xref: /openbmc/linux/arch/arm64/Kconfig (revision df202b452fe6c6d6f1351bad485e2367ef1e644e)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_EXTRA_PHDRS
14	select ARCH_BINFMT_ELF_STATE
15	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
16	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
17	select ARCH_ENABLE_MEMORY_HOTPLUG
18	select ARCH_ENABLE_MEMORY_HOTREMOVE
19	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
20	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
21	select ARCH_HAS_CACHE_LINE_SIZE
22	select ARCH_HAS_CURRENT_STACK_POINTER
23	select ARCH_HAS_DEBUG_VIRTUAL
24	select ARCH_HAS_DEBUG_VM_PGTABLE
25	select ARCH_HAS_DMA_PREP_COHERENT
26	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
27	select ARCH_HAS_FAST_MULTIPLIER
28	select ARCH_HAS_FORTIFY_SOURCE
29	select ARCH_HAS_GCOV_PROFILE_ALL
30	select ARCH_HAS_GIGANTIC_PAGE
31	select ARCH_HAS_KCOV
32	select ARCH_HAS_KEEPINITRD
33	select ARCH_HAS_MEMBARRIER_SYNC_CORE
34	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
35	select ARCH_HAS_PTE_DEVMAP
36	select ARCH_HAS_PTE_SPECIAL
37	select ARCH_HAS_SETUP_DMA_OPS
38	select ARCH_HAS_SET_DIRECT_MAP
39	select ARCH_HAS_SET_MEMORY
40	select ARCH_STACKWALK
41	select ARCH_HAS_STRICT_KERNEL_RWX
42	select ARCH_HAS_STRICT_MODULE_RWX
43	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
44	select ARCH_HAS_SYNC_DMA_FOR_CPU
45	select ARCH_HAS_SYSCALL_WRAPPER
46	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
47	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
48	select ARCH_HAS_ZONE_DMA_SET if EXPERT
49	select ARCH_HAVE_ELF_PROT
50	select ARCH_HAVE_NMI_SAFE_CMPXCHG
51	select ARCH_INLINE_READ_LOCK if !PREEMPTION
52	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
53	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
54	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
55	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
56	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
57	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
58	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
59	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
60	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
61	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
62	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
63	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
64	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
65	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
66	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
67	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
68	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
69	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
70	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
71	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
72	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
73	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
74	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
75	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
76	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
77	select ARCH_KEEP_MEMBLOCK
78	select ARCH_USE_CMPXCHG_LOCKREF
79	select ARCH_USE_GNU_PROPERTY
80	select ARCH_USE_MEMTEST
81	select ARCH_USE_QUEUED_RWLOCKS
82	select ARCH_USE_QUEUED_SPINLOCKS
83	select ARCH_USE_SYM_ANNOTATIONS
84	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
85	select ARCH_SUPPORTS_HUGETLBFS
86	select ARCH_SUPPORTS_MEMORY_FAILURE
87	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
88	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
89	select ARCH_SUPPORTS_LTO_CLANG_THIN
90	select ARCH_SUPPORTS_CFI_CLANG
91	select ARCH_SUPPORTS_ATOMIC_RMW
92	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
93	select ARCH_SUPPORTS_NUMA_BALANCING
94	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
95	select ARCH_WANT_DEFAULT_BPF_JIT
96	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
97	select ARCH_WANT_FRAME_POINTERS
98	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
99	select ARCH_WANT_LD_ORPHAN_WARN
100	select ARCH_WANTS_NO_INSTR
101	select ARCH_HAS_UBSAN_SANITIZE_ALL
102	select ARM_AMBA
103	select ARM_ARCH_TIMER
104	select ARM_GIC
105	select AUDIT_ARCH_COMPAT_GENERIC
106	select ARM_GIC_V2M if PCI
107	select ARM_GIC_V3
108	select ARM_GIC_V3_ITS if PCI
109	select ARM_PSCI_FW
110	select BUILDTIME_TABLE_SORT
111	select CLONE_BACKWARDS
112	select COMMON_CLK
113	select CPU_PM if (SUSPEND || CPU_IDLE)
114	select CRC32
115	select DCACHE_WORD_ACCESS
116	select DMA_DIRECT_REMAP
117	select EDAC_SUPPORT
118	select FRAME_POINTER
119	select GENERIC_ALLOCATOR
120	select GENERIC_ARCH_TOPOLOGY
121	select GENERIC_CLOCKEVENTS_BROADCAST
122	select GENERIC_CPU_AUTOPROBE
123	select GENERIC_CPU_VULNERABILITIES
124	select GENERIC_EARLY_IOREMAP
125	select GENERIC_IDLE_POLL_SETUP
126	select GENERIC_IRQ_IPI
127	select GENERIC_IRQ_PROBE
128	select GENERIC_IRQ_SHOW
129	select GENERIC_IRQ_SHOW_LEVEL
130	select GENERIC_LIB_DEVMEM_IS_ALLOWED
131	select GENERIC_PCI_IOMAP
132	select GENERIC_PTDUMP
133	select GENERIC_SCHED_CLOCK
134	select GENERIC_SMP_IDLE_THREAD
135	select GENERIC_TIME_VSYSCALL
136	select GENERIC_GETTIMEOFDAY
137	select GENERIC_VDSO_TIME_NS
138	select HARDIRQS_SW_RESEND
139	select HAVE_MOVE_PMD
140	select HAVE_MOVE_PUD
141	select HAVE_PCI
142	select HAVE_ACPI_APEI if (ACPI && EFI)
143	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
144	select HAVE_ARCH_AUDITSYSCALL
145	select HAVE_ARCH_BITREVERSE
146	select HAVE_ARCH_COMPILER_H
147	select HAVE_ARCH_HUGE_VMAP
148	select HAVE_ARCH_JUMP_LABEL
149	select HAVE_ARCH_JUMP_LABEL_RELATIVE
150	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
151	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
152	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
153	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
154	# Some instrumentation may be unsound, hence EXPERT
155	select HAVE_ARCH_KCSAN if EXPERT
156	select HAVE_ARCH_KFENCE
157	select HAVE_ARCH_KGDB
158	select HAVE_ARCH_MMAP_RND_BITS
159	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
160	select HAVE_ARCH_PREL32_RELOCATIONS
161	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
162	select HAVE_ARCH_SECCOMP_FILTER
163	select HAVE_ARCH_STACKLEAK
164	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
165	select HAVE_ARCH_TRACEHOOK
166	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
167	select HAVE_ARCH_VMAP_STACK
168	select HAVE_ARM_SMCCC
169	select HAVE_ASM_MODVERSIONS
170	select HAVE_EBPF_JIT
171	select HAVE_C_RECORDMCOUNT
172	select HAVE_CMPXCHG_DOUBLE
173	select HAVE_CMPXCHG_LOCAL
174	select HAVE_CONTEXT_TRACKING
175	select HAVE_DEBUG_KMEMLEAK
176	select HAVE_DMA_CONTIGUOUS
177	select HAVE_DYNAMIC_FTRACE
178	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
179		if DYNAMIC_FTRACE_WITH_REGS
180	select HAVE_EFFICIENT_UNALIGNED_ACCESS
181	select HAVE_FAST_GUP
182	select HAVE_FTRACE_MCOUNT_RECORD
183	select HAVE_FUNCTION_TRACER
184	select HAVE_FUNCTION_ERROR_INJECTION
185	select HAVE_FUNCTION_GRAPH_TRACER
186	select HAVE_GCC_PLUGINS
187	select HAVE_HW_BREAKPOINT if PERF_EVENTS
188	select HAVE_IRQ_TIME_ACCOUNTING
189	select HAVE_KVM
190	select HAVE_NMI
191	select HAVE_PATA_PLATFORM
192	select HAVE_PERF_EVENTS
193	select HAVE_PERF_REGS
194	select HAVE_PERF_USER_STACK_DUMP
195	select HAVE_PREEMPT_DYNAMIC_KEY
196	select HAVE_REGS_AND_STACK_ACCESS_API
197	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
198	select HAVE_FUNCTION_ARG_ACCESS_API
199	select MMU_GATHER_RCU_TABLE_FREE
200	select HAVE_RSEQ
201	select HAVE_STACKPROTECTOR
202	select HAVE_SYSCALL_TRACEPOINTS
203	select HAVE_KPROBES
204	select HAVE_KRETPROBES
205	select HAVE_GENERIC_VDSO
206	select IOMMU_DMA if IOMMU_SUPPORT
207	select IRQ_DOMAIN
208	select IRQ_FORCED_THREADING
209	select KASAN_VMALLOC if KASAN
210	select MODULES_USE_ELF_RELA
211	select NEED_DMA_MAP_STATE
212	select NEED_SG_DMA_LENGTH
213	select OF
214	select OF_EARLY_FLATTREE
215	select PCI_DOMAINS_GENERIC if PCI
216	select PCI_ECAM if (ACPI && PCI)
