xref: /openbmc/linux/arch/arm64/Kconfig (revision d35ac6ac)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_IORT if ACPI
9	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
10	select ACPI_MCFG if (ACPI && PCI)
11	select ACPI_SPCR_TABLE if ACPI
12	select ACPI_PPTT if ACPI
13	select ARCH_HAS_DEBUG_WX
14	select ARCH_BINFMT_ELF_EXTRA_PHDRS
15	select ARCH_BINFMT_ELF_STATE
16	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CURRENT_STACK_POINTER
24	select ARCH_HAS_DEBUG_VIRTUAL
25	select ARCH_HAS_DEBUG_VM_PGTABLE
26	select ARCH_HAS_DMA_PREP_COHERENT
27	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
28	select ARCH_HAS_FAST_MULTIPLIER
29	select ARCH_HAS_FORTIFY_SOURCE
30	select ARCH_HAS_GCOV_PROFILE_ALL
31	select ARCH_HAS_GIGANTIC_PAGE
32	select ARCH_HAS_KCOV
33	select ARCH_HAS_KEEPINITRD
34	select ARCH_HAS_MEMBARRIER_SYNC_CORE
35	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
36	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
37	select ARCH_HAS_PTE_DEVMAP
38	select ARCH_HAS_PTE_SPECIAL
39	select ARCH_HAS_SETUP_DMA_OPS
40	select ARCH_HAS_SET_DIRECT_MAP
41	select ARCH_HAS_SET_MEMORY
42	select ARCH_STACKWALK
43	select ARCH_HAS_STRICT_KERNEL_RWX
44	select ARCH_HAS_STRICT_MODULE_RWX
45	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
46	select ARCH_HAS_SYNC_DMA_FOR_CPU
47	select ARCH_HAS_SYSCALL_WRAPPER
48	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
49	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
50	select ARCH_HAS_ZONE_DMA_SET if EXPERT
51	select ARCH_HAVE_ELF_PROT
52	select ARCH_HAVE_NMI_SAFE_CMPXCHG
53	select ARCH_HAVE_TRACE_MMIO_ACCESS
54	select ARCH_INLINE_READ_LOCK if !PREEMPTION
55	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
56	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
57	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
58	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
59	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
60	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
61	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
62	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
63	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
64	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
65	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
66	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
67	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
68	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
69	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
70	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
71	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
72	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
73	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
74	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
75	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
76	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
77	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
78	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
79	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
80	select ARCH_KEEP_MEMBLOCK
81	select ARCH_USE_CMPXCHG_LOCKREF
82	select ARCH_USE_GNU_PROPERTY
83	select ARCH_USE_MEMTEST
84	select ARCH_USE_QUEUED_RWLOCKS
85	select ARCH_USE_QUEUED_SPINLOCKS
86	select ARCH_USE_SYM_ANNOTATIONS
87	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
88	select ARCH_SUPPORTS_HUGETLBFS
89	select ARCH_SUPPORTS_MEMORY_FAILURE
90	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
91	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
92	select ARCH_SUPPORTS_LTO_CLANG_THIN
93	select ARCH_SUPPORTS_CFI_CLANG
94	select ARCH_SUPPORTS_ATOMIC_RMW
95	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
96	select ARCH_SUPPORTS_NUMA_BALANCING
97	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
98	select ARCH_SUPPORTS_PER_VMA_LOCK
99	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
100	select ARCH_WANT_DEFAULT_BPF_JIT
101	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
102	select ARCH_WANT_FRAME_POINTERS
103	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
104	select ARCH_WANT_LD_ORPHAN_WARN
105	select ARCH_WANTS_NO_INSTR
106	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
107	select ARCH_HAS_UBSAN_SANITIZE_ALL
108	select ARM_AMBA
109	select ARM_ARCH_TIMER
110	select ARM_GIC
111	select AUDIT_ARCH_COMPAT_GENERIC
112	select ARM_GIC_V2M if PCI
113	select ARM_GIC_V3
114	select ARM_GIC_V3_ITS if PCI
115	select ARM_PSCI_FW
116	select BUILDTIME_TABLE_SORT
117	select CLONE_BACKWARDS
118	select COMMON_CLK
119	select CPU_PM if (SUSPEND || CPU_IDLE)
120	select CRC32
121	select DCACHE_WORD_ACCESS
122	select DYNAMIC_FTRACE if FUNCTION_TRACER
123	select DMA_BOUNCE_UNALIGNED_KMALLOC
124	select DMA_DIRECT_REMAP
125	select EDAC_SUPPORT
126	select FRAME_POINTER
127	select FUNCTION_ALIGNMENT_4B
128	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
129	select GENERIC_ALLOCATOR
130	select GENERIC_ARCH_TOPOLOGY
131	select GENERIC_CLOCKEVENTS_BROADCAST
132	select GENERIC_CPU_AUTOPROBE
133	select GENERIC_CPU_VULNERABILITIES
134	select GENERIC_EARLY_IOREMAP
135	select GENERIC_IDLE_POLL_SETUP
136	select GENERIC_IOREMAP
137	select GENERIC_IRQ_IPI
138	select GENERIC_IRQ_PROBE
139	select GENERIC_IRQ_SHOW
140	select GENERIC_IRQ_SHOW_LEVEL
141	select GENERIC_LIB_DEVMEM_IS_ALLOWED
142	select GENERIC_PCI_IOMAP
143	select GENERIC_PTDUMP
144	select GENERIC_SCHED_CLOCK
145	select GENERIC_SMP_IDLE_THREAD
146	select GENERIC_TIME_VSYSCALL
147	select GENERIC_GETTIMEOFDAY
148	select GENERIC_VDSO_TIME_NS
149	select HARDIRQS_SW_RESEND
150	select HAS_IOPORT
151	select HAVE_MOVE_PMD
152	select HAVE_MOVE_PUD
153	select HAVE_PCI
154	select HAVE_ACPI_APEI if (ACPI && EFI)
155	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
156	select HAVE_ARCH_AUDITSYSCALL
157	select HAVE_ARCH_BITREVERSE
158	select HAVE_ARCH_COMPILER_H
159	select HAVE_ARCH_HUGE_VMALLOC
160	select HAVE_ARCH_HUGE_VMAP
161	select HAVE_ARCH_JUMP_LABEL
162	select HAVE_ARCH_JUMP_LABEL_RELATIVE
163	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
164	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
165	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
166	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
167	# Some instrumentation may be unsound, hence EXPERT
168	select HAVE_ARCH_KCSAN if EXPERT
169	select HAVE_ARCH_KFENCE
170	select HAVE_ARCH_KGDB
171	select HAVE_ARCH_MMAP_RND_BITS
172	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
173	select HAVE_ARCH_PREL32_RELOCATIONS
174	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
175	select HAVE_ARCH_SECCOMP_FILTER
176	select HAVE_ARCH_STACKLEAK
177	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
178	select HAVE_ARCH_TRACEHOOK
179	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
180	select HAVE_ARCH_VMAP_STACK
181	select HAVE_ARM_SMCCC
182	select HAVE_ASM_MODVERSIONS
183	select HAVE_EBPF_JIT
184	select HAVE_C_RECORDMCOUNT
185	select HAVE_CMPXCHG_DOUBLE
186	select HAVE_CMPXCHG_LOCAL
187	select HAVE_CONTEXT_TRACKING_USER
188	select HAVE_DEBUG_KMEMLEAK
189	select HAVE_DMA_CONTIGUOUS
190	select HAVE_DYNAMIC_FTRACE
191	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
192		if $(cc-option,-fpatchable-function-entry=2)
193	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
194		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
195	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
196		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
197		    !CC_OPTIMIZE_FOR_SIZE)
198	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
199		if DYNAMIC_FTRACE_WITH_ARGS
200	select HAVE_EFFICIENT_UNALIGNED_ACCESS
201	select HAVE_FAST_GUP
202	select HAVE_FTRACE_MCOUNT_RECORD
203	select HAVE_FUNCTION_TRACER
204	select HAVE_FUNCTION_ERROR_INJECTION
205	select HAVE_FUNCTION_GRAPH_TRACER
206	select HAVE_GCC_PLUGINS
207	select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \
208		HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI
209	select HAVE_HW_BREAKPOINT if PERF_EVENTS
210	select HAVE_IOREMAP_PROT
211	select HAVE_IRQ_TIME_ACCOUNTING
212	select HAVE_KVM
213	select HAVE_MOD_ARCH_SPECIFIC
214	select HAVE_NMI
215	select HAVE_PERF_EVENTS
216	select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI
217	select HAVE_PERF_REGS
218	select HAVE_PERF_USER_STACK_DUMP
219	select HAVE_PREEMPT_DYNAMIC_KEY
220	select HAVE_REGS_AND_STACK_ACCESS_API
221	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
222	select HAVE_FUNCTION_ARG_ACCESS_API
223	select MMU_GATHER_RCU_TABLE_FREE
224	select HAVE_RSEQ
225	select HAVE_STACKPROTECTOR
226	select HAVE_SYSCALL_TRACEPOINTS
227	select HAVE_KPROBES
228	select HAVE_KRETPROBES
229	select HAVE_GENERIC_VDSO
230	select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU
231	select IRQ_DOMAIN
232	select IRQ_FORCED_THREADING
233	select KASAN_VMALLOC if KASAN
234	select LOCK_MM_AND_FIND_VMA
235	select MODULES_USE_ELF_RELA
236	select NEED_DMA_MAP_STATE
237	select NEED_SG_DMA_LENGTH
238	select OF
239	select OF_EARLY_FLATTREE
240	select PCI_DOMAINS_GENERIC if PCI
241	select PCI_ECAM if (ACPI && PCI)
