
1543
1544	  Note that for architectural reasons, firmware _must_ implement AMU
1545	  support when running on CPUs that present the activity monitors
1546	  extension. The required support is present in:
1547	    * Version 1.5 and later of the ARM Trusted Firmware
1548
1549	  For kernels that have this configuration enabled but boot with broken
1550	  firmware, you may need to say N here until the firmware is fixed.
1551	  Otherwise you may experience firmware panics or lockups when
1552	  accessing the counter registers. Even if you are not observing these
1553	  symptoms, the values returned by the register reads might not
1554	  correctly reflect reality. Most commonly, the value read will be 0,
1555	  indicating that the counter is not enabled.
1556
1557config AS_HAS_ARMV8_4
1558	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1559
1560config ARM64_TLB_RANGE
1561	bool "Enable support for tlbi range feature"
1562	default y
1563	depends on AS_HAS_ARMV8_4
1564	help
1565	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1566	  range of input addresses.
1567
1568	  The feature introduces new assembly instructions, and they were
1569	  support when binutils >= 2.30.
1570
1571endmenu
1572
1573menu "ARMv8.5 architectural features"
1574
1575config AS_HAS_ARMV8_5
1576	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1577
1578config ARM64_BTI
1579	bool "Branch Target Identification support"
1580	default y
1581	help
1582	  Branch Target Identification (part of the ARMv8.5 Extensions)
1583	  provides a mechanism to limit the set of locations to which computed
1584	  branch instructions such as BR or BLR can jump.
1585
1586	  To make use of BTI on CPUs that support it, say Y.
1587
1588	  BTI is intended to provide complementary protection to other control
1589	  flow integrity protection mechanisms, such as the Pointer
1590	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1591	  For this reason, it does not make sense to enable this option without
1592	  also enabling support for pointer authentication.  Thus, when
1593	  enabling this option you should also select ARM64_PTR_AUTH=y.
1594
1595	  Userspace binaries must also be specifically compiled to make use of
1596	  this mechanism.  If you say N here or the hardware does not support
1597	  BTI, such binaries can still run, but you get no additional
1598	  enforcement of branch destinations.
1599
1600config ARM64_BTI_KERNEL
1601	bool "Use Branch Target Identification for kernel"
1602	default y
1603	depends on ARM64_BTI
1604	depends on ARM64_PTR_AUTH_KERNEL
1605	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1606	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1607	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1608	depends on !(CC_IS_CLANG && GCOV_KERNEL)
1609	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1610	help
1611	  Build the kernel with Branch Target Identification annotations
1612	  and enable enforcement of this for kernel code. When this option
1613	  is enabled and the system supports BTI all kernel code including
1614	  modular code must have BTI enabled.
1615
1616config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1617	# GCC 9 or later, clang 8 or later
1618	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1619
1620config ARM64_E0PD
1621	bool "Enable support for E0PD"
1622	default y
1623	help
1624	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1625	  that EL0 accesses made via TTBR1 always fault in constant time,
1626	  providing similar benefits to KASLR as those provided by KPTI, but
1627	  with lower overhead and without disrupting legitimate access to
1628	  kernel memory such as SPE.
1629
1630	  This option enables E0PD for TTBR1 where available.
1631
1632config ARCH_RANDOM
1633	bool "Enable support for random number generation"
1634	default y
1635	help
1636	  Random number generation (part of the ARMv8.5 Extensions)
1637	  provides a high bandwidth, cryptographically secure
1638	  hardware random number generator.
1639
1640config ARM64_AS_HAS_MTE
1641	# Initial support for MTE went in binutils 2.32.0, checked with
1642	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1643	# as a late addition to the final architecture spec (LDGM/STGM)
1644	# is only supported in the newer 2.32.x and 2.33 binutils
1645	# versions, hence the extra "stgm" instruction check below.
1646	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1647
1648config ARM64_MTE
1649	bool "Memory Tagging Extension support"
1650	default y
1651	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1652	depends on AS_HAS_ARMV8_5
1653	depends on AS_HAS_LSE_ATOMICS
1654	# Required for tag checking in the uaccess routines
1655	depends on ARM64_PAN
1656	select ARCH_USES_HIGH_VMA_FLAGS
1657	help
1658	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1659	  architectural support for run-time, always-on detection of
1660	  various classes of memory error to aid with software debugging
1661	  to eliminate vulnerabilities arising from memory-unsafe
1662	  languages.
1663
1664	  This option enables the support for the Memory Tagging
1665	  Extension at EL0 (i.e. for userspace).
1666
1667	  Selecting this option allows the feature to be detected at
1668	  runtime. Any secondary CPU not implementing this feature will
1669	  not be allowed a late bring-up.