217	select PCI_SYSCALL if PCI
218	select POWER_RESET
219	select POWER_SUPPLY
220	select SPARSE_IRQ
221	select SWIOTLB
222	select SYSCTL_EXCEPTION_TRACE
223	select THREAD_INFO_IN_TASK
224	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
225	select TRACE_IRQFLAGS_SUPPORT
226	help
227	  ARM 64-bit (AArch64) Linux support.
228
229config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
230	def_bool CC_IS_CLANG
231	# https://github.com/ClangBuiltLinux/linux/issues/1507
232	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
233	select HAVE_DYNAMIC_FTRACE_WITH_REGS
234
235config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
236	def_bool CC_IS_GCC
237	depends on $(cc-option,-fpatchable-function-entry=2)
238	select HAVE_DYNAMIC_FTRACE_WITH_REGS
239
240config 64BIT
241	def_bool y
242
243config MMU
244	def_bool y
245
246config ARM64_PAGE_SHIFT
247	int
248	default 16 if ARM64_64K_PAGES
249	default 14 if ARM64_16K_PAGES
250	default 12
251
252config ARM64_CONT_PTE_SHIFT
253	int
254	default 5 if ARM64_64K_PAGES
255	default 7 if ARM64_16K_PAGES
256	default 4
257
258config ARM64_CONT_PMD_SHIFT
259	int
260	default 5 if ARM64_64K_PAGES
261	default 5 if ARM64_16K_PAGES
262	default 4
263
264config ARCH_MMAP_RND_BITS_MIN
265	default 14 if ARM64_64K_PAGES
266	default 16 if ARM64_16K_PAGES
267	default 18
268
269# max bits determined by the following formula:
270#  VA_BITS - PAGE_SHIFT - 3
271config ARCH_MMAP_RND_BITS_MAX
272	default 19 if ARM64_VA_BITS=36
273	default 24 if ARM64_VA_BITS=39
274	default 27 if ARM64_VA_BITS=42
275	default 30 if ARM64_VA_BITS=47
276	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
277	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
278	default 33 if ARM64_VA_BITS=48
279	default 14 if ARM64_64K_PAGES
280	default 16 if ARM64_16K_PAGES
281	default 18
282
283config ARCH_MMAP_RND_COMPAT_BITS_MIN
284	default 7 if ARM64_64K_PAGES
285	default 9 if ARM64_16K_PAGES
286	default 11
287
288config ARCH_MMAP_RND_COMPAT_BITS_MAX
289	default 16
290
291config NO_IOPORT_MAP
292	def_bool y if !PCI
293
294config STACKTRACE_SUPPORT
295	def_bool y
296
297config ILLEGAL_POINTER_VALUE
298	hex
299	default 0xdead000000000000
300
301config LOCKDEP_SUPPORT
302	def_bool y
303
304config GENERIC_BUG
305	def_bool y
306	depends on BUG
307
308config GENERIC_BUG_RELATIVE_POINTERS
309	def_bool y
310	depends on GENERIC_BUG
311
312config GENERIC_HWEIGHT
313	def_bool y
314
315config GENERIC_CSUM
316	def_bool y
317
318config GENERIC_CALIBRATE_DELAY
319	def_bool y
320
321config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
322	def_bool y
323
324config SMP
325	def_bool y
326
327config KERNEL_MODE_NEON
328	def_bool y
329
330config FIX_EARLYCON_MEM
331	def_bool y
332
333config PGTABLE_LEVELS
334	int
335	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
336	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
337	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
338	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
339	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
340	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
341
342config ARCH_SUPPORTS_UPROBES
343	def_bool y
344
345config ARCH_PROC_KCORE_TEXT
346	def_bool y
347
348config BROKEN_GAS_INST
349	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
350
351config KASAN_SHADOW_OFFSET
352	hex
353	depends on KASAN_GENERIC || KASAN_SW_TAGS
354	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
355	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
356	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
357	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
358	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
359	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
360	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
361	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
362	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
363	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
364	default 0xffffffffffffffff
365
366source "arch/arm64/Kconfig.platforms"
367
368menu "Kernel Features"
369
370menu "ARM errata workarounds via the alternatives framework"
371
372config ARM64_WORKAROUND_CLEAN_CACHE
373	bool
374
375config ARM64_ERRATUM_826319
376	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
377	default y
378	select ARM64_WORKAROUND_CLEAN_CACHE
379	help
380	  This option adds an alternative code sequence to work around ARM
381	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
382	  AXI master interface and an L2 cache.
383
384	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
385	  and is unable to accept a certain write via this interface, it will
386	  not progress on read data presented on the read data channel and the
387	  system can deadlock.
388
389	  The workaround promotes data cache clean instructions to
390	  data cache clean-and-invalidate.
391	  Please note that this does not necessarily enable the workaround,
392	  as it depends on the alternative framework, which will only patch
393	  the kernel if an affected CPU is detected.
394
395	  If unsure, say Y.
396
397config ARM64_ERRATUM_827319
398	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
399	default y
400	select ARM64_WORKAROUND_CLEAN_CACHE
401	help
402	  This option adds an alternative code sequence to work around ARM
403	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
404	  master interface and an L2 cache.
405
406	  Under certain conditions this erratum can cause a clean line eviction
407	  to occur at the same time as another transaction to the same address
408	  on the AMBA 5 CHI interface, which can cause data corruption if the
409	  interconnect reorders the two transactions.
410
411	  The workaround promotes data cache clean instructions to
412	  data cache clean-and-invalidate.
413	  Please note that this does not necessarily enable the workaround,
414	  as it depends on the alternative framework, which will only patch
415	  the kernel if an affected CPU is detected.
416
417	  If unsure, say Y.
418
419config ARM64_ERRATUM_824069
420	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
421	default y
422	select ARM64_WORKAROUND_CLEAN_CACHE
423	help
424	  This option adds an alternative code sequence to work around ARM
425	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
426	  to a coherent interconnect.
427
428	  If a Cortex-A53 processor is executing a store or prefetch for
429	  write instruction at the same time as a processor in another
430	  cluster is executing a cache maintenance operation to the same
431	  address, then this erratum might cause a clean cache line to be
432	  incorrectly marked as dirty.
433
434	  The workaround promotes data cache clean instructions to
435	  data cache clean-and-invalidate.
436	  Please note that this option does not necessarily enable the
437	  workaround, as it depends on the alternative framework, which will
438	  only patch the kernel if an affected CPU is detected.
439
440	  If unsure, say Y.
441
442config ARM64_ERRATUM_819472
443	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
444	default y
445	select ARM64_WORKAROUND_CLEAN_CACHE
446	help
447	  This option adds an alternative code sequence to work around ARM
448	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
449	  present when it is connected to a coherent interconnect.
450
451	  If the processor is executing a load and store exclusive sequence at
452	  the same time as a processor in another cluster is executing a cache
453	  maintenance operation to the same address, then this erratum might
454	  cause data corruption.
455
456	  The workaround promotes data cache clean instructions to
457	  data cache clean-and-invalidate.
458	  Please note that this does not necessarily enable the workaround,
459	  as it depends on the alternative framework, which will only patch
460	  the kernel if an affected CPU is detected.
461
462	  If unsure, say Y.
463
464config ARM64_ERRATUM_832075
465	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
466	default y
467	help
468	  This option adds an alternative code sequence to work around ARM
469	  erratum 832075 on Cortex-A57 parts up to r1p2.
470
471	  Affected Cortex-A57 parts might deadlock when exclusive load/store
472	  instructions to Write-Back memory are mixed with Device loads.
473
474	  The workaround is to promote device loads to use Load-Acquire
475	  semantics.
476	  Please note that this does not necessarily enable the workaround,
477	  as it depends on the alternative framework, which will only patch
478	  the kernel if an affected CPU is detected.
479
480	  If unsure, say Y.
481
482config ARM64_ERRATUM_834220
483	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
484	depends on KVM
485	default y
486	help
487	  This option adds an alternative code sequence to work around ARM
488	  erratum 834220 on Cortex-A57 parts up to r1p2.
489
490	  Affected Cortex-A57 parts might report a Stage 2 translation
491	  fault as the result of a Stage 1 fault for load crossing a
492	  page boundary when there is a permission or device memory
493	  alignment fault at Stage 1 and a translation fault at Stage 2.
494
495	  The workaround is to verify that the Stage 1 translation
496	  doesn't generate a fault before handling the Stage 2 fault.
497	  Please note that this does not necessarily enable the workaround,
498	  as it depends on the alternative framework, which will only patch
499	  the kernel if an affected CPU is detected.
500
501	  If unsure, say Y.
502
503config ARM64_ERRATUM_845719
504	bool "Cortex-A53: 845719: a load might read incorrect data"
505	depends on COMPAT
506	default y
507	help
508	  This option adds an alternative code sequence to work around ARM
509	  erratum 845719 on Cortex-A53 parts up to r0p4.
510
511	  When running a compat (AArch32) userspace on an affected Cortex-A53
512	  part, a load at EL0 from a virtual address that matches the bottom 32
513	  bits of the virtual address used by a recent load at (AArch64) EL1
514	  might return incorrect data.
515
516	  The workaround is to write the contextidr_el1 register on exception
517	  return to a 32-bit task.
518	  Please note that this does not necessarily enable the workaround,
519	  as it depends on the alternative framework, which will only patch
520	  the kernel if an affected CPU is detected.