242	select PCI_SYSCALL if PCI
243	select POWER_RESET
244	select POWER_SUPPLY
245	select SPARSE_IRQ
246	select SWIOTLB
247	select SYSCTL_EXCEPTION_TRACE
248	select THREAD_INFO_IN_TASK
249	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
250	select TRACE_IRQFLAGS_SUPPORT
251	select TRACE_IRQFLAGS_NMI_SUPPORT
252	select HAVE_SOFTIRQ_ON_OWN_STACK
253	help
254	  ARM 64-bit (AArch64) Linux support.
255
256config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
257	def_bool CC_IS_CLANG
258	# https://github.com/ClangBuiltLinux/linux/issues/1507
259	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
260	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
261
262config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
263	def_bool CC_IS_GCC
264	depends on $(cc-option,-fpatchable-function-entry=2)
265	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
266
267config 64BIT
268	def_bool y
269
270config MMU
271	def_bool y
272
273config ARM64_PAGE_SHIFT
274	int
275	default 16 if ARM64_64K_PAGES
276	default 14 if ARM64_16K_PAGES
277	default 12
278
279config ARM64_CONT_PTE_SHIFT
280	int
281	default 5 if ARM64_64K_PAGES
282	default 7 if ARM64_16K_PAGES
283	default 4
284
285config ARM64_CONT_PMD_SHIFT
286	int
287	default 5 if ARM64_64K_PAGES
288	default 5 if ARM64_16K_PAGES
289	default 4
290
291config ARCH_MMAP_RND_BITS_MIN
292	default 14 if ARM64_64K_PAGES
293	default 16 if ARM64_16K_PAGES
294	default 18
295
296# max bits determined by the following formula:
297#  VA_BITS - PAGE_SHIFT - 3
298config ARCH_MMAP_RND_BITS_MAX
299	default 19 if ARM64_VA_BITS=36
300	default 24 if ARM64_VA_BITS=39
301	default 27 if ARM64_VA_BITS=42
302	default 30 if ARM64_VA_BITS=47
303	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
304	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
305	default 33 if ARM64_VA_BITS=48
306	default 14 if ARM64_64K_PAGES
307	default 16 if ARM64_16K_PAGES
308	default 18
309
310config ARCH_MMAP_RND_COMPAT_BITS_MIN
311	default 7 if ARM64_64K_PAGES
312	default 9 if ARM64_16K_PAGES
313	default 11
314
315config ARCH_MMAP_RND_COMPAT_BITS_MAX
316	default 16
317
318config NO_IOPORT_MAP
319	def_bool y if !PCI
320
321config STACKTRACE_SUPPORT
322	def_bool y
323
324config ILLEGAL_POINTER_VALUE
325	hex
326	default 0xdead000000000000
327
328config LOCKDEP_SUPPORT
329	def_bool y
330
331config GENERIC_BUG
332	def_bool y
333	depends on BUG
334
335config GENERIC_BUG_RELATIVE_POINTERS
336	def_bool y
337	depends on GENERIC_BUG
338
339config GENERIC_HWEIGHT
340	def_bool y
341
342config GENERIC_CSUM
343	def_bool y
344
345config GENERIC_CALIBRATE_DELAY
346	def_bool y
347
348config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
349	def_bool y
350
351config SMP
352	def_bool y
353
354config KERNEL_MODE_NEON
355	def_bool y
356
357config FIX_EARLYCON_MEM
358	def_bool y
359
360config PGTABLE_LEVELS
361	int
362	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
363	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
364	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
365	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
366	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
367	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
368
369config ARCH_SUPPORTS_UPROBES
370	def_bool y
371
372config ARCH_PROC_KCORE_TEXT
373	def_bool y
374
375config BROKEN_GAS_INST
376	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
377
378config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
379	bool
380	# Clang's __builtin_return_adddress() strips the PAC since 12.0.0
381	# https://reviews.llvm.org/D75044
382	default y if CC_IS_CLANG && (CLANG_VERSION >= 120000)
383	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
384	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
385	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
386	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
387	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
388	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
389	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
390	default n
391
392config KASAN_SHADOW_OFFSET
393	hex
394	depends on KASAN_GENERIC || KASAN_SW_TAGS
395	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
396	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
397	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
398	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
399	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
400	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
401	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
402	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
403	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
404	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
405	default 0xffffffffffffffff
406
407config UNWIND_TABLES
408	bool
409
410source "arch/arm64/Kconfig.platforms"
411
412menu "Kernel Features"
413
414menu "ARM errata workarounds via the alternatives framework"
415
416config ARM64_WORKAROUND_CLEAN_CACHE
417	bool
418
419config ARM64_ERRATUM_826319
420	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
421	default y
422	select ARM64_WORKAROUND_CLEAN_CACHE
423	help
424	  This option adds an alternative code sequence to work around ARM
425	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
426	  AXI master interface and an L2 cache.
427
428	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
429	  and is unable to accept a certain write via this interface, it will
430	  not progress on read data presented on the read data channel and the
431	  system can deadlock.
432
433	  The workaround promotes data cache clean instructions to
434	  data cache clean-and-invalidate.
435	  Please note that this does not necessarily enable the workaround,
436	  as it depends on the alternative framework, which will only patch
437	  the kernel if an affected CPU is detected.
438
439	  If unsure, say Y.
440
441config ARM64_ERRATUM_827319
442	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
443	default y
444	select ARM64_WORKAROUND_CLEAN_CACHE
445	help
446	  This option adds an alternative code sequence to work around ARM
447	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
448	  master interface and an L2 cache.
449
450	  Under certain conditions this erratum can cause a clean line eviction
451	  to occur at the same time as another transaction to the same address
452	  on the AMBA 5 CHI interface, which can cause data corruption if the
453	  interconnect reorders the two transactions.
454
455	  The workaround promotes data cache clean instructions to
456	  data cache clean-and-invalidate.
457	  Please note that this does not necessarily enable the workaround,
458	  as it depends on the alternative framework, which will only patch
459	  the kernel if an affected CPU is detected.
460
461	  If unsure, say Y.
462
463config ARM64_ERRATUM_824069
464	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
465	default y
466	select ARM64_WORKAROUND_CLEAN_CACHE
467	help
468	  This option adds an alternative code sequence to work around ARM
469	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
470	  to a coherent interconnect.
471
472	  If a Cortex-A53 processor is executing a store or prefetch for
473	  write instruction at the same time as a processor in another
474	  cluster is executing a cache maintenance operation to the same
475	  address, then this erratum might cause a clean cache line to be
476	  incorrectly marked as dirty.
477
478	  The workaround promotes data cache clean instructions to
479	  data cache clean-and-invalidate.
480	  Please note that this option does not necessarily enable the
481	  workaround, as it depends on the alternative framework, which will
482	  only patch the kernel if an affected CPU is detected.
483
484	  If unsure, say Y.
485
486config ARM64_ERRATUM_819472
487	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
488	default y
489	select ARM64_WORKAROUND_CLEAN_CACHE
490	help
491	  This option adds an alternative code sequence to work around ARM
492	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
493	  present when it is connected to a coherent interconnect.
494
495	  If the processor is executing a load and store exclusive sequence at
496	  the same time as a processor in another cluster is executing a cache
497	  maintenance operation to the same address, then this erratum might
498	  cause data corruption.
499
500	  The workaround promotes data cache clean instructions to
501	  data cache clean-and-invalidate.
502	  Please note that this does not necessarily enable the workaround,
503	  as it depends on the alternative framework, which will only patch
504	  the kernel if an affected CPU is detected.
505
506	  If unsure, say Y.
507
508config ARM64_ERRATUM_832075
509	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
510	default y
511	help
512	  This option adds an alternative code sequence to work around ARM
513	  erratum 832075 on Cortex-A57 parts up to r1p2.
514
515	  Affected Cortex-A57 parts might deadlock when exclusive load/store
516	  instructions to Write-Back memory are mixed with Device loads.
517
518	  The workaround is to promote device loads to use Load-Acquire
519	  semantics.
520	  Please note that this does not necessarily enable the workaround,
521	  as it depends on the alternative framework, which will only patch
522	  the kernel if an affected CPU is detected.
523
524	  If unsure, say Y.
525
526config ARM64_ERRATUM_834220
527	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
528	depends on KVM
529	default y
530	help
531	  This option adds an alternative code sequence to work around ARM
532	  erratum 834220 on Cortex-A57 parts up to r1p2.
533
534	  Affected Cortex-A57 parts might report a Stage 2 translation
535	  fault as the result of a Stage 1 fault for load crossing a
536	  page boundary when there is a permission or device memory
537	  alignment fault at Stage 1 and a translation fault at Stage 2.
538
539	  The workaround is to verify that the Stage 1 translation
540	  doesn't generate a fault before handling the Stage 2 fault.
541	  Please note that this does not necessarily enable the workaround,
542	  as it depends on the alternative framework, which will only patch
543	  the kernel if an affected CPU is detected.