1670
1671	  Userspace binaries that want to use this feature must
1672	  explicitly opt in. The mechanism for the userspace is
1673	  described in:
1674
1675	  Documentation/arm64/memory-tagging-extension.rst.
1676
1677endmenu
1678
1679menu "ARMv8.7 architectural features"
1680
1681config ARM64_EPAN
1682	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1683	default y
1684	depends on ARM64_PAN
1685	help
1686	 Enhanced Privileged Access Never (EPAN) allows Privileged
1687	 Access Never to be used with Execute-only mappings.
1688
1689	 The feature is detected at runtime, and will remain disabled
1690	 if the cpu does not implement the feature.
1691endmenu
1692
1693config ARM64_SVE
1694	bool "ARM Scalable Vector Extension support"
1695	default y
1696	help
1697	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1698	  execution state which complements and extends the SIMD functionality
1699	  of the base architecture to support much larger vectors and to enable
1700	  additional vectorisation opportunities.
1701
1702	  To enable use of this extension on CPUs that implement it, say Y.
1703
1704	  On CPUs that support the SVE2 extensions, this option will enable
1705	  those too.
1706
1707	  Note that for architectural reasons, firmware _must_ implement SVE
1708	  support when running on SVE capable hardware.  The required support
1709	  is present in:
1710
1711	    * version 1.5 and later of the ARM Trusted Firmware
1712	    * the AArch64 boot wrapper since commit 5e1261e08abf
1713	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1714
1715	  For other firmware implementations, consult the firmware documentation
1716	  or vendor.
1717
1718	  If you need the kernel to boot on SVE-capable hardware with broken
1719	  firmware, you may need to say N here until you get your firmware
1720	  fixed.  Otherwise, you may experience firmware panics or lockups when
1721	  booting the kernel.  If unsure and you are not observing these
1722	  symptoms, you should assume that it is safe to say Y.
1723
1724config ARM64_MODULE_PLTS
1725	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1726	depends on MODULES
1727	select HAVE_MOD_ARCH_SPECIFIC
1728	help
1729	  Allocate PLTs when loading modules so that jumps and calls whose
1730	  targets are too far away for their relative offsets to be encoded
1731	  in the instructions themselves can be bounced via veneers in the
1732	  module's PLT. This allows modules to be allocated in the generic
1733	  vmalloc area after the dedicated module memory area has been
1734	  exhausted.
1735
1736	  When running with address space randomization (KASLR), the module
1737	  region itself may be too far away for ordinary relative jumps and
1738	  calls, and so in that case, module PLTs are required and cannot be
1739	  disabled.
1740
1741	  Specific errata workaround(s) might also force module PLTs to be
1742	  enabled (ARM64_ERRATUM_843419).
1743
1744config ARM64_PSEUDO_NMI
1745	bool "Support for NMI-like interrupts"
1746	select ARM_GIC_V3
1747	help
1748	  Adds support for mimicking Non-Maskable Interrupts through the use of
1749	  GIC interrupt priority. This support requires version 3 or later of
1750	  ARM GIC.
1751
1752	  This high priority configuration for interrupts needs to be
1753	  explicitly enabled by setting the kernel parameter
1754	  "irqchip.gicv3_pseudo_nmi" to 1.
1755
1756	  If unsure, say N
1757
1758if ARM64_PSEUDO_NMI
1759config ARM64_DEBUG_PRIORITY_MASKING
1760	bool "Debug interrupt priority masking"
1761	help
1762	  This adds runtime checks to functions enabling/disabling
1763	  interrupts when using priority masking. The additional checks verify
1764	  the validity of ICC_PMR_EL1 when calling concerned functions.
1765
1766	  If unsure, say N
1767endif
1768
1769config RELOCATABLE
1770	bool "Build a relocatable kernel image" if EXPERT
1771	select ARCH_HAS_RELR
1772	default y
1773	help
1774	  This builds the kernel as a Position Independent Executable (PIE),
1775	  which retains all relocation metadata required to relocate the
1776	  kernel binary at runtime to a different virtual address than the
1777	  address it was linked at.
1778	  Since AArch64 uses the RELA relocation format, this requires a
1779	  relocation pass at runtime even if the kernel is loaded at the
1780	  same address it was linked at.
1781
1782config RANDOMIZE_BASE
1783	bool "Randomize the address of the kernel image"
1784	select ARM64_MODULE_PLTS if MODULES
1785	select RELOCATABLE
1786	help
1787	  Randomizes the virtual address at which the kernel image is
1788	  loaded, as a security feature that deters exploit attempts
1789	  relying on knowledge of the location of kernel internals.
1790
1791	  It is the bootloader's job to provide entropy, by passing a
1792	  random u64 value in /chosen/kaslr-seed at kernel entry.
1793
1794	  When booting via the UEFI stub, it will invoke the firmware's
1795	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1796	  to the kernel proper. In addition, it will randomise the physical
1797	  location of the kernel Image as well.