521
522	  If unsure, say Y.
523
524config ARM64_ERRATUM_843419
525	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
526	default y
527	select ARM64_MODULE_PLTS if MODULES
528	help
529	  This option links the kernel with '--fix-cortex-a53-843419' and
530	  enables PLT support to replace certain ADRP instructions, which can
531	  cause subsequent memory accesses to use an incorrect address on
532	  Cortex-A53 parts up to r0p4.
533
534	  If unsure, say Y.
535
536config ARM64_LD_HAS_FIX_ERRATUM_843419
537	def_bool $(ld-option,--fix-cortex-a53-843419)
538
539config ARM64_ERRATUM_1024718
540	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
541	default y
542	help
543	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
544
545	  Affected Cortex-A55 cores (all revisions) could cause incorrect
546	  update of the hardware dirty bit when the DBM/AP bits are updated
547	  without a break-before-make. The workaround is to disable the usage
548	  of hardware DBM locally on the affected cores. CPUs not affected by
549	  this erratum will continue to use the feature.
550
551	  If unsure, say Y.
552
553config ARM64_ERRATUM_1418040
554	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
555	default y
556	depends on COMPAT
557	help
558	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
559	  errata 1188873 and 1418040.
560
561	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
562	  cause register corruption when accessing the timer registers
563	  from AArch32 userspace.
564
565	  If unsure, say Y.
566
567config ARM64_WORKAROUND_SPECULATIVE_AT
568	bool
569
570config ARM64_ERRATUM_1165522
571	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
572	default y
573	select ARM64_WORKAROUND_SPECULATIVE_AT
574	help
575	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
576
577	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
578	  corrupted TLBs by speculating an AT instruction during a guest
579	  context switch.
580
581	  If unsure, say Y.
582
583config ARM64_ERRATUM_1319367
584	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
585	default y
586	select ARM64_WORKAROUND_SPECULATIVE_AT
587	help
588	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
589	  and A72 erratum 1319367
590
591	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
592	  speculating an AT instruction during a guest context switch.
593
594	  If unsure, say Y.
595
596config ARM64_ERRATUM_1530923
597	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
598	default y
599	select ARM64_WORKAROUND_SPECULATIVE_AT
600	help
601	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
602
603	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
604	  corrupted TLBs by speculating an AT instruction during a guest
605	  context switch.
606
607	  If unsure, say Y.
608
609config ARM64_WORKAROUND_REPEAT_TLBI
610	bool
611
612config ARM64_ERRATUM_1286807
613	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
614	default y
615	select ARM64_WORKAROUND_REPEAT_TLBI
616	help
617	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
618
619	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
620	  address for a cacheable mapping of a location is being
621	  accessed by a core while another core is remapping the virtual
622	  address to a new physical page using the recommended
623	  break-before-make sequence, then under very rare circumstances
624	  TLBI+DSB completes before a read using the translation being
625	  invalidated has been observed by other observers. The
626	  workaround repeats the TLBI+DSB operation.
627
628config ARM64_ERRATUM_1463225
629	bool "Cortex-A76: Software Step might prevent interrupt recognition"
630	default y
631	help
632	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
633
634	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
635	  of a system call instruction (SVC) can prevent recognition of
636	  subsequent interrupts when software stepping is disabled in the
637	  exception handler of the system call and either kernel debugging
638	  is enabled or VHE is in use.
639
640	  Work around the erratum by triggering a dummy step exception
641	  when handling a system call from a task that is being stepped
642	  in a VHE configuration of the kernel.
643
644	  If unsure, say Y.
645
646config ARM64_ERRATUM_1542419
647	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
648	default y
649	help
650	  This option adds a workaround for ARM Neoverse-N1 erratum
651	  1542419.
652
653	  Affected Neoverse-N1 cores could execute a stale instruction when
654	  modified by another CPU. The workaround depends on a firmware
655	  counterpart.
656
657	  Workaround the issue by hiding the DIC feature from EL0. This
658	  forces user-space to perform cache maintenance.
659
660	  If unsure, say Y.
661
662config ARM64_ERRATUM_1508412
663	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
664	default y
665	help
666	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
667
668	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
669	  of a store-exclusive or read of PAR_EL1 and a load with device or
670	  non-cacheable memory attributes. The workaround depends on a firmware
671	  counterpart.
672
673	  KVM guests must also have the workaround implemented or they can
674	  deadlock the system.
675
676	  Work around the issue by inserting DMB SY barriers around PAR_EL1
677	  register reads and warning KVM users. The DMB barrier is sufficient
678	  to prevent a speculative PAR_EL1 read.
679
680	  If unsure, say Y.
681
682config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
683	bool
684
685config ARM64_ERRATUM_2051678
686	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
687	default y
688	help
689	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
690	  Affected Cortex-A510 might not respect the ordering rules for
691	  hardware update of the page table's dirty bit. The workaround
692	  is to not enable the feature on affected CPUs.
693
694	  If unsure, say Y.
695
696config ARM64_ERRATUM_2077057
697	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
698	default y
699	help
700	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
701	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
702	  expected, but a Pointer Authentication trap is taken instead. The
703	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
704	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
705
706	  This can only happen when EL2 is stepping EL1.
707
708	  When these conditions occur, the SPSR_EL2 value is unchanged from the
709	  previous guest entry, and can be restored from the in-memory copy.
710
711	  If unsure, say Y.
712
713config ARM64_ERRATUM_2119858
714	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
715	default y
716	depends on CORESIGHT_TRBE
717	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
718	help
719	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
720
721	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
722	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
723	  the event of a WRAP event.
724
725	  Work around the issue by always making sure we move the TRBPTR_EL1 by
726	  256 bytes before enabling the buffer and filling the first 256 bytes of
727	  the buffer with ETM ignore packets upon disabling.
728
729	  If unsure, say Y.
730
731config ARM64_ERRATUM_2139208
732	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
733	default y
734	depends on CORESIGHT_TRBE
735	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
736	help
737	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
738
739	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
740	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
741	  the event of a WRAP event.
742
743	  Work around the issue by always making sure we move the TRBPTR_EL1 by
744	  256 bytes before enabling the buffer and filling the first 256 bytes of
745	  the buffer with ETM ignore packets upon disabling.
746
747	  If unsure, say Y.
748
749config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
750	bool
751
752config ARM64_ERRATUM_2054223
753	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
754	default y
755	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
756	help
757	  Enable workaround for ARM Cortex-A710 erratum 2054223
758
759	  Affected cores may fail to flush the trace data on a TSB instruction, when
760	  the PE is in trace prohibited state. This will cause losing a few bytes
761	  of the trace cached.
762
763	  Workaround is to issue two TSB consecutively on affected cores.
764
765	  If unsure, say Y.
766
767config ARM64_ERRATUM_2067961
768	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
769	default y
770	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
771	help
772	  Enable workaround for ARM Neoverse-N2 erratum 2067961
773
774	  Affected cores may fail to flush the trace data on a TSB instruction, when
775	  the PE is in trace prohibited state. This will cause losing a few bytes
776	  of the trace cached.
777
778	  Workaround is to issue two TSB consecutively on affected cores.
779
780	  If unsure, say Y.
781
782config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
783	bool
784
785config ARM64_ERRATUM_2253138
786	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
787	depends on CORESIGHT_TRBE
788	default y
789	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
790	help
791	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
792
793	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
794	  for TRBE. Under some conditions, the TRBE might generate a write to the next
795	  virtually addressed page following the last page of the TRBE address space
796	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
797
798	  Work around this in the driver by always making sure that there is a
799	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
800
801	  If unsure, say Y.
802
803config ARM64_ERRATUM_2224489
804	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
805	depends on CORESIGHT_TRBE
806	default y
807	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
808	help
809	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
810
811	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
812	  for TRBE. Under some conditions, the TRBE might generate a write to the next
813	  virtually addressed page following the last page of the TRBE address space
814	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
815
816	  Work around this in the driver by always making sure that there is a
817	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
818
819	  If unsure, say Y.
820
821config ARM64_ERRATUM_2064142
822	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
823	depends on CORESIGHT_TRBE
824	default y
825	help
826	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
827
828	  Affected Cortex-A510 core might fail to write into system registers after the
829	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
830	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
831	  and TRBTRG_EL1 will be ignored and will not be effected.
832
833	  Work around this in the driver by executing TSB CSYNC and DSB after collection
834	  is stopped and before performing a system register write to one of the affected
835	  registers.
836
837	  If unsure, say Y.
838
839config ARM64_ERRATUM_2038923
840	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
841	depends on CORESIGHT_TRBE
842	default y
843	help
844	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
845
846	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
847	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
848	  might be corrupted. This happens after TRBE buffer has been enabled by setting
849	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
850	  execution changes from a context, in which trace is prohibited to one where it
851	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
852	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
853	  the trace buffer state might be corrupted.
854
855	  Work around this in the driver by preventing an inconsistent view of whether the
856	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
857	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
858	  two ISB instructions if no ERET is to take place.
859
860	  If unsure, say Y.
861
862config ARM64_ERRATUM_1902691
863	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
864	depends on CORESIGHT_TRBE
865	default y
866	help
867	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
868
869	  Affected Cortex-A510 core might cause trace data corruption, when being written
870	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
871	  trace data.
872
873	  Work around this problem in the driver by just preventing TRBE initialization on
874	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
875	  on such implementations. This will cover the kernel for any firmware that doesn't
876	  do this already.