544
545	  If unsure, say Y.
546
547config ARM64_ERRATUM_1742098
548	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
549	depends on COMPAT
550	default y
551	help
552	  This option removes the AES hwcap for aarch32 user-space to
553	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
554
555	  Affected parts may corrupt the AES state if an interrupt is
556	  taken between a pair of AES instructions. These instructions
557	  are only present if the cryptography extensions are present.
558	  All software should have a fallback implementation for CPUs
559	  that don't implement the cryptography extensions.
560
561	  If unsure, say Y.
562
563config ARM64_ERRATUM_845719
564	bool "Cortex-A53: 845719: a load might read incorrect data"
565	depends on COMPAT
566	default y
567	help
568	  This option adds an alternative code sequence to work around ARM
569	  erratum 845719 on Cortex-A53 parts up to r0p4.
570
571	  When running a compat (AArch32) userspace on an affected Cortex-A53
572	  part, a load at EL0 from a virtual address that matches the bottom 32
573	  bits of the virtual address used by a recent load at (AArch64) EL1
574	  might return incorrect data.
575
576	  The workaround is to write the contextidr_el1 register on exception
577	  return to a 32-bit task.
578	  Please note that this does not necessarily enable the workaround,
579	  as it depends on the alternative framework, which will only patch
580	  the kernel if an affected CPU is detected.
581
582	  If unsure, say Y.
583
584config ARM64_ERRATUM_843419
585	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
586	default y
587	help
588	  This option links the kernel with '--fix-cortex-a53-843419' and
589	  enables PLT support to replace certain ADRP instructions, which can
590	  cause subsequent memory accesses to use an incorrect address on
591	  Cortex-A53 parts up to r0p4.
592
593	  If unsure, say Y.
594
595config ARM64_LD_HAS_FIX_ERRATUM_843419
596	def_bool $(ld-option,--fix-cortex-a53-843419)
597
598config ARM64_ERRATUM_1024718
599	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
600	default y
601	help
602	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
603
604	  Affected Cortex-A55 cores (all revisions) could cause incorrect
605	  update of the hardware dirty bit when the DBM/AP bits are updated
606	  without a break-before-make. The workaround is to disable the usage
607	  of hardware DBM locally on the affected cores. CPUs not affected by
608	  this erratum will continue to use the feature.
609
610	  If unsure, say Y.
611
612config ARM64_ERRATUM_1418040
613	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
614	default y
615	depends on COMPAT
616	help
617	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
618	  errata 1188873 and 1418040.
619
620	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
621	  cause register corruption when accessing the timer registers
622	  from AArch32 userspace.
623
624	  If unsure, say Y.
625
626config ARM64_WORKAROUND_SPECULATIVE_AT
627	bool
628
629config ARM64_ERRATUM_1165522
630	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
631	default y
632	select ARM64_WORKAROUND_SPECULATIVE_AT
633	help
634	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
635
636	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
637	  corrupted TLBs by speculating an AT instruction during a guest
638	  context switch.
639
640	  If unsure, say Y.
641
642config ARM64_ERRATUM_1319367
643	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
644	default y
645	select ARM64_WORKAROUND_SPECULATIVE_AT
646	help
647	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
648	  and A72 erratum 1319367
649
650	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
651	  speculating an AT instruction during a guest context switch.
652
653	  If unsure, say Y.
654
655config ARM64_ERRATUM_1530923
656	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
657	default y
658	select ARM64_WORKAROUND_SPECULATIVE_AT
659	help
660	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
661
662	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
663	  corrupted TLBs by speculating an AT instruction during a guest
664	  context switch.
665
666	  If unsure, say Y.
667
668config ARM64_WORKAROUND_REPEAT_TLBI
669	bool
670
671config ARM64_ERRATUM_2441007
672	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
673	default y
674	select ARM64_WORKAROUND_REPEAT_TLBI
675	help
676	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
677
678	  Under very rare circumstances, affected Cortex-A55 CPUs
679	  may not handle a race between a break-before-make sequence on one
680	  CPU, and another CPU accessing the same page. This could allow a
681	  store to a page that has been unmapped.
682
683	  Work around this by adding the affected CPUs to the list that needs
684	  TLB sequences to be done twice.
685
686	  If unsure, say Y.
687
688config ARM64_ERRATUM_1286807
689	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
690	default y
691	select ARM64_WORKAROUND_REPEAT_TLBI
692	help
693	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
694
695	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
696	  address for a cacheable mapping of a location is being
697	  accessed by a core while another core is remapping the virtual
698	  address to a new physical page using the recommended
699	  break-before-make sequence, then under very rare circumstances
700	  TLBI+DSB completes before a read using the translation being
701	  invalidated has been observed by other observers. The
702	  workaround repeats the TLBI+DSB operation.
703
704config ARM64_ERRATUM_1463225
705	bool "Cortex-A76: Software Step might prevent interrupt recognition"
706	default y
707	help
708	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
709
710	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
711	  of a system call instruction (SVC) can prevent recognition of
712	  subsequent interrupts when software stepping is disabled in the
713	  exception handler of the system call and either kernel debugging
714	  is enabled or VHE is in use.
715
716	  Work around the erratum by triggering a dummy step exception
717	  when handling a system call from a task that is being stepped
718	  in a VHE configuration of the kernel.
719
720	  If unsure, say Y.
721
722config ARM64_ERRATUM_1542419
723	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
724	default y
725	help
726	  This option adds a workaround for ARM Neoverse-N1 erratum
727	  1542419.
728
729	  Affected Neoverse-N1 cores could execute a stale instruction when
730	  modified by another CPU. The workaround depends on a firmware
731	  counterpart.
732
733	  Workaround the issue by hiding the DIC feature from EL0. This
734	  forces user-space to perform cache maintenance.
735
736	  If unsure, say Y.
737
738config ARM64_ERRATUM_1508412
739	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
740	default y
741	help
742	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
743
744	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
745	  of a store-exclusive or read of PAR_EL1 and a load with device or
746	  non-cacheable memory attributes. The workaround depends on a firmware
747	  counterpart.
748
749	  KVM guests must also have the workaround implemented or they can
750	  deadlock the system.
751
752	  Work around the issue by inserting DMB SY barriers around PAR_EL1
753	  register reads and warning KVM users. The DMB barrier is sufficient
754	  to prevent a speculative PAR_EL1 read.
755
756	  If unsure, say Y.
757
758config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
759	bool
760
761config ARM64_ERRATUM_2051678
762	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
763	default y
764	help
765	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
766	  Affected Cortex-A510 might not respect the ordering rules for
767	  hardware update of the page table's dirty bit. The workaround
768	  is to not enable the feature on affected CPUs.
769
770	  If unsure, say Y.
771
772config ARM64_ERRATUM_2077057
773	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
774	default y
775	help
776	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
777	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
778	  expected, but a Pointer Authentication trap is taken instead. The
779	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
780	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
781
782	  This can only happen when EL2 is stepping EL1.
783
784	  When these conditions occur, the SPSR_EL2 value is unchanged from the
785	  previous guest entry, and can be restored from the in-memory copy.
786
787	  If unsure, say Y.
788
789config ARM64_ERRATUM_2658417
790	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
791	default y
792	help
793	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
794	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
795	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
796	  A510 CPUs are using shared neon hardware. As the sharing is not
797	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
798	  user-space should not be using these instructions.
799
800	  If unsure, say Y.
801
802config ARM64_ERRATUM_2119858
803	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
804	default y
805	depends on CORESIGHT_TRBE
806	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
807	help
808	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
809
810	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
811	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
812	  the event of a WRAP event.
813
814	  Work around the issue by always making sure we move the TRBPTR_EL1 by
815	  256 bytes before enabling the buffer and filling the first 256 bytes of
816	  the buffer with ETM ignore packets upon disabling.
817
818	  If unsure, say Y.
819
820config ARM64_ERRATUM_2139208
821	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
822	default y
823	depends on CORESIGHT_TRBE
824	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
825	help
826	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
827
828	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
829	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
830	  the event of a WRAP event.
831
832	  Work around the issue by always making sure we move the TRBPTR_EL1 by
833	  256 bytes before enabling the buffer and filling the first 256 bytes of
834	  the buffer with ETM ignore packets upon disabling.
835
836	  If unsure, say Y.
837
838config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
839	bool
840
841config ARM64_ERRATUM_2054223
842	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
843	default y
844	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
845	help
846	  Enable workaround for ARM Cortex-A710 erratum 2054223
847
848	  Affected cores may fail to flush the trace data on a TSB instruction, when
849	  the PE is in trace prohibited state. This will cause losing a few bytes
850	  of the trace cached.
851
852	  Workaround is to issue two TSB consecutively on affected cores.
853
854	  If unsure, say Y.
855
856config ARM64_ERRATUM_2067961
857	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
858	default y
859	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
860	help
861	  Enable workaround for ARM Neoverse-N2 erratum 2067961
862
863	  Affected cores may fail to flush the trace data on a TSB instruction, when
864	  the PE is in trace prohibited state. This will cause losing a few bytes
865	  of the trace cached.