1798
1799	  If unsure, say N.
1800
1801config RANDOMIZE_MODULE_REGION_FULL
1802	bool "Randomize the module region over a 4 GB range"
1803	depends on RANDOMIZE_BASE
1804	default y
1805	help
1806	  Randomizes the location of the module region inside a 4 GB window
1807	  covering the core kernel. This way, it is less likely for modules
1808	  to leak information about the location of core kernel data structures
1809	  but it does imply that function calls between modules and the core
1810	  kernel will need to be resolved via veneers in the module PLT.
1811
1812	  When this option is not set, the module region will be randomized over
1813	  a limited range that contains the [_stext, _etext] interval of the
1814	  core kernel, so branch relocations are always in range.
1815
1816config CC_HAVE_STACKPROTECTOR_SYSREG
1817	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1818
1819config STACKPROTECTOR_PER_TASK
1820	def_bool y
1821	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1822
1823endmenu
1824
1825menu "Boot options"
1826
1827config ARM64_ACPI_PARKING_PROTOCOL
1828	bool "Enable support for the ARM64 ACPI parking protocol"
1829	depends on ACPI
1830	help
1831	  Enable support for the ARM64 ACPI parking protocol. If disabled
1832	  the kernel will not allow booting through the ARM64 ACPI parking
1833	  protocol even if the corresponding data is present in the ACPI
1834	  MADT table.
1835
1836config CMDLINE
1837	string "Default kernel command string"
1838	default ""
1839	help
1840	  Provide a set of default command-line options at build time by
1841	  entering them here. As a minimum, you should specify the the
1842	  root device (e.g. root=/dev/nfs).
1843
1844choice
1845	prompt "Kernel command line type" if CMDLINE != ""
1846	default CMDLINE_FROM_BOOTLOADER
1847	help
1848	  Choose how the kernel will handle the provided default kernel
1849	  command line string.
1850
1851config CMDLINE_FROM_BOOTLOADER
1852	bool "Use bootloader kernel arguments if available"
1853	help
1854	  Uses the command-line options passed by the boot loader. If
1855	  the boot loader doesn't provide any, the default kernel command
1856	  string provided in CMDLINE will be used.
1857
1858config CMDLINE_FORCE
1859	bool "Always use the default kernel command string"
1860	help
1861	  Always use the default kernel command string, even if the boot
1862	  loader passes other arguments to the kernel.
1863	  This is useful if you cannot or don't want to change the
1864	  command-line options your boot loader passes to the kernel.
1865
1866endchoice
1867
1868config EFI_STUB
1869	bool
1870
1871config EFI
1872	bool "UEFI runtime support"
1873	depends on OF && !CPU_BIG_ENDIAN
1874	depends on KERNEL_MODE_NEON
1875	select ARCH_SUPPORTS_ACPI
1876	select LIBFDT
1877	select UCS2_STRING
1878	select EFI_PARAMS_FROM_FDT
1879	select EFI_RUNTIME_WRAPPERS
1880	select EFI_STUB
1881	select EFI_GENERIC_STUB
1882	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
1883	default y
1884	help
1885	  This option provides support for runtime services provided
1886	  by UEFI firmware (such as non-volatile variables, realtime
1887          clock, and platform reset). A UEFI stub is also provided to
1888	  allow the kernel to be booted as an EFI application. This
1889	  is only useful on systems that have UEFI firmware.
1890
1891config DMI
1892	bool "Enable support for SMBIOS (DMI) tables"
1893	depends on EFI
1894	default y
1895	help
1896	  This enables SMBIOS/DMI feature for systems.
1897
1898	  This option is only useful on systems that have UEFI firmware.
1899	  However, even with this option, the resultant kernel should
1900	  continue to boot on existing non-UEFI platforms.
1901
1902endmenu
1903
1904config SYSVIPC_COMPAT
1905	def_bool y
1906	depends on COMPAT && SYSVIPC
1907
1908menu "Power management options"
1909
1910source "kernel/power/Kconfig"
1911
1912config ARCH_HIBERNATION_POSSIBLE
1913	def_bool y
1914	depends on CPU_PM
1915
1916config ARCH_HIBERNATION_HEADER
1917	def_bool y
1918	depends on HIBERNATION
1919
1920config ARCH_SUSPEND_POSSIBLE
1921	def_bool y
1922
1923endmenu
1924
1925menu "CPU Power Management"
1926
1927source "drivers/cpuidle/Kconfig"
1928
1929source "drivers/cpufreq/Kconfig"
1930
1931endmenu
1932
1933source "drivers/firmware/Kconfig"
1934
1935source "drivers/acpi/Kconfig"
1936
1937source "arch/arm64/kvm/Kconfig"
1938
1939if CRYPTO
1940source "arch/arm64/crypto/Kconfig"
1941endif
1942