877
878	  If unsure, say Y.
879
880config CAVIUM_ERRATUM_22375
881	bool "Cavium erratum 22375, 24313"
882	default y
883	help
884	  Enable workaround for errata 22375 and 24313.
885
886	  This implements two gicv3-its errata workarounds for ThunderX. Both
887	  with a small impact affecting only ITS table allocation.
888
889	    erratum 22375: only alloc 8MB table size
890	    erratum 24313: ignore memory access type
891
892	  The fixes are in ITS initialization and basically ignore memory access
893	  type and table size provided by the TYPER and BASER registers.
894
895	  If unsure, say Y.
896
897config CAVIUM_ERRATUM_23144
898	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
899	depends on NUMA
900	default y
901	help
902	  ITS SYNC command hang for cross node io and collections/cpu mapping.
903
904	  If unsure, say Y.
905
906config CAVIUM_ERRATUM_23154
907	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
908	default y
909	help
910	  The ThunderX GICv3 implementation requires a modified version for
911	  reading the IAR status to ensure data synchronization
912	  (access to icc_iar1_el1 is not sync'ed before and after).
913
914	  It also suffers from erratum 38545 (also present on Marvell's
915	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
916	  spuriously presented to the CPU interface.
917
918	  If unsure, say Y.
919
920config CAVIUM_ERRATUM_27456
921	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
922	default y
923	help
924	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
925	  instructions may cause the icache to become corrupted if it
926	  contains data for a non-current ASID.  The fix is to
927	  invalidate the icache when changing the mm context.
928
929	  If unsure, say Y.
930
931config CAVIUM_ERRATUM_30115
932	bool "Cavium erratum 30115: Guest may disable interrupts in host"
933	default y
934	help
935	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
936	  1.2, and T83 Pass 1.0, KVM guest execution may disable
937	  interrupts in host. Trapping both GICv3 group-0 and group-1
938	  accesses sidesteps the issue.
939
940	  If unsure, say Y.
941
942config CAVIUM_TX2_ERRATUM_219
943	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
944	default y
945	help
946	  On Cavium ThunderX2, a load, store or prefetch instruction between a
947	  TTBR update and the corresponding context synchronizing operation can
948	  cause a spurious Data Abort to be delivered to any hardware thread in
949	  the CPU core.
950
951	  Work around the issue by avoiding the problematic code sequence and
952	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
953	  trap handler performs the corresponding register access, skips the
954	  instruction and ensures context synchronization by virtue of the
955	  exception return.
956
957	  If unsure, say Y.
958
959config FUJITSU_ERRATUM_010001
960	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
961	default y
962	help
963	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
964	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
965	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
966	  This fault occurs under a specific hardware condition when a
967	  load/store instruction performs an address translation using:
968	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
969	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
970	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
971	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
972
973	  The workaround is to ensure these bits are clear in TCR_ELx.
974	  The workaround only affects the Fujitsu-A64FX.
975
976	  If unsure, say Y.
977
978config HISILICON_ERRATUM_161600802
979	bool "Hip07 161600802: Erroneous redistributor VLPI base"
980	default y
981	help
982	  The HiSilicon Hip07 SoC uses the wrong redistributor base
983	  when issued ITS commands such as VMOVP and VMAPP, and requires
984	  a 128kB offset to be applied to the target address in this commands.
985
986	  If unsure, say Y.
987
988config QCOM_FALKOR_ERRATUM_1003
989	bool "Falkor E1003: Incorrect translation due to ASID change"
990	default y
991	help
992	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
993	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
994	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
995	  then only for entries in the walk cache, since the leaf translation
996	  is unchanged. Work around the erratum by invalidating the walk cache
997	  entries for the trampoline before entering the kernel proper.
998
999config QCOM_FALKOR_ERRATUM_1009
1000	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1001	default y
1002	select ARM64_WORKAROUND_REPEAT_TLBI
1003	help
1004	  On Falkor v1, the CPU may prematurely complete a DSB following a
1005	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1006	  one more time to fix the issue.
1007
1008	  If unsure, say Y.
1009
1010config QCOM_QDF2400_ERRATUM_0065
1011	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1012	default y
1013	help
1014	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1015	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1016	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1017
1018	  If unsure, say Y.
1019
1020config QCOM_FALKOR_ERRATUM_E1041
1021	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1022	default y
1023	help
1024	  Falkor CPU may speculatively fetch instructions from an improper
1025	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1026	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1027
1028	  If unsure, say Y.
1029
1030config NVIDIA_CARMEL_CNP_ERRATUM
1031	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1032	default y
1033	help
1034	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1035	  invalidate shared TLB entries installed by a different core, as it would
1036	  on standard ARM cores.
1037
1038	  If unsure, say Y.
1039
1040config SOCIONEXT_SYNQUACER_PREITS
1041	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1042	default y
1043	help
1044	  Socionext Synquacer SoCs implement a separate h/w block to generate
1045	  MSI doorbell writes with non-zero values for the device ID.
1046
1047	  If unsure, say Y.
1048
1049endmenu # "ARM errata workarounds via the alternatives framework"
1050
1051choice
1052	prompt "Page size"
1053	default ARM64_4K_PAGES
1054	help
1055	  Page size (translation granule) configuration.
1056
1057config ARM64_4K_PAGES
1058	bool "4KB"
1059	help
1060	  This feature enables 4KB pages support.
1061
1062config ARM64_16K_PAGES
1063	bool "16KB"
1064	help
1065	  The system will use 16KB pages support. AArch32 emulation
1066	  requires applications compiled with 16K (or a multiple of 16K)
1067	  aligned segments.
1068
1069config ARM64_64K_PAGES
1070	bool "64KB"
1071	help
1072	  This feature enables 64KB pages support (4KB by default)
1073	  allowing only two levels of page tables and faster TLB
1074	  look-up. AArch32 emulation requires applications compiled
1075	  with 64K aligned segments.
1076
1077endchoice
1078
1079choice
1080	prompt "Virtual address space size"
1081	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1082	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1083	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1084	help
1085	  Allows choosing one of multiple possible virtual address
1086	  space sizes. The level of translation table is determined by
1087	  a combination of page size and virtual address space size.
1088
1089config ARM64_VA_BITS_36
1090	bool "36-bit" if EXPERT
1091	depends on ARM64_16K_PAGES
1092
1093config ARM64_VA_BITS_39
1094	bool "39-bit"
1095	depends on ARM64_4K_PAGES
1096
1097config ARM64_VA_BITS_42
1098	bool "42-bit"
1099	depends on ARM64_64K_PAGES
1100
1101config ARM64_VA_BITS_47
1102	bool "47-bit"
1103	depends on ARM64_16K_PAGES
1104
1105config ARM64_VA_BITS_48
1106	bool "48-bit"
1107
1108config ARM64_VA_BITS_52
1109	bool "52-bit"
1110	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1111	help
1112	  Enable 52-bit virtual addressing for userspace when explicitly
1113	  requested via a hint to mmap(). The kernel will also use 52-bit
1114	  virtual addresses for its own mappings (provided HW support for
1115	  this feature is available, otherwise it reverts to 48-bit).
1116
1117	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1118	  ARMv8.3 Pointer Authentication will result in the PAC being
1119	  reduced from 7 bits to 3 bits, which may have a significant
1120	  impact on its susceptibility to brute-force attacks.
1121
1122	  If unsure, select 48-bit virtual addressing instead.
1123
1124endchoice
1125
1126config ARM64_FORCE_52BIT
1127	bool "Force 52-bit virtual addresses for userspace"
1128	depends on ARM64_VA_BITS_52 && EXPERT
1129	help
1130	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1131	  to maintain compatibility with older software by providing 48-bit VAs
1132	  unless a hint is supplied to mmap.
1133
1134	  This configuration option disables the 48-bit compatibility logic, and
1135	  forces all userspace addresses to be 52-bit on HW that supports it. One
1136	  should only enable this configuration option for stress testing userspace
1137	  memory management code. If unsure say N here.
1138
1139config ARM64_VA_BITS
1140	int
1141	default 36 if ARM64_VA_BITS_36
1142	default 39 if ARM64_VA_BITS_39
1143	default 42 if ARM64_VA_BITS_42
1144	default 47 if ARM64_VA_BITS_47
1145	default 48 if ARM64_VA_BITS_48
1146	default 52 if ARM64_VA_BITS_52
1147
1148choice
1149	prompt "Physical address space size"
1150	default ARM64_PA_BITS_48
1151	help
1152	  Choose the maximum physical address range that the kernel will
1153	  support.
1154
1155config ARM64_PA_BITS_48
1156	bool "48-bit"
1157
1158config ARM64_PA_BITS_52
1159	bool "52-bit (ARMv8.2)"
1160	depends on ARM64_64K_PAGES
1161	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1162	help
1163	  Enable support for a 52-bit physical address space, introduced as
1164	  part of the ARMv8.2-LPA extension.
1165
1166	  With this enabled, the kernel will also continue to work on CPUs that
1167	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1168	  minor performance overhead).