866
867	  Workaround is to issue two TSB consecutively on affected cores.
868
869	  If unsure, say Y.
870
871config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
872	bool
873
874config ARM64_ERRATUM_2253138
875	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
876	depends on CORESIGHT_TRBE
877	default y
878	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
879	help
880	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
881
882	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
883	  for TRBE. Under some conditions, the TRBE might generate a write to the next
884	  virtually addressed page following the last page of the TRBE address space
885	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
886
887	  Work around this in the driver by always making sure that there is a
888	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
889
890	  If unsure, say Y.
891
892config ARM64_ERRATUM_2224489
893	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
894	depends on CORESIGHT_TRBE
895	default y
896	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
897	help
898	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
899
900	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
901	  for TRBE. Under some conditions, the TRBE might generate a write to the next
902	  virtually addressed page following the last page of the TRBE address space
903	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
904
905	  Work around this in the driver by always making sure that there is a
906	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
907
908	  If unsure, say Y.
909
910config ARM64_ERRATUM_2441009
911	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
912	default y
913	select ARM64_WORKAROUND_REPEAT_TLBI
914	help
915	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
916
917	  Under very rare circumstances, affected Cortex-A510 CPUs
918	  may not handle a race between a break-before-make sequence on one
919	  CPU, and another CPU accessing the same page. This could allow a
920	  store to a page that has been unmapped.
921
922	  Work around this by adding the affected CPUs to the list that needs
923	  TLB sequences to be done twice.
924
925	  If unsure, say Y.
926
927config ARM64_ERRATUM_2064142
928	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
929	depends on CORESIGHT_TRBE
930	default y
931	help
932	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
933
934	  Affected Cortex-A510 core might fail to write into system registers after the
935	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
936	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
937	  and TRBTRG_EL1 will be ignored and will not be effected.
938
939	  Work around this in the driver by executing TSB CSYNC and DSB after collection
940	  is stopped and before performing a system register write to one of the affected
941	  registers.
942
943	  If unsure, say Y.
944
945config ARM64_ERRATUM_2038923
946	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
947	depends on CORESIGHT_TRBE
948	default y
949	help
950	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
951
952	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
953	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
954	  might be corrupted. This happens after TRBE buffer has been enabled by setting
955	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
956	  execution changes from a context, in which trace is prohibited to one where it
957	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
958	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
959	  the trace buffer state might be corrupted.
960
961	  Work around this in the driver by preventing an inconsistent view of whether the
962	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
963	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
964	  two ISB instructions if no ERET is to take place.
965
966	  If unsure, say Y.
967
968config ARM64_ERRATUM_1902691
969	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
970	depends on CORESIGHT_TRBE
971	default y
972	help
973	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
974
975	  Affected Cortex-A510 core might cause trace data corruption, when being written
976	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
977	  trace data.
978
979	  Work around this problem in the driver by just preventing TRBE initialization on
980	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
981	  on such implementations. This will cover the kernel for any firmware that doesn't
982	  do this already.
983
984	  If unsure, say Y.
985
986config ARM64_ERRATUM_2457168
987	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
988	depends on ARM64_AMU_EXTN
989	default y
990	help
991	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
992
993	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
994	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
995	  incorrectly giving a significantly higher output value.
996
997	  Work around this problem by returning 0 when reading the affected counter in
998	  key locations that results in disabling all users of this counter. This effect
999	  is the same to firmware disabling affected counters.
1000
1001	  If unsure, say Y.
1002
1003config ARM64_ERRATUM_2645198
1004	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1005	default y
1006	help
1007	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1008
1009	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1010	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1011	  next instruction abort caused by permission fault.
1012
1013	  Only user-space does executable to non-executable permission transition via
1014	  mprotect() system call. Workaround the problem by doing a break-before-make
1015	  TLB invalidation, for all changes to executable user space mappings.
1016
1017	  If unsure, say Y.
1018
1019config CAVIUM_ERRATUM_22375
1020	bool "Cavium erratum 22375, 24313"
1021	default y
1022	help
1023	  Enable workaround for errata 22375 and 24313.
1024
1025	  This implements two gicv3-its errata workarounds for ThunderX. Both
1026	  with a small impact affecting only ITS table allocation.
1027
1028	    erratum 22375: only alloc 8MB table size
1029	    erratum 24313: ignore memory access type
1030
1031	  The fixes are in ITS initialization and basically ignore memory access
1032	  type and table size provided by the TYPER and BASER registers.
1033
1034	  If unsure, say Y.
1035
1036config CAVIUM_ERRATUM_23144
1037	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1038	depends on NUMA
1039	default y
1040	help
1041	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1042
1043	  If unsure, say Y.
1044
1045config CAVIUM_ERRATUM_23154
1046	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1047	default y
1048	help
1049	  The ThunderX GICv3 implementation requires a modified version for
1050	  reading the IAR status to ensure data synchronization
1051	  (access to icc_iar1_el1 is not sync'ed before and after).
1052
1053	  It also suffers from erratum 38545 (also present on Marvell's
1054	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1055	  spuriously presented to the CPU interface.
1056
1057	  If unsure, say Y.
1058
1059config CAVIUM_ERRATUM_27456
1060	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1061	default y
1062	help
1063	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1064	  instructions may cause the icache to become corrupted if it
1065	  contains data for a non-current ASID.  The fix is to
1066	  invalidate the icache when changing the mm context.
1067
1068	  If unsure, say Y.
1069
1070config CAVIUM_ERRATUM_30115
1071	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1072	default y
1073	help
1074	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1075	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1076	  interrupts in host. Trapping both GICv3 group-0 and group-1
1077	  accesses sidesteps the issue.
1078
1079	  If unsure, say Y.
1080
1081config CAVIUM_TX2_ERRATUM_219
1082	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1083	default y
1084	help
1085	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1086	  TTBR update and the corresponding context synchronizing operation can
1087	  cause a spurious Data Abort to be delivered to any hardware thread in
1088	  the CPU core.
1089
1090	  Work around the issue by avoiding the problematic code sequence and
1091	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1092	  trap handler performs the corresponding register access, skips the
1093	  instruction and ensures context synchronization by virtue of the
1094	  exception return.
1095
1096	  If unsure, say Y.
1097
1098config FUJITSU_ERRATUM_010001
1099	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1100	default y
1101	help
1102	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1103	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1104	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1105	  This fault occurs under a specific hardware condition when a
1106	  load/store instruction performs an address translation using:
1107	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1108	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1109	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1110	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1111
1112	  The workaround is to ensure these bits are clear in TCR_ELx.
1113	  The workaround only affects the Fujitsu-A64FX.
1114
1115	  If unsure, say Y.
1116
1117config HISILICON_ERRATUM_161600802
1118	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1119	default y
1120	help
1121	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1122	  when issued ITS commands such as VMOVP and VMAPP, and requires
1123	  a 128kB offset to be applied to the target address in this commands.
1124
1125	  If unsure, say Y.
1126
1127config QCOM_FALKOR_ERRATUM_1003
1128	bool "Falkor E1003: Incorrect translation due to ASID change"
1129	default y
1130	help
1131	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1132	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1133	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1134	  then only for entries in the walk cache, since the leaf translation
1135	  is unchanged. Work around the erratum by invalidating the walk cache
1136	  entries for the trampoline before entering the kernel proper.
1137
1138config QCOM_FALKOR_ERRATUM_1009
1139	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1140	default y
1141	select ARM64_WORKAROUND_REPEAT_TLBI
1142	help
1143	  On Falkor v1, the CPU may prematurely complete a DSB following a
1144	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1145	  one more time to fix the issue.
1146
1147	  If unsure, say Y.
1148
1149config QCOM_QDF2400_ERRATUM_0065
1150	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1151	default y
1152	help
1153	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1154	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1155	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1156
1157	  If unsure, say Y.
1158
1159config QCOM_FALKOR_ERRATUM_E1041
1160	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1161	default y
1162	help
1163	  Falkor CPU may speculatively fetch instructions from an improper
1164	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1165	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1166
1167	  If unsure, say Y.
1168
1169config NVIDIA_CARMEL_CNP_ERRATUM
1170	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1171	default y
1172	help
1173	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1174	  invalidate shared TLB entries installed by a different core, as it would
1175	  on standard ARM cores.
1176
1177	  If unsure, say Y.
1178
1179config ROCKCHIP_ERRATUM_3588001
1180	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1181	default y
1182	help
1183	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1184	  This means, that its sharability feature may not be used, even though it
1185	  is supported by the IP itself.
1186
1187	  If unsure, say Y.
1188
1189config SOCIONEXT_SYNQUACER_PREITS
1190	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1191	default y
1192	help
1193	  Socionext Synquacer SoCs implement a separate h/w block to generate
1194	  MSI doorbell writes with non-zero values for the device ID.
1195
1196	  If unsure, say Y.
1197
1198endmenu # "ARM errata workarounds via the alternatives framework"
1199
1200choice
1201	prompt "Page size"
1202	default ARM64_4K_PAGES
1203	help
1204	  Page size (translation granule) configuration.
1205
1206config ARM64_4K_PAGES
1207	bool "4KB"
1208	help
1209	  This feature enables 4KB pages support.
1210
1211config ARM64_16K_PAGES
1212	bool "16KB"
1213	help
1214	  The system will use 16KB pages support. AArch32 emulation
1215	  requires applications compiled with 16K (or a multiple of 16K)
1216	  aligned segments.