1169
1170endchoice
1171
1172config ARM64_PA_BITS
1173	int
1174	default 48 if ARM64_PA_BITS_48
1175	default 52 if ARM64_PA_BITS_52
1176
1177choice
1178	prompt "Endianness"
1179	default CPU_LITTLE_ENDIAN
1180	help
1181	  Select the endianness of data accesses performed by the CPU. Userspace
1182	  applications will need to be compiled and linked for the endianness
1183	  that is selected here.
1184
1185config CPU_BIG_ENDIAN
1186	bool "Build big-endian kernel"
1187	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1188	help
1189	  Say Y if you plan on running a kernel with a big-endian userspace.
1190
1191config CPU_LITTLE_ENDIAN
1192	bool "Build little-endian kernel"
1193	help
1194	  Say Y if you plan on running a kernel with a little-endian userspace.
1195	  This is usually the case for distributions targeting arm64.
1196
1197endchoice
1198
1199config SCHED_MC
1200	bool "Multi-core scheduler support"
1201	help
1202	  Multi-core scheduler support improves the CPU scheduler's decision
1203	  making when dealing with multi-core CPU chips at a cost of slightly
1204	  increased overhead in some places. If unsure say N here.
1205
1206config SCHED_CLUSTER
1207	bool "Cluster scheduler support"
1208	help
1209	  Cluster scheduler support improves the CPU scheduler's decision
1210	  making when dealing with machines that have clusters of CPUs.
1211	  Cluster usually means a couple of CPUs which are placed closely
1212	  by sharing mid-level caches, last-level cache tags or internal
1213	  busses.
1214
1215config SCHED_SMT
1216	bool "SMT scheduler support"
1217	help
1218	  Improves the CPU scheduler's decision making when dealing with
1219	  MultiThreading at a cost of slightly increased overhead in some
1220	  places. If unsure say N here.
1221
1222config NR_CPUS
1223	int "Maximum number of CPUs (2-4096)"
1224	range 2 4096
1225	default "256"
1226
1227config HOTPLUG_CPU
1228	bool "Support for hot-pluggable CPUs"
1229	select GENERIC_IRQ_MIGRATION
1230	help
1231	  Say Y here to experiment with turning CPUs off and on.  CPUs
1232	  can be controlled through /sys/devices/system/cpu.
1233
1234# Common NUMA Features
1235config NUMA
1236	bool "NUMA Memory Allocation and Scheduler Support"
1237	select GENERIC_ARCH_NUMA
1238	select ACPI_NUMA if ACPI
1239	select OF_NUMA
1240	select HAVE_SETUP_PER_CPU_AREA
1241	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1242	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1243	select USE_PERCPU_NUMA_NODE_ID
1244	help
1245	  Enable NUMA (Non-Uniform Memory Access) support.
1246
1247	  The kernel will try to allocate memory used by a CPU on the
1248	  local memory of the CPU and add some more
1249	  NUMA awareness to the kernel.
1250
1251config NODES_SHIFT
1252	int "Maximum NUMA Nodes (as a power of 2)"
1253	range 1 10
1254	default "4"
1255	depends on NUMA
1256	help
1257	  Specify the maximum number of NUMA Nodes available on the target
1258	  system.  Increases memory reserved to accommodate various tables.
1259
1260source "kernel/Kconfig.hz"
1261
1262config ARCH_SPARSEMEM_ENABLE
1263	def_bool y
1264	select SPARSEMEM_VMEMMAP_ENABLE
1265	select SPARSEMEM_VMEMMAP
1266
1267config HW_PERF_EVENTS
1268	def_bool y
1269	depends on ARM_PMU
1270
1271# Supported by clang >= 7.0 or GCC >= 12.0.0
1272config CC_HAVE_SHADOW_CALL_STACK
1273	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1274
1275config PARAVIRT
1276	bool "Enable paravirtualization code"
1277	help
1278	  This changes the kernel so it can modify itself when it is run
1279	  under a hypervisor, potentially improving performance significantly
1280	  over full virtualization.
1281
1282config PARAVIRT_TIME_ACCOUNTING
1283	bool "Paravirtual steal time accounting"
1284	select PARAVIRT
1285	help
1286	  Select this option to enable fine granularity task steal time
1287	  accounting. Time spent executing other tasks in parallel with
1288	  the current vCPU is discounted from the vCPU power. To account for
1289	  that, there can be a small performance impact.
1290
1291	  If in doubt, say N here.
1292
1293config KEXEC
1294	depends on PM_SLEEP_SMP
1295	select KEXEC_CORE
1296	bool "kexec system call"
1297	help
1298	  kexec is a system call that implements the ability to shutdown your
1299	  current kernel, and to start another kernel.  It is like a reboot
1300	  but it is independent of the system firmware.   And like a reboot
1301	  you can start any kernel with it, not just Linux.
1302
1303config KEXEC_FILE
1304	bool "kexec file based system call"
1305	select KEXEC_CORE
1306	select HAVE_IMA_KEXEC if IMA
1307	help
1308	  This is new version of kexec system call. This system call is
1309	  file based and takes file descriptors as system call argument
1310	  for kernel and initramfs as opposed to list of segments as
1311	  accepted by previous system call.
1312
1313config KEXEC_SIG
1314	bool "Verify kernel signature during kexec_file_load() syscall"
1315	depends on KEXEC_FILE
1316	help
1317	  Select this option to verify a signature with loaded kernel
1318	  image. If configured, any attempt of loading a image without
1319	  valid signature will fail.
1320
1321	  In addition to that option, you need to enable signature
1322	  verification for the corresponding kernel image type being
1323	  loaded in order for this to work.
1324
1325config KEXEC_IMAGE_VERIFY_SIG
1326	bool "Enable Image signature verification support"
1327	default y
1328	depends on KEXEC_SIG
1329	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1330	help
1331	  Enable Image signature verification support.
1332
1333comment "Support for PE file signature verification disabled"
1334	depends on KEXEC_SIG
1335	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1336
1337config CRASH_DUMP
1338	bool "Build kdump crash kernel"
1339	help
1340	  Generate crash dump after being started by kexec. This should
1341	  be normally only set in special crash dump kernels which are
1342	  loaded in the main kernel with kexec-tools into a specially
1343	  reserved region and then later executed after a crash by
1344	  kdump/kexec.
1345
1346	  For more details see Documentation/admin-guide/kdump/kdump.rst
1347
1348config TRANS_TABLE
1349	def_bool y
1350	depends on HIBERNATION || KEXEC_CORE
1351
1352config XEN_DOM0
1353	def_bool y
1354	depends on XEN
1355
1356config XEN
1357	bool "Xen guest support on ARM64"
1358	depends on ARM64 && OF
1359	select SWIOTLB_XEN
1360	select PARAVIRT
1361	help
1362	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1363
1364config FORCE_MAX_ZONEORDER
1365	int
1366	default "14" if ARM64_64K_PAGES
1367	default "12" if ARM64_16K_PAGES
1368	default "11"
1369	help
1370	  The kernel memory allocator divides physically contiguous memory
1371	  blocks into "zones", where each zone is a power of two number of
1372	  pages.  This option selects the largest power of two that the kernel
1373	  keeps in the memory allocator.  If you need to allocate very large
1374	  blocks of physically contiguous memory, then you may need to
1375	  increase this value.
1376
1377	  This config option is actually maximum order plus one. For example,
1378	  a value of 11 means that the largest free memory block is 2^10 pages.
1379
1380	  We make sure that we can allocate upto a HugePage size for each configuration.
1381	  Hence we have :
1382		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1383
1384	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1385	  4M allocations matching the default size used by generic code.
1386
1387config UNMAP_KERNEL_AT_EL0
1388	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1389	default y
1390	help
1391	  Speculation attacks against some high-performance processors can
1392	  be used to bypass MMU permission checks and leak kernel data to
1393	  userspace. This can be defended against by unmapping the kernel
1394	  when running in userspace, mapping it back in on exception entry
1395	  via a trampoline page in the vector table.
1396
1397	  If unsure, say Y.
1398
1399config MITIGATE_SPECTRE_BRANCH_HISTORY
1400	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1401	default y
1402	help
1403	  Speculation attacks against some high-performance processors can
1404	  make use of branch history to influence future speculation.
1405	  When taking an exception from user-space, a sequence of branches
1406	  or a firmware call overwrites the branch history.
1407
1408config RODATA_FULL_DEFAULT_ENABLED
1409	bool "Apply r/o permissions of VM areas also to their linear aliases"
1410	default y
1411	help
1412	  Apply read-only attributes of VM areas to the linear alias of
1413	  the backing pages as well. This prevents code or read-only data
1414	  from being modified (inadvertently or intentionally) via another
1415	  mapping of the same memory page. This additional enhancement can
1416	  be turned off at runtime by passing rodata=[off|on] (and turned on
1417	  with rodata=full if this option is set to 'n')
1418
1419	  This requires the linear region to be mapped down to pages,
1420	  which may adversely affect performance in some cases.
1421
1422config ARM64_SW_TTBR0_PAN
1423	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1424	help
1425	  Enabling this option prevents the kernel from accessing
1426	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1427	  zeroed area and reserved ASID. The user access routines
1428	  restore the valid TTBR0_EL1 temporarily.
1429
1430config ARM64_TAGGED_ADDR_ABI
1431	bool "Enable the tagged user addresses syscall ABI"
1432	default y
1433	help
1434	  When this option is enabled, user applications can opt in to a
1435	  relaxed ABI via prctl() allowing tagged addresses to be passed
1436	  to system calls as pointer arguments. For details, see
1437	  Documentation/arm64/tagged-address-abi.rst.
1438
1439menuconfig COMPAT
1440	bool "Kernel support for 32-bit EL0"
1441	depends on ARM64_4K_PAGES || EXPERT
1442	select HAVE_UID16
1443	select OLD_SIGSUSPEND3
1444	select COMPAT_OLD_SIGACTION
1445	help
1446	  This option enables support for a 32-bit EL0 running under a 64-bit
1447	  kernel at EL1. AArch32-specific components such as system calls,
1448	  the user helper functions, VFP support and the ptrace interface are
1449	  handled appropriately by the kernel.
1450
1451	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1452	  that you will only be able to execute AArch32 binaries that were compiled
1453	  with page size aligned segments.
1454
1455	  If you want to execute 32-bit userspace applications, say Y.
1456
1457if COMPAT
1458
1459config KUSER_HELPERS
1460	bool "Enable kuser helpers page for 32-bit applications"
1461	default y
1462	help
1463	  Warning: disabling this option may break 32-bit user programs.
1464
1465	  Provide kuser helpers to compat tasks. The kernel provides
1466	  helper code to userspace in read only form at a fixed location
1467	  to allow userspace to be independent of the CPU type fitted to
1468	  the system. This permits binaries to be run on ARMv4 through
1469	  to ARMv8 without modification.
1470
1471	  See Documentation/arm/kernel_user_helpers.rst for details.
1472
1473	  However, the fixed address nature of these helpers can be used
1474	  by ROP (return orientated programming) authors when creating
1475	  exploits.
1476
1477	  If all of the binaries and libraries which run on your platform
1478	  are built specifically for your platform, and make no use of
1479	  these helpers, then you can turn this option off to hinder
1480	  such exploits. However, in that case, if a binary or library
1481	  relying on those helpers is run, it will not function correctly.
1482
1483	  Say N here only if you are absolutely certain that you do not
1484	  need these helpers; otherwise, the safe option is to say Y.
1485
1486config COMPAT_VDSO
1487	bool "Enable vDSO for 32-bit applications"
1488	depends on !CPU_BIG_ENDIAN
1489	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1490	select GENERIC_COMPAT_VDSO
1491	default y
1492	help
1493	  Place in the process address space of 32-bit applications an
1494	  ELF shared object providing fast implementations of gettimeofday
1495	  and clock_gettime.
1496
1497	  You must have a 32-bit build of glibc 2.22 or later for programs
1498	  to seamlessly take advantage of this.
1499
1500config THUMB2_COMPAT_VDSO
1501	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1502	depends on COMPAT_VDSO
1503	default y
1504	help
1505	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1506	  otherwise with '-marm'.
1507
1508menuconfig ARMV8_DEPRECATED
1509	bool "Emulate deprecated/obsolete ARMv8 instructions"
1510	depends on SYSCTL
1511	help
1512	  Legacy software support may require certain instructions
1513	  that have been deprecated or obsoleted in the architecture.
1514
1515	  Enable this config to enable selective emulation of these
1516	  features.
1517
1518	  If unsure, say Y
1519
1520if ARMV8_DEPRECATED
1521
1522config SWP_EMULATION
1523	bool "Emulate SWP/SWPB instructions"
1524	help
1525	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1526	  they are always undefined. Say Y here to enable software
1527	  emulation of these instructions for userspace using LDXR/STXR.
1528	  This feature can be controlled at runtime with the abi.swp
1529	  sysctl which is disabled by default.
1530
1531	  In some older versions of glibc [<=2.8] SWP is used during futex
1532	  trylock() operations with the assumption that the code will not
1533	  be preempted. This invalid assumption may be more likely to fail
1534	  with SWP emulation enabled, leading to deadlock of the user
1535	  application.
1536
1537	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1538	  on an external transaction monitoring block called a global
1539	  monitor to maintain update atomicity. If your system does not
1540	  implement a global monitor, this option can cause programs that
1541	  perform SWP operations to uncached memory to deadlock.
1542
1543	  If unsure, say Y
1544
1545config CP15_BARRIER_EMULATION
1546	bool "Emulate CP15 Barrier instructions"
1547	help
1548	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1549	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1550	  strongly recommended to use the ISB, DSB, and DMB
1551	  instructions instead.
1552
1553	  Say Y here to enable software emulation of these
1554	  instructions for AArch32 userspace code. When this option is
1555	  enabled, CP15 barrier usage is traced which can help
1556	  identify software that needs updating. This feature can be
1557	  controlled at runtime with the abi.cp15_barrier sysctl.
1558
1559	  If unsure, say Y
1560
1561config SETEND_EMULATION
1562	bool "Emulate SETEND instruction"
1563	help
1564	  The SETEND instruction alters the data-endianness of the
1565	  AArch32 EL0, and is deprecated in ARMv8.
1566
1567	  Say Y here to enable software emulation of the instruction
1568	  for AArch32 userspace code. This feature can be controlled
1569	  at runtime with the abi.setend sysctl.
1570
1571	  Note: All the cpus on the system must have mixed endian support at EL0
1572	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1573	  endian - is hotplugged in after this feature has been enabled, there could
1574	  be unexpected results in the applications.
1575
1576	  If unsure, say Y
1577endif # ARMV8_DEPRECATED
1578
1579endif # COMPAT
1580
1581menu "ARMv8.1 architectural features"
1582
1583config ARM64_HW_AFDBM
1584	bool "Support for hardware updates of the Access and Dirty page flags"
1585	default y
1586	help
1587	  The ARMv8.1 architecture extensions introduce support for
1588	  hardware updates of the access and dirty information in page
1589	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1590	  capable processors, accesses to pages with PTE_AF cleared will
1591	  set this bit instead of raising an access flag fault.
1592	  Similarly, writes to read-only pages with the DBM bit set will
1593	  clear the read-only bit (AP[2]) instead of raising a
1594	  permission fault.
1595
1596	  Kernels built with this configuration option enabled continue
1597	  to work on pre-ARMv8.1 hardware and the performance impact is
1598	  minimal. If unsure, say Y.
1599
1600config ARM64_PAN
1601	bool "Enable support for Privileged Access Never (PAN)"
1602	default y
1603	help
1604	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1605	  prevents the kernel or hypervisor from accessing user-space (EL0)
1606	  memory directly.
1607
1608	  Choosing this option will cause any unprotected (not using
1609	  copy_to_user et al) memory access to fail with a permission fault.
1610
1611	  The feature is detected at runtime, and will remain as a 'nop'
1612	  instruction if the cpu does not implement the feature.
1613
1614config AS_HAS_LDAPR
1615	def_bool $(as-instr,.arch_extension rcpc)
1616
1617config AS_HAS_LSE_ATOMICS
1618	def_bool $(as-instr,.arch_extension lse)
1619
1620config ARM64_LSE_ATOMICS
1621	bool
1622	default ARM64_USE_LSE_ATOMICS
1623	depends on AS_HAS_LSE_ATOMICS
1624
1625config ARM64_USE_LSE_ATOMICS
1626	bool "Atomic instructions"
1627	depends on JUMP_LABEL
1628	default y
1629	help
1630	  As part of the Large System Extensions, ARMv8.1 introduces new
1631	  atomic instructions that are designed specifically to scale in
1632	  very large systems.
1633
1634	  Say Y here to make use of these instructions for the in-kernel
1635	  atomic routines. This incurs a small overhead on CPUs that do
1636	  not support these instructions and requires the kernel to be
1637	  built with binutils >= 2.25 in order for the new instructions
1638	  to be used.
1639
1640endmenu # "ARMv8.1 architectural features"
1641
1642menu "ARMv8.2 architectural features"
1643
1644config AS_HAS_ARMV8_2
1645	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1646
1647config AS_HAS_SHA3
1648	def_bool $(as-instr,.arch armv8.2-a+sha3)
1649
1650config ARM64_PMEM
1651	bool "Enable support for persistent memory"
1652	select ARCH_HAS_PMEM_API
1653	select ARCH_HAS_UACCESS_FLUSHCACHE
1654	help
1655	  Say Y to enable support for the persistent memory API based on the
1656	  ARMv8.2 DCPoP feature.
1657
1658	  The feature is detected at runtime, and the kernel will use DC CVAC
1659	  operations if DC CVAP is not supported (following the behaviour of
1660	  DC CVAP itself if the system does not define a point of persistence).
1661
1662config ARM64_RAS_EXTN
1663	bool "Enable support for RAS CPU Extensions"
1664	default y
1665	help
1666	  CPUs that support the Reliability, Availability and Serviceability
1667	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1668	  errors, classify them and report them to software.
1669
1670	  On CPUs with these extensions system software can use additional
1671	  barriers to determine if faults are pending and read the
1672	  classification from a new set of registers.
1673
1674	  Selecting this feature will allow the kernel to use these barriers
1675	  and access the new registers if the system supports the extension.