1217
1218config ARM64_64K_PAGES
1219	bool "64KB"
1220	help
1221	  This feature enables 64KB pages support (4KB by default)
1222	  allowing only two levels of page tables and faster TLB
1223	  look-up. AArch32 emulation requires applications compiled
1224	  with 64K aligned segments.
1225
1226endchoice
1227
1228choice
1229	prompt "Virtual address space size"
1230	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1231	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1232	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1233	help
1234	  Allows choosing one of multiple possible virtual address
1235	  space sizes. The level of translation table is determined by
1236	  a combination of page size and virtual address space size.
1237
1238config ARM64_VA_BITS_36
1239	bool "36-bit" if EXPERT
1240	depends on ARM64_16K_PAGES
1241
1242config ARM64_VA_BITS_39
1243	bool "39-bit"
1244	depends on ARM64_4K_PAGES
1245
1246config ARM64_VA_BITS_42
1247	bool "42-bit"
1248	depends on ARM64_64K_PAGES
1249
1250config ARM64_VA_BITS_47
1251	bool "47-bit"
1252	depends on ARM64_16K_PAGES
1253
1254config ARM64_VA_BITS_48
1255	bool "48-bit"
1256
1257config ARM64_VA_BITS_52
1258	bool "52-bit"
1259	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1260	help
1261	  Enable 52-bit virtual addressing for userspace when explicitly
1262	  requested via a hint to mmap(). The kernel will also use 52-bit
1263	  virtual addresses for its own mappings (provided HW support for
1264	  this feature is available, otherwise it reverts to 48-bit).
1265
1266	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1267	  ARMv8.3 Pointer Authentication will result in the PAC being
1268	  reduced from 7 bits to 3 bits, which may have a significant
1269	  impact on its susceptibility to brute-force attacks.
1270
1271	  If unsure, select 48-bit virtual addressing instead.
1272
1273endchoice
1274
1275config ARM64_FORCE_52BIT
1276	bool "Force 52-bit virtual addresses for userspace"
1277	depends on ARM64_VA_BITS_52 && EXPERT
1278	help
1279	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1280	  to maintain compatibility with older software by providing 48-bit VAs
1281	  unless a hint is supplied to mmap.
1282
1283	  This configuration option disables the 48-bit compatibility logic, and
1284	  forces all userspace addresses to be 52-bit on HW that supports it. One
1285	  should only enable this configuration option for stress testing userspace
1286	  memory management code. If unsure say N here.
1287
1288config ARM64_VA_BITS
1289	int
1290	default 36 if ARM64_VA_BITS_36
1291	default 39 if ARM64_VA_BITS_39
1292	default 42 if ARM64_VA_BITS_42
1293	default 47 if ARM64_VA_BITS_47
1294	default 48 if ARM64_VA_BITS_48
1295	default 52 if ARM64_VA_BITS_52
1296
1297choice
1298	prompt "Physical address space size"
1299	default ARM64_PA_BITS_48
1300	help
1301	  Choose the maximum physical address range that the kernel will
1302	  support.
1303
1304config ARM64_PA_BITS_48
1305	bool "48-bit"
1306
1307config ARM64_PA_BITS_52
1308	bool "52-bit (ARMv8.2)"
1309	depends on ARM64_64K_PAGES
1310	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1311	help
1312	  Enable support for a 52-bit physical address space, introduced as
1313	  part of the ARMv8.2-LPA extension.
1314
1315	  With this enabled, the kernel will also continue to work on CPUs that
1316	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1317	  minor performance overhead).
1318
1319endchoice
1320
1321config ARM64_PA_BITS
1322	int
1323	default 48 if ARM64_PA_BITS_48
1324	default 52 if ARM64_PA_BITS_52
1325
1326choice
1327	prompt "Endianness"
1328	default CPU_LITTLE_ENDIAN
1329	help
1330	  Select the endianness of data accesses performed by the CPU. Userspace
1331	  applications will need to be compiled and linked for the endianness
1332	  that is selected here.
1333
1334config CPU_BIG_ENDIAN
1335	bool "Build big-endian kernel"
1336	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1337	help
1338	  Say Y if you plan on running a kernel with a big-endian userspace.
1339
1340config CPU_LITTLE_ENDIAN
1341	bool "Build little-endian kernel"
1342	help
1343	  Say Y if you plan on running a kernel with a little-endian userspace.
1344	  This is usually the case for distributions targeting arm64.
1345
1346endchoice
1347
1348config SCHED_MC
1349	bool "Multi-core scheduler support"
1350	help
1351	  Multi-core scheduler support improves the CPU scheduler's decision
1352	  making when dealing with multi-core CPU chips at a cost of slightly
1353	  increased overhead in some places. If unsure say N here.
1354
1355config SCHED_CLUSTER
1356	bool "Cluster scheduler support"
1357	help
1358	  Cluster scheduler support improves the CPU scheduler's decision
1359	  making when dealing with machines that have clusters of CPUs.
1360	  Cluster usually means a couple of CPUs which are placed closely
1361	  by sharing mid-level caches, last-level cache tags or internal
1362	  busses.
1363
1364config SCHED_SMT
1365	bool "SMT scheduler support"
1366	help
1367	  Improves the CPU scheduler's decision making when dealing with
1368	  MultiThreading at a cost of slightly increased overhead in some
1369	  places. If unsure say N here.
1370
1371config NR_CPUS
1372	int "Maximum number of CPUs (2-4096)"
1373	range 2 4096
1374	default "256"
1375
1376config HOTPLUG_CPU
1377	bool "Support for hot-pluggable CPUs"
1378	select GENERIC_IRQ_MIGRATION
1379	help
1380	  Say Y here to experiment with turning CPUs off and on.  CPUs
1381	  can be controlled through /sys/devices/system/cpu.
1382
1383# Common NUMA Features
1384config NUMA
1385	bool "NUMA Memory Allocation and Scheduler Support"
1386	select GENERIC_ARCH_NUMA
1387	select ACPI_NUMA if ACPI
1388	select OF_NUMA
1389	select HAVE_SETUP_PER_CPU_AREA
1390	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1391	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1392	select USE_PERCPU_NUMA_NODE_ID
1393	help
1394	  Enable NUMA (Non-Uniform Memory Access) support.
1395
1396	  The kernel will try to allocate memory used by a CPU on the
1397	  local memory of the CPU and add some more
1398	  NUMA awareness to the kernel.
1399
1400config NODES_SHIFT
1401	int "Maximum NUMA Nodes (as a power of 2)"
1402	range 1 10
1403	default "4"
1404	depends on NUMA
1405	help
1406	  Specify the maximum number of NUMA Nodes available on the target
1407	  system.  Increases memory reserved to accommodate various tables.
1408
1409source "kernel/Kconfig.hz"
1410
1411config ARCH_SPARSEMEM_ENABLE
1412	def_bool y
1413	select SPARSEMEM_VMEMMAP_ENABLE
1414	select SPARSEMEM_VMEMMAP
1415
1416config HW_PERF_EVENTS
1417	def_bool y
1418	depends on ARM_PMU
1419
1420# Supported by clang >= 7.0 or GCC >= 12.0.0
1421config CC_HAVE_SHADOW_CALL_STACK
1422	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1423
1424config PARAVIRT
1425	bool "Enable paravirtualization code"
1426	help
1427	  This changes the kernel so it can modify itself when it is run
1428	  under a hypervisor, potentially improving performance significantly
1429	  over full virtualization.
1430
1431config PARAVIRT_TIME_ACCOUNTING
1432	bool "Paravirtual steal time accounting"
1433	select PARAVIRT
1434	help
1435	  Select this option to enable fine granularity task steal time
1436	  accounting. Time spent executing other tasks in parallel with
1437	  the current vCPU is discounted from the vCPU power. To account for
1438	  that, there can be a small performance impact.
1439
1440	  If in doubt, say N here.
1441
1442config KEXEC
1443	depends on PM_SLEEP_SMP
1444	select KEXEC_CORE
1445	bool "kexec system call"
1446	help
1447	  kexec is a system call that implements the ability to shutdown your
1448	  current kernel, and to start another kernel.  It is like a reboot
1449	  but it is independent of the system firmware.   And like a reboot
1450	  you can start any kernel with it, not just Linux.
1451
1452config KEXEC_FILE
1453	bool "kexec file based system call"
1454	select KEXEC_CORE
1455	select HAVE_IMA_KEXEC if IMA
1456	help
1457	  This is new version of kexec system call. This system call is
1458	  file based and takes file descriptors as system call argument
1459	  for kernel and initramfs as opposed to list of segments as
1460	  accepted by previous system call.
1461
1462config KEXEC_SIG
1463	bool "Verify kernel signature during kexec_file_load() syscall"
1464	depends on KEXEC_FILE
1465	help
1466	  Select this option to verify a signature with loaded kernel
1467	  image. If configured, any attempt of loading a image without
1468	  valid signature will fail.
1469
1470	  In addition to that option, you need to enable signature
1471	  verification for the corresponding kernel image type being
1472	  loaded in order for this to work.
1473
1474config KEXEC_IMAGE_VERIFY_SIG
1475	bool "Enable Image signature verification support"
1476	default y
1477	depends on KEXEC_SIG
1478	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1479	help
1480	  Enable Image signature verification support.
1481
1482comment "Support for PE file signature verification disabled"
1483	depends on KEXEC_SIG
1484	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1485
1486config CRASH_DUMP
1487	bool "Build kdump crash kernel"
1488	help
1489	  Generate crash dump after being started by kexec. This should
1490	  be normally only set in special crash dump kernels which are
1491	  loaded in the main kernel with kexec-tools into a specially
1492	  reserved region and then later executed after a crash by
1493	  kdump/kexec.