1676	  Platform RAS features may additionally depend on firmware support.
1677
1678config ARM64_CNP
1679	bool "Enable support for Common Not Private (CNP) translations"
1680	default y
1681	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1682	help
1683	  Common Not Private (CNP) allows translation table entries to
1684	  be shared between different PEs in the same inner shareable
1685	  domain, so the hardware can use this fact to optimise the
1686	  caching of such entries in the TLB.
1687
1688	  Selecting this option allows the CNP feature to be detected
1689	  at runtime, and does not affect PEs that do not implement
1690	  this feature.
1691
1692endmenu # "ARMv8.2 architectural features"
1693
1694menu "ARMv8.3 architectural features"
1695
1696config ARM64_PTR_AUTH
1697	bool "Enable support for pointer authentication"
1698	default y
1699	help
1700	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1701	  instructions for signing and authenticating pointers against secret
1702	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1703	  and other attacks.
1704
1705	  This option enables these instructions at EL0 (i.e. for userspace).
1706	  Choosing this option will cause the kernel to initialise secret keys
1707	  for each process at exec() time, with these keys being
1708	  context-switched along with the process.
1709
1710	  The feature is detected at runtime. If the feature is not present in
1711	  hardware it will not be advertised to userspace/KVM guest nor will it
1712	  be enabled.
1713
1714	  If the feature is present on the boot CPU but not on a late CPU, then
1715	  the late CPU will be parked. Also, if the boot CPU does not have
1716	  address auth and the late CPU has then the late CPU will still boot
1717	  but with the feature disabled. On such a system, this option should
1718	  not be selected.
1719
1720config ARM64_PTR_AUTH_KERNEL
1721	bool "Use pointer authentication for kernel"
1722	default y
1723	depends on ARM64_PTR_AUTH
1724	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1725	# Modern compilers insert a .note.gnu.property section note for PAC
1726	# which is only understood by binutils starting with version 2.33.1.
1727	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1728	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1729	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1730	help
1731	  If the compiler supports the -mbranch-protection or
1732	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1733	  will cause the kernel itself to be compiled with return address
1734	  protection. In this case, and if the target hardware is known to
1735	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1736	  disabled with minimal loss of protection.
1737
1738	  This feature works with FUNCTION_GRAPH_TRACER option only if
1739	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1740
1741config CC_HAS_BRANCH_PROT_PAC_RET
1742	# GCC 9 or later, clang 8 or later
1743	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1744
1745config CC_HAS_SIGN_RETURN_ADDRESS
1746	# GCC 7, 8
1747	def_bool $(cc-option,-msign-return-address=all)
1748
1749config AS_HAS_PAC
1750	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1751
1752config AS_HAS_CFI_NEGATE_RA_STATE
1753	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1754
1755endmenu # "ARMv8.3 architectural features"
1756
1757menu "ARMv8.4 architectural features"
1758
1759config ARM64_AMU_EXTN
1760	bool "Enable support for the Activity Monitors Unit CPU extension"
1761	default y
1762	help
1763	  The activity monitors extension is an optional extension introduced
1764	  by the ARMv8.4 CPU architecture. This enables support for version 1
1765	  of the activity monitors architecture, AMUv1.
1766
1767	  To enable the use of this extension on CPUs that implement it, say Y.
1768
1769	  Note that for architectural reasons, firmware _must_ implement AMU
1770	  support when running on CPUs that present the activity monitors
1771	  extension. The required support is present in:
1772	    * Version 1.5 and later of the ARM Trusted Firmware
1773
1774	  For kernels that have this configuration enabled but boot with broken
1775	  firmware, you may need to say N here until the firmware is fixed.
1776	  Otherwise you may experience firmware panics or lockups when
1777	  accessing the counter registers. Even if you are not observing these
1778	  symptoms, the values returned by the register reads might not
1779	  correctly reflect reality. Most commonly, the value read will be 0,
1780	  indicating that the counter is not enabled.
1781
1782config AS_HAS_ARMV8_4
1783	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1784
1785config ARM64_TLB_RANGE
1786	bool "Enable support for tlbi range feature"
1787	default y
1788	depends on AS_HAS_ARMV8_4
1789	help
1790	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1791	  range of input addresses.
1792
1793	  The feature introduces new assembly instructions, and they were
1794	  support when binutils >= 2.30.
1795
1796endmenu # "ARMv8.4 architectural features"
1797
1798menu "ARMv8.5 architectural features"
1799
1800config AS_HAS_ARMV8_5
1801	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1802
1803config ARM64_BTI
1804	bool "Branch Target Identification support"
1805	default y
1806	help
1807	  Branch Target Identification (part of the ARMv8.5 Extensions)
1808	  provides a mechanism to limit the set of locations to which computed
1809	  branch instructions such as BR or BLR can jump.
1810
1811	  To make use of BTI on CPUs that support it, say Y.
1812
1813	  BTI is intended to provide complementary protection to other control
1814	  flow integrity protection mechanisms, such as the Pointer
1815	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1816	  For this reason, it does not make sense to enable this option without
1817	  also enabling support for pointer authentication.  Thus, when
1818	  enabling this option you should also select ARM64_PTR_AUTH=y.
1819
1820	  Userspace binaries must also be specifically compiled to make use of
1821	  this mechanism.  If you say N here or the hardware does not support
1822	  BTI, such binaries can still run, but you get no additional
1823	  enforcement of branch destinations.
1824
1825config ARM64_BTI_KERNEL
1826	bool "Use Branch Target Identification for kernel"
1827	default y
1828	depends on ARM64_BTI
1829	depends on ARM64_PTR_AUTH_KERNEL
1830	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1831	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1832	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1833	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1834	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1835	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1836	help
1837	  Build the kernel with Branch Target Identification annotations
1838	  and enable enforcement of this for kernel code. When this option
1839	  is enabled and the system supports BTI all kernel code including
1840	  modular code must have BTI enabled.
1841
1842config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1843	# GCC 9 or later, clang 8 or later
1844	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1845
1846config ARM64_E0PD
1847	bool "Enable support for E0PD"
1848	default y
1849	help
1850	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1851	  that EL0 accesses made via TTBR1 always fault in constant time,
1852	  providing similar benefits to KASLR as those provided by KPTI, but
1853	  with lower overhead and without disrupting legitimate access to
1854	  kernel memory such as SPE.
1855
1856	  This option enables E0PD for TTBR1 where available.
1857
1858config ARCH_RANDOM
1859	bool "Enable support for random number generation"
1860	default y
1861	help
1862	  Random number generation (part of the ARMv8.5 Extensions)
1863	  provides a high bandwidth, cryptographically secure
1864	  hardware random number generator.
1865
1866config ARM64_AS_HAS_MTE
1867	# Initial support for MTE went in binutils 2.32.0, checked with
1868	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1869	# as a late addition to the final architecture spec (LDGM/STGM)
1870	# is only supported in the newer 2.32.x and 2.33 binutils
1871	# versions, hence the extra "stgm" instruction check below.
1872	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1873
1874config ARM64_MTE
1875	bool "Memory Tagging Extension support"
1876	default y
1877	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1878	depends on AS_HAS_ARMV8_5
1879	depends on AS_HAS_LSE_ATOMICS
1880	# Required for tag checking in the uaccess routines
1881	depends on ARM64_PAN
1882	select ARCH_HAS_SUBPAGE_FAULTS
1883	select ARCH_USES_HIGH_VMA_FLAGS
1884	help
1885	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1886	  architectural support for run-time, always-on detection of
1887	  various classes of memory error to aid with software debugging
1888	  to eliminate vulnerabilities arising from memory-unsafe
1889	  languages.
1890
1891	  This option enables the support for the Memory Tagging
1892	  Extension at EL0 (i.e. for userspace).
1893
1894	  Selecting this option allows the feature to be detected at
1895	  runtime. Any secondary CPU not implementing this feature will
1896	  not be allowed a late bring-up.
1897
1898	  Userspace binaries that want to use this feature must
1899	  explicitly opt in. The mechanism for the userspace is
1900	  described in:
1901
1902	  Documentation/arm64/memory-tagging-extension.rst.
1903
1904endmenu # "ARMv8.5 architectural features"
1905
1906menu "ARMv8.7 architectural features"
1907
1908config ARM64_EPAN
1909	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1910	default y
1911	depends on ARM64_PAN
1912	help
1913	  Enhanced Privileged Access Never (EPAN) allows Privileged
1914	  Access Never to be used with Execute-only mappings.
1915
1916	  The feature is detected at runtime, and will remain disabled
1917	  if the cpu does not implement the feature.
1918endmenu # "ARMv8.7 architectural features"
1919
1920config ARM64_SVE
1921	bool "ARM Scalable Vector Extension support"
1922	default y
1923	help
1924	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1925	  execution state which complements and extends the SIMD functionality
1926	  of the base architecture to support much larger vectors and to enable
1927	  additional vectorisation opportunities.
1928
1929	  To enable use of this extension on CPUs that implement it, say Y.
1930
1931	  On CPUs that support the SVE2 extensions, this option will enable
1932	  those too.
1933
1934	  Note that for architectural reasons, firmware _must_ implement SVE
1935	  support when running on SVE capable hardware.  The required support
1936	  is present in:
1937
1938	    * version 1.5 and later of the ARM Trusted Firmware
1939	    * the AArch64 boot wrapper since commit 5e1261e08abf
1940	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1941
1942	  For other firmware implementations, consult the firmware documentation
1943	  or vendor.
1944
1945	  If you need the kernel to boot on SVE-capable hardware with broken
1946	  firmware, you may need to say N here until you get your firmware
1947	  fixed.  Otherwise, you may experience firmware panics or lockups when
1948	  booting the kernel.  If unsure and you are not observing these
1949	  symptoms, you should assume that it is safe to say Y.
1950
1951config ARM64_SME
1952	bool "ARM Scalable Matrix Extension support"
1953	default y
1954	depends on ARM64_SVE
1955	help
1956	  The Scalable Matrix Extension (SME) is an extension to the AArch64
1957	  execution state which utilises a substantial subset of the SVE
1958	  instruction set, together with the addition of new architectural
1959	  register state capable of holding two dimensional matrix tiles to
1960	  enable various matrix operations.
1961
1962config ARM64_MODULE_PLTS
1963	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1964	depends on MODULES
1965	select HAVE_MOD_ARCH_SPECIFIC
1966	help
1967	  Allocate PLTs when loading modules so that jumps and calls whose
1968	  targets are too far away for their relative offsets to be encoded
1969	  in the instructions themselves can be bounced via veneers in the
1970	  module's PLT. This allows modules to be allocated in the generic
1971	  vmalloc area after the dedicated module memory area has been
1972	  exhausted.
1973
1974	  When running with address space randomization (KASLR), the module
1975	  region itself may be too far away for ordinary relative jumps and
1976	  calls, and so in that case, module PLTs are required and cannot be
1977	  disabled.
1978
1979	  Specific errata workaround(s) might also force module PLTs to be
1980	  enabled (ARM64_ERRATUM_843419).
1981
1982config ARM64_PSEUDO_NMI
1983	bool "Support for NMI-like interrupts"
1984	select ARM_GIC_V3
1985	help
1986	  Adds support for mimicking Non-Maskable Interrupts through the use of
1987	  GIC interrupt priority. This support requires version 3 or later of
1988	  ARM GIC.
1989
1990	  This high priority configuration for interrupts needs to be
1991	  explicitly enabled by setting the kernel parameter
1992	  "irqchip.gicv3_pseudo_nmi" to 1.
1993
1994	  If unsure, say N
1995
1996if ARM64_PSEUDO_NMI
1997config ARM64_DEBUG_PRIORITY_MASKING
1998	bool "Debug interrupt priority masking"
1999	help
2000	  This adds runtime checks to functions enabling/disabling
2001	  interrupts when using priority masking. The additional checks verify
2002	  the validity of ICC_PMR_EL1 when calling concerned functions.
2003
2004	  If unsure, say N
2005endif # ARM64_PSEUDO_NMI
2006
2007config RELOCATABLE
2008	bool "Build a relocatable kernel image" if EXPERT
2009	select ARCH_HAS_RELR
2010	default y
2011	help
2012	  This builds the kernel as a Position Independent Executable (PIE),
2013	  which retains all relocation metadata required to relocate the
2014	  kernel binary at runtime to a different virtual address than the
2015	  address it was linked at.
2016	  Since AArch64 uses the RELA relocation format, this requires a
2017	  relocation pass at runtime even if the kernel is loaded at the
2018	  same address it was linked at.
2019
2020config RANDOMIZE_BASE
2021	bool "Randomize the address of the kernel image"
2022	select ARM64_MODULE_PLTS if MODULES
2023	select RELOCATABLE
2024	help
2025	  Randomizes the virtual address at which the kernel image is
2026	  loaded, as a security feature that deters exploit attempts
2027	  relying on knowledge of the location of kernel internals.
2028
2029	  It is the bootloader's job to provide entropy, by passing a
2030	  random u64 value in /chosen/kaslr-seed at kernel entry.
2031
2032	  When booting via the UEFI stub, it will invoke the firmware's
2033	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2034	  to the kernel proper. In addition, it will randomise the physical
2035	  location of the kernel Image as well.
2036
2037	  If unsure, say N.
2038
2039config RANDOMIZE_MODULE_REGION_FULL
2040	bool "Randomize the module region over a 2 GB range"
2041	depends on RANDOMIZE_BASE
2042	default y
2043	help
2044	  Randomizes the location of the module region inside a 2 GB window
2045	  covering the core kernel. This way, it is less likely for modules
2046	  to leak information about the location of core kernel data structures
2047	  but it does imply that function calls between modules and the core
2048	  kernel will need to be resolved via veneers in the module PLT.
2049
2050	  When this option is not set, the module region will be randomized over
2051	  a limited range that contains the [_stext, _etext] interval of the
2052	  core kernel, so branch relocations are almost always in range unless
2053	  ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
2054	  particular case of region exhaustion, modules might be able to fall
2055	  back to a larger 2GB area.
2056
2057config CC_HAVE_STACKPROTECTOR_SYSREG
2058	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2059
2060config STACKPROTECTOR_PER_TASK
2061	def_bool y
2062	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2063
2064# The GPIO number here must be sorted by descending number. In case of
2065# a multiplatform kernel, we just want the highest value required by the
2066# selected platforms.
2067config ARCH_NR_GPIO
2068        int
2069        default 2048 if ARCH_APPLE
2070        default 0
2071        help
2072          Maximum number of GPIOs in the system.
2073
2074          If unsure, leave the default value.
2075
2076endmenu # "Kernel Features"
2077
2078menu "Boot options"
2079
2080config ARM64_ACPI_PARKING_PROTOCOL
2081	bool "Enable support for the ARM64 ACPI parking protocol"
2082	depends on ACPI
2083	help
2084	  Enable support for the ARM64 ACPI parking protocol. If disabled
2085	  the kernel will not allow booting through the ARM64 ACPI parking
2086	  protocol even if the corresponding data is present in the ACPI
2087	  MADT table.
2088
2089config CMDLINE
2090	string "Default kernel command string"
2091	default ""
2092	help
2093	  Provide a set of default command-line options at build time by
2094	  entering them here. As a minimum, you should specify the the
2095	  root device (e.g. root=/dev/nfs).
2096
2097choice
2098	prompt "Kernel command line type" if CMDLINE != ""
2099	default CMDLINE_FROM_BOOTLOADER
2100	help
2101	  Choose how the kernel will handle the provided default kernel
2102	  command line string.
2103
2104config CMDLINE_FROM_BOOTLOADER
2105	bool "Use bootloader kernel arguments if available"
2106	help
2107	  Uses the command-line options passed by the boot loader. If
2108	  the boot loader doesn't provide any, the default kernel command
2109	  string provided in CMDLINE will be used.
2110
2111config CMDLINE_FORCE
2112	bool "Always use the default kernel command string"
2113	help
2114	  Always use the default kernel command string, even if the boot
2115	  loader passes other arguments to the kernel.
2116	  This is useful if you cannot or don't want to change the
2117	  command-line options your boot loader passes to the kernel.
2118
2119endchoice
2120
2121config EFI_STUB
2122	bool
2123
2124config EFI
2125	bool "UEFI runtime support"
2126	depends on OF && !CPU_BIG_ENDIAN
2127	depends on KERNEL_MODE_NEON
2128	select ARCH_SUPPORTS_ACPI
2129	select LIBFDT
2130	select UCS2_STRING
2131	select EFI_PARAMS_FROM_FDT
2132	select EFI_RUNTIME_WRAPPERS
2133	select EFI_STUB
2134	select EFI_GENERIC_STUB
2135	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2136	default y
2137	help
2138	  This option provides support for runtime services provided
2139	  by UEFI firmware (such as non-volatile variables, realtime
2140	  clock, and platform reset). A UEFI stub is also provided to
2141	  allow the kernel to be booted as an EFI application. This
2142	  is only useful on systems that have UEFI firmware.
2143
2144config DMI
2145	bool "Enable support for SMBIOS (DMI) tables"
2146	depends on EFI
2147	default y
2148	help
2149	  This enables SMBIOS/DMI feature for systems.
2150
2151	  This option is only useful on systems that have UEFI firmware.
2152	  However, even with this option, the resultant kernel should
2153	  continue to boot on existing non-UEFI platforms.
2154
2155endmenu # "Boot options"
2156
2157config SYSVIPC_COMPAT
2158	def_bool y
2159	depends on COMPAT && SYSVIPC
2160
2161menu "Power management options"
2162
2163source "kernel/power/Kconfig"
2164
2165config ARCH_HIBERNATION_POSSIBLE
2166	def_bool y
2167	depends on CPU_PM
2168
2169config ARCH_HIBERNATION_HEADER
2170	def_bool y
2171	depends on HIBERNATION
2172
2173config ARCH_SUSPEND_POSSIBLE
2174	def_bool y
2175
2176endmenu # "Power management options"
2177
2178menu "CPU Power Management"
2179
2180source "drivers/cpuidle/Kconfig"
2181
2182source "drivers/cpufreq/Kconfig"
2183
2184endmenu # "CPU Power Management"
2185
2186source "drivers/acpi/Kconfig"
2187
2188source "arch/arm64/kvm/Kconfig"
2189
2190if CRYPTO
2191source "arch/arm64/crypto/Kconfig"
2192endif # CRYPTO
2193