1494
1495	  For more details see Documentation/admin-guide/kdump/kdump.rst
1496
1497config TRANS_TABLE
1498	def_bool y
1499	depends on HIBERNATION || KEXEC_CORE
1500
1501config XEN_DOM0
1502	def_bool y
1503	depends on XEN
1504
1505config XEN
1506	bool "Xen guest support on ARM64"
1507	depends on ARM64 && OF
1508	select SWIOTLB_XEN
1509	select PARAVIRT
1510	help
1511	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1512
1513# include/linux/mmzone.h requires the following to be true:
1514#
1515#   MAX_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1516#
1517# so the maximum value of MAX_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1518#
1519#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_ORDER  |  default MAX_ORDER |
1520# ----+-------------------+--------------+-----------------+--------------------+
1521# 4K  |       27          |      12      |       15        |         10         |
1522# 16K |       27          |      14      |       13        |         11         |
1523# 64K |       29          |      16      |       13        |         13         |
1524config ARCH_FORCE_MAX_ORDER
1525	int
1526	default "13" if ARM64_64K_PAGES
1527	default "11" if ARM64_16K_PAGES
1528	default "10"
1529	help
1530	  The kernel page allocator limits the size of maximal physically
1531	  contiguous allocations. The limit is called MAX_ORDER and it
1532	  defines the maximal power of two of number of pages that can be
1533	  allocated as a single contiguous block. This option allows
1534	  overriding the default setting when ability to allocate very
1535	  large blocks of physically contiguous memory is required.
1536
1537	  The maximal size of allocation cannot exceed the size of the
1538	  section, so the value of MAX_ORDER should satisfy
1539
1540	    MAX_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1541
1542	  Don't change if unsure.
1543
1544config UNMAP_KERNEL_AT_EL0
1545	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1546	default y
1547	help
1548	  Speculation attacks against some high-performance processors can
1549	  be used to bypass MMU permission checks and leak kernel data to
1550	  userspace. This can be defended against by unmapping the kernel
1551	  when running in userspace, mapping it back in on exception entry
1552	  via a trampoline page in the vector table.
1553
1554	  If unsure, say Y.
1555
1556config MITIGATE_SPECTRE_BRANCH_HISTORY
1557	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1558	default y
1559	help
1560	  Speculation attacks against some high-performance processors can
1561	  make use of branch history to influence future speculation.
1562	  When taking an exception from user-space, a sequence of branches
1563	  or a firmware call overwrites the branch history.
1564
1565config RODATA_FULL_DEFAULT_ENABLED
1566	bool "Apply r/o permissions of VM areas also to their linear aliases"
1567	default y
1568	help
1569	  Apply read-only attributes of VM areas to the linear alias of
1570	  the backing pages as well. This prevents code or read-only data
1571	  from being modified (inadvertently or intentionally) via another
1572	  mapping of the same memory page. This additional enhancement can
1573	  be turned off at runtime by passing rodata=[off|on] (and turned on
1574	  with rodata=full if this option is set to 'n')
1575
1576	  This requires the linear region to be mapped down to pages,
1577	  which may adversely affect performance in some cases.
1578
1579config ARM64_SW_TTBR0_PAN
1580	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1581	help
1582	  Enabling this option prevents the kernel from accessing
1583	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1584	  zeroed area and reserved ASID. The user access routines
1585	  restore the valid TTBR0_EL1 temporarily.
1586
1587config ARM64_TAGGED_ADDR_ABI
1588	bool "Enable the tagged user addresses syscall ABI"
1589	default y
1590	help
1591	  When this option is enabled, user applications can opt in to a
1592	  relaxed ABI via prctl() allowing tagged addresses to be passed
1593	  to system calls as pointer arguments. For details, see
1594	  Documentation/arch/arm64/tagged-address-abi.rst.
1595
1596menuconfig COMPAT
1597	bool "Kernel support for 32-bit EL0"
1598	depends on ARM64_4K_PAGES || EXPERT
1599	select HAVE_UID16
1600	select OLD_SIGSUSPEND3
1601	select COMPAT_OLD_SIGACTION
1602	help
1603	  This option enables support for a 32-bit EL0 running under a 64-bit
1604	  kernel at EL1. AArch32-specific components such as system calls,
1605	  the user helper functions, VFP support and the ptrace interface are
1606	  handled appropriately by the kernel.
1607
1608	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1609	  that you will only be able to execute AArch32 binaries that were compiled
1610	  with page size aligned segments.
1611
1612	  If you want to execute 32-bit userspace applications, say Y.
1613
1614if COMPAT
1615
1616config KUSER_HELPERS
1617	bool "Enable kuser helpers page for 32-bit applications"
1618	default y
1619	help
1620	  Warning: disabling this option may break 32-bit user programs.
1621
1622	  Provide kuser helpers to compat tasks. The kernel provides
1623	  helper code to userspace in read only form at a fixed location
1624	  to allow userspace to be independent of the CPU type fitted to
1625	  the system. This permits binaries to be run on ARMv4 through
1626	  to ARMv8 without modification.
1627
1628	  See Documentation/arch/arm/kernel_user_helpers.rst for details.
1629
1630	  However, the fixed address nature of these helpers can be used
1631	  by ROP (return orientated programming) authors when creating
1632	  exploits.
1633
1634	  If all of the binaries and libraries which run on your platform
1635	  are built specifically for your platform, and make no use of
1636	  these helpers, then you can turn this option off to hinder
1637	  such exploits. However, in that case, if a binary or library
1638	  relying on those helpers is run, it will not function correctly.
1639
1640	  Say N here only if you are absolutely certain that you do not
1641	  need these helpers; otherwise, the safe option is to say Y.
1642
1643config COMPAT_VDSO
1644	bool "Enable vDSO for 32-bit applications"
1645	depends on !CPU_BIG_ENDIAN
1646	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1647	select GENERIC_COMPAT_VDSO
1648	default y
1649	help
1650	  Place in the process address space of 32-bit applications an
1651	  ELF shared object providing fast implementations of gettimeofday
1652	  and clock_gettime.
1653
1654	  You must have a 32-bit build of glibc 2.22 or later for programs
1655	  to seamlessly take advantage of this.
1656
1657config THUMB2_COMPAT_VDSO
1658	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1659	depends on COMPAT_VDSO
1660	default y
1661	help
1662	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1663	  otherwise with '-marm'.
1664
1665config COMPAT_ALIGNMENT_FIXUPS
1666	bool "Fix up misaligned multi-word loads and stores in user space"
1667
1668menuconfig ARMV8_DEPRECATED
1669	bool "Emulate deprecated/obsolete ARMv8 instructions"
1670	depends on SYSCTL
1671	help
1672	  Legacy software support may require certain instructions
1673	  that have been deprecated or obsoleted in the architecture.
1674
1675	  Enable this config to enable selective emulation of these
1676	  features.
1677
1678	  If unsure, say Y
1679
1680if ARMV8_DEPRECATED
1681
1682config SWP_EMULATION
1683	bool "Emulate SWP/SWPB instructions"
1684	help
1685	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1686	  they are always undefined. Say Y here to enable software
1687	  emulation of these instructions for userspace using LDXR/STXR.
1688	  This feature can be controlled at runtime with the abi.swp
1689	  sysctl which is disabled by default.
1690
1691	  In some older versions of glibc [<=2.8] SWP is used during futex
1692	  trylock() operations with the assumption that the code will not
1693	  be preempted. This invalid assumption may be more likely to fail
1694	  with SWP emulation enabled, leading to deadlock of the user
1695	  application.
1696
1697	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1698	  on an external transaction monitoring block called a global
1699	  monitor to maintain update atomicity. If your system does not
1700	  implement a global monitor, this option can cause programs that
1701	  perform SWP operations to uncached memory to deadlock.
1702
1703	  If unsure, say Y
1704
1705config CP15_BARRIER_EMULATION
1706	bool "Emulate CP15 Barrier instructions"
1707	help
1708	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1709	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1710	  strongly recommended to use the ISB, DSB, and DMB
1711	  instructions instead.
1712
1713	  Say Y here to enable software emulation of these
1714	  instructions for AArch32 userspace code. When this option is
1715	  enabled, CP15 barrier usage is traced which can help
1716	  identify software that needs updating. This feature can be
1717	  controlled at runtime with the abi.cp15_barrier sysctl.
1718
1719	  If unsure, say Y
1720
1721config SETEND_EMULATION
1722	bool "Emulate SETEND instruction"
1723	help
1724	  The SETEND instruction alters the data-endianness of the
1725	  AArch32 EL0, and is deprecated in ARMv8.
1726
1727	  Say Y here to enable software emulation of the instruction
1728	  for AArch32 userspace code. This feature can be controlled
1729	  at runtime with the abi.setend sysctl.
1730
1731	  Note: All the cpus on the system must have mixed endian support at EL0
1732	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1733	  endian - is hotplugged in after this feature has been enabled, there could
1734	  be unexpected results in the applications.
1735
1736	  If unsure, say Y
1737endif # ARMV8_DEPRECATED
1738
1739endif # COMPAT
1740
1741menu "ARMv8.1 architectural features"
1742
1743config ARM64_HW_AFDBM
1744	bool "Support for hardware updates of the Access and Dirty page flags"
1745	default y
1746	help
1747	  The ARMv8.1 architecture extensions introduce support for
1748	  hardware updates of the access and dirty information in page
1749	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1750	  capable processors, accesses to pages with PTE_AF cleared will
1751	  set this bit instead of raising an access flag fault.
1752	  Similarly, writes to read-only pages with the DBM bit set will
1753	  clear the read-only bit (AP[2]) instead of raising a
1754	  permission fault.
1755
1756	  Kernels built with this configuration option enabled continue
1757	  to work on pre-ARMv8.1 hardware and the performance impact is
1758	  minimal. If unsure, say Y.
1759
1760config ARM64_PAN
1761	bool "Enable support for Privileged Access Never (PAN)"
1762	default y
1763	help
1764	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1765	  prevents the kernel or hypervisor from accessing user-space (EL0)
1766	  memory directly.
1767
1768	  Choosing this option will cause any unprotected (not using
1769	  copy_to_user et al) memory access to fail with a permission fault.
1770
1771	  The feature is detected at runtime, and will remain as a 'nop'
1772	  instruction if the cpu does not implement the feature.
1773
1774config AS_HAS_LDAPR
1775	def_bool $(as-instr,.arch_extension rcpc)
1776
1777config AS_HAS_LSE_ATOMICS
1778	def_bool $(as-instr,.arch_extension lse)
1779
1780config ARM64_LSE_ATOMICS
1781	bool
1782	default ARM64_USE_LSE_ATOMICS
1783	depends on AS_HAS_LSE_ATOMICS
1784
1785config ARM64_USE_LSE_ATOMICS
1786	bool "Atomic instructions"
1787	default y
1788	help
1789	  As part of the Large System Extensions, ARMv8.1 introduces new
1790	  atomic instructions that are designed specifically to scale in
1791	  very large systems.
1792
1793	  Say Y here to make use of these instructions for the in-kernel
1794	  atomic routines. This incurs a small overhead on CPUs that do
1795	  not support these instructions and requires the kernel to be
1796	  built with binutils >= 2.25 in order for the new instructions
1797	  to be used.
1798
1799endmenu # "ARMv8.1 architectural features"
1800
1801menu "ARMv8.2 architectural features"
1802
1803config AS_HAS_ARMV8_2
1804	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1805
1806config AS_HAS_SHA3
1807	def_bool $(as-instr,.arch armv8.2-a+sha3)
1808
1809config ARM64_PMEM
1810	bool "Enable support for persistent memory"
1811	select ARCH_HAS_PMEM_API
1812	select ARCH_HAS_UACCESS_FLUSHCACHE
1813	help
1814	  Say Y to enable support for the persistent memory API based on the
1815	  ARMv8.2 DCPoP feature.
1816
1817	  The feature is detected at runtime, and the kernel will use DC CVAC
1818	  operations if DC CVAP is not supported (following the behaviour of
1819	  DC CVAP itself if the system does not define a point of persistence).
1820
1821config ARM64_RAS_EXTN
1822	bool "Enable support for RAS CPU Extensions"
1823	default y
1824	help
1825	  CPUs that support the Reliability, Availability and Serviceability
1826	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1827	  errors, classify them and report them to software.
1828
1829	  On CPUs with these extensions system software can use additional
1830	  barriers to determine if faults are pending and read the
1831	  classification from a new set of registers.
1832
1833	  Selecting this feature will allow the kernel to use these barriers
1834	  and access the new registers if the system supports the extension.
1835	  Platform RAS features may additionally depend on firmware support.
1836
1837config ARM64_CNP
1838	bool "Enable support for Common Not Private (CNP) translations"
1839	default y
1840	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1841	help
1842	  Common Not Private (CNP) allows translation table entries to
1843	  be shared between different PEs in the same inner shareable
1844	  domain, so the hardware can use this fact to optimise the
1845	  caching of such entries in the TLB.
1846
1847	  Selecting this option allows the CNP feature to be detected
1848	  at runtime, and does not affect PEs that do not implement
1849	  this feature.
1850
1851endmenu # "ARMv8.2 architectural features"
1852
1853menu "ARMv8.3 architectural features"
1854
1855config ARM64_PTR_AUTH
1856	bool "Enable support for pointer authentication"
1857	default y
1858	help
1859	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1860	  instructions for signing and authenticating pointers against secret
1861	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1862	  and other attacks.
1863
1864	  This option enables these instructions at EL0 (i.e. for userspace).
1865	  Choosing this option will cause the kernel to initialise secret keys
1866	  for each process at exec() time, with these keys being
1867	  context-switched along with the process.
1868
1869	  The feature is detected at runtime. If the feature is not present in
1870	  hardware it will not be advertised to userspace/KVM guest nor will it
1871	  be enabled.
1872
1873	  If the feature is present on the boot CPU but not on a late CPU, then
1874	  the late CPU will be parked. Also, if the boot CPU does not have
1875	  address auth and the late CPU has then the late CPU will still boot
1876	  but with the feature disabled. On such a system, this option should
1877	  not be selected.
1878
1879config ARM64_PTR_AUTH_KERNEL
1880	bool "Use pointer authentication for kernel"
1881	default y
1882	depends on ARM64_PTR_AUTH
1883	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1884	# Modern compilers insert a .note.gnu.property section note for PAC
1885	# which is only understood by binutils starting with version 2.33.1.
1886	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1887	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1888	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1889	help
1890	  If the compiler supports the -mbranch-protection or
1891	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1892	  will cause the kernel itself to be compiled with return address
1893	  protection. In this case, and if the target hardware is known to
1894	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1895	  disabled with minimal loss of protection.
1896
1897	  This feature works with FUNCTION_GRAPH_TRACER option only if
1898	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1899
1900config CC_HAS_BRANCH_PROT_PAC_RET
1901	# GCC 9 or later, clang 8 or later
1902	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1903
1904config CC_HAS_SIGN_RETURN_ADDRESS
1905	# GCC 7, 8
1906	def_bool $(cc-option,-msign-return-address=all)
1907
1908config AS_HAS_ARMV8_3
1909	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1910
1911config AS_HAS_CFI_NEGATE_RA_STATE
1912	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1913
1914endmenu # "ARMv8.3 architectural features"
1915
1916menu "ARMv8.4 architectural features"
1917
1918config ARM64_AMU_EXTN
1919	bool "Enable support for the Activity Monitors Unit CPU extension"
1920	default y
1921	help
1922	  The activity monitors extension is an optional extension introduced
1923	  by the ARMv8.4 CPU architecture. This enables support for version 1
1924	  of the activity monitors architecture, AMUv1.
1925
1926	  To enable the use of this extension on CPUs that implement it, say Y.
1927
1928	  Note that for architectural reasons, firmware _must_ implement AMU
1929	  support when running on CPUs that present the activity monitors
1930	  extension. The required support is present in:
1931	    * Version 1.5 and later of the ARM Trusted Firmware
1932
1933	  For kernels that have this configuration enabled but boot with broken
1934	  firmware, you may need to say N here until the firmware is fixed.
1935	  Otherwise you may experience firmware panics or lockups when
1936	  accessing the counter registers. Even if you are not observing these
1937	  symptoms, the values returned by the register reads might not
1938	  correctly reflect reality. Most commonly, the value read will be 0,
1939	  indicating that the counter is not enabled.
1940
1941config AS_HAS_ARMV8_4
1942	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1943
1944config ARM64_TLB_RANGE
1945	bool "Enable support for tlbi range feature"
1946	default y
1947	depends on AS_HAS_ARMV8_4
1948	help
1949	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1950	  range of input addresses.
1951
1952	  The feature introduces new assembly instructions, and they were
1953	  support when binutils >= 2.30.
1954
1955endmenu # "ARMv8.4 architectural features"
1956
1957menu "ARMv8.5 architectural features"
1958
1959config AS_HAS_ARMV8_5
1960	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1961
1962config ARM64_BTI
1963	bool "Branch Target Identification support"
1964	default y
1965	help
1966	  Branch Target Identification (part of the ARMv8.5 Extensions)
1967	  provides a mechanism to limit the set of locations to which computed
1968	  branch instructions such as BR or BLR can jump.
1969
1970	  To make use of BTI on CPUs that support it, say Y.
1971
1972	  BTI is intended to provide complementary protection to other control
1973	  flow integrity protection mechanisms, such as the Pointer
1974	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1975	  For this reason, it does not make sense to enable this option without
1976	  also enabling support for pointer authentication.  Thus, when
1977	  enabling this option you should also select ARM64_PTR_AUTH=y.
1978
1979	  Userspace binaries must also be specifically compiled to make use of
1980	  this mechanism.  If you say N here or the hardware does not support
1981	  BTI, such binaries can still run, but you get no additional
1982	  enforcement of branch destinations.
1983
1984config ARM64_BTI_KERNEL
1985	bool "Use Branch Target Identification for kernel"
1986	default y
1987	depends on ARM64_BTI
1988	depends on ARM64_PTR_AUTH_KERNEL
1989	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1990	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1991	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1992	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
1993	depends on !CC_IS_GCC
1994	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1995	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1996	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1997	help
1998	  Build the kernel with Branch Target Identification annotations
1999	  and enable enforcement of this for kernel code. When this option
2000	  is enabled and the system supports BTI all kernel code including
2001	  modular code must have BTI enabled.
2002
2003config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2004	# GCC 9 or later, clang 8 or later
2005	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2006
2007config ARM64_E0PD
2008	bool "Enable support for E0PD"
2009	default y
2010	help
2011	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2012	  that EL0 accesses made via TTBR1 always fault in constant time,
2013	  providing similar benefits to KASLR as those provided by KPTI, but
2014	  with lower overhead and without disrupting legitimate access to
2015	  kernel memory such as SPE.
2016
2017	  This option enables E0PD for TTBR1 where available.
2018
2019config ARM64_AS_HAS_MTE
2020	# Initial support for MTE went in binutils 2.32.0, checked with
2021	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2022	# as a late addition to the final architecture spec (LDGM/STGM)
2023	# is only supported in the newer 2.32.x and 2.33 binutils
2024	# versions, hence the extra "stgm" instruction check below.
2025	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2026
2027config ARM64_MTE
2028	bool "Memory Tagging Extension support"
2029	default y
2030	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2031	depends on AS_HAS_ARMV8_5
2032	depends on AS_HAS_LSE_ATOMICS
2033	# Required for tag checking in the uaccess routines
2034	depends on ARM64_PAN
2035	select ARCH_HAS_SUBPAGE_FAULTS
2036	select ARCH_USES_HIGH_VMA_FLAGS
2037	select ARCH_USES_PG_ARCH_X
2038	help
2039	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2040	  architectural support for run-time, always-on detection of
2041	  various classes of memory error to aid with software debugging
2042	  to eliminate vulnerabilities arising from memory-unsafe
2043	  languages.
2044
2045	  This option enables the support for the Memory Tagging
2046	  Extension at EL0 (i.e. for userspace).
2047
2048	  Selecting this option allows the feature to be detected at
2049	  runtime. Any secondary CPU not implementing this feature will
2050	  not be allowed a late bring-up.
2051
2052	  Userspace binaries that want to use this feature must
2053	  explicitly opt in. The mechanism for the userspace is
2054	  described in:
2055
2056	  Documentation/arch/arm64/memory-tagging-extension.rst.
2057
2058endmenu # "ARMv8.5 architectural features"
2059
2060menu "ARMv8.7 architectural features"
2061
2062config ARM64_EPAN
2063	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2064	default y
2065	depends on ARM64_PAN
2066	help
2067	  Enhanced Privileged Access Never (EPAN) allows Privileged
2068	  Access Never to be used with Execute-only mappings.
2069
2070	  The feature is detected at runtime, and will remain disabled
2071	  if the cpu does not implement the feature.
2072endmenu # "ARMv8.7 architectural features"
2073
2074config ARM64_SVE
2075	bool "ARM Scalable Vector Extension support"
2076	default y
2077	help
2078	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2079	  execution state which complements and extends the SIMD functionality
2080	  of the base architecture to support much larger vectors and to enable
2081	  additional vectorisation opportunities.
2082
2083	  To enable use of this extension on CPUs that implement it, say Y.
2084
2085	  On CPUs that support the SVE2 extensions, this option will enable
2086	  those too.
2087
2088	  Note that for architectural reasons, firmware _must_ implement SVE
2089	  support when running on SVE capable hardware.  The required support
2090	  is present in:
2091
2092	    * version 1.5 and later of the ARM Trusted Firmware
2093	    * the AArch64 boot wrapper since commit 5e1261e08abf
2094	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2095
2096	  For other firmware implementations, consult the firmware documentation
2097	  or vendor.
2098
2099	  If you need the kernel to boot on SVE-capable hardware with broken
2100	  firmware, you may need to say N here until you get your firmware
2101	  fixed.  Otherwise, you may experience firmware panics or lockups when
2102	  booting the kernel.  If unsure and you are not observing these
2103	  symptoms, you should assume that it is safe to say Y.
2104
2105config ARM64_SME
2106	bool "ARM Scalable Matrix Extension support"
2107	default y
2108	depends on ARM64_SVE
2109	help
2110	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2111	  execution state which utilises a substantial subset of the SVE
2112	  instruction set, together with the addition of new architectural
2113	  register state capable of holding two dimensional matrix tiles to
2114	  enable various matrix operations.
2115
2116config ARM64_PSEUDO_NMI
2117	bool "Support for NMI-like interrupts"
2118	select ARM_GIC_V3
2119	help
2120	  Adds support for mimicking Non-Maskable Interrupts through the use of
2121	  GIC interrupt priority. This support requires version 3 or later of
2122	  ARM GIC.
2123
2124	  This high priority configuration for interrupts needs to be
2125	  explicitly enabled by setting the kernel parameter
2126	  "irqchip.gicv3_pseudo_nmi" to 1.
2127
2128	  If unsure, say N
2129
2130if ARM64_PSEUDO_NMI
2131config ARM64_DEBUG_PRIORITY_MASKING
2132	bool "Debug interrupt priority masking"
2133	help
2134	  This adds runtime checks to functions enabling/disabling
2135	  interrupts when using priority masking. The additional checks verify
2136	  the validity of ICC_PMR_EL1 when calling concerned functions.
2137
2138	  If unsure, say N
2139endif # ARM64_PSEUDO_NMI
2140
2141config RELOCATABLE
2142	bool "Build a relocatable kernel image" if EXPERT
2143	select ARCH_HAS_RELR
2144	default y
2145	help
2146	  This builds the kernel as a Position Independent Executable (PIE),
2147	  which retains all relocation metadata required to relocate the
2148	  kernel binary at runtime to a different virtual address than the
2149	  address it was linked at.
2150	  Since AArch64 uses the RELA relocation format, this requires a
2151	  relocation pass at runtime even if the kernel is loaded at the
2152	  same address it was linked at.
2153
2154config RANDOMIZE_BASE
2155	bool "Randomize the address of the kernel image"
2156	select RELOCATABLE
2157	help
2158	  Randomizes the virtual address at which the kernel image is
2159	  loaded, as a security feature that deters exploit attempts
2160	  relying on knowledge of the location of kernel internals.
2161
2162	  It is the bootloader's job to provide entropy, by passing a
2163	  random u64 value in /chosen/kaslr-seed at kernel entry.
2164
2165	  When booting via the UEFI stub, it will invoke the firmware's
2166	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2167	  to the kernel proper. In addition, it will randomise the physical
2168	  location of the kernel Image as well.
2169
2170	  If unsure, say N.
2171
2172config RANDOMIZE_MODULE_REGION_FULL
2173	bool "Randomize the module region over a 2 GB range"
2174	depends on RANDOMIZE_BASE
2175	default y
2176	help
2177	  Randomizes the location of the module region inside a 2 GB window
2178	  covering the core kernel. This way, it is less likely for modules
2179	  to leak information about the location of core kernel data structures
2180	  but it does imply that function calls between modules and the core
2181	  kernel will need to be resolved via veneers in the module PLT.
2182
2183	  When this option is not set, the module region will be randomized over
2184	  a limited range that contains the [_stext, _etext] interval of the
2185	  core kernel, so branch relocations are almost always in range unless
2186	  the region is exhausted. In this particular case of region
2187	  exhaustion, modules might be able to fall back to a larger 2GB area.
2188
2189config CC_HAVE_STACKPROTECTOR_SYSREG
2190	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2191
2192config STACKPROTECTOR_PER_TASK
2193	def_bool y
2194	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2195
2196config UNWIND_PATCH_PAC_INTO_SCS
2197	bool "Enable shadow call stack dynamically using code patching"
2198	# needs Clang with https://reviews.llvm.org/D111780 incorporated
2199	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2200	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2201	depends on SHADOW_CALL_STACK
2202	select UNWIND_TABLES
2203	select DYNAMIC_SCS
2204
2205endmenu # "Kernel Features"
2206
2207menu "Boot options"
2208
2209config ARM64_ACPI_PARKING_PROTOCOL
2210	bool "Enable support for the ARM64 ACPI parking protocol"
2211	depends on ACPI
2212	help
2213	  Enable support for the ARM64 ACPI parking protocol. If disabled
2214	  the kernel will not allow booting through the ARM64 ACPI parking
2215	  protocol even if the corresponding data is present in the ACPI
2216	  MADT table.
2217
2218config CMDLINE
2219	string "Default kernel command string"
2220	default ""
2221	help
2222	  Provide a set of default command-line options at build time by
2223	  entering them here. As a minimum, you should specify the the
2224	  root device (e.g. root=/dev/nfs).
2225
2226choice
2227	prompt "Kernel command line type" if CMDLINE != ""
2228	default CMDLINE_FROM_BOOTLOADER
2229	help
2230	  Choose how the kernel will handle the provided default kernel
2231	  command line string.
2232
2233config CMDLINE_FROM_BOOTLOADER
2234	bool "Use bootloader kernel arguments if available"
2235	help
2236	  Uses the command-line options passed by the boot loader. If
2237	  the boot loader doesn't provide any, the default kernel command
2238	  string provided in CMDLINE will be used.
2239
2240config CMDLINE_FORCE
2241	bool "Always use the default kernel command string"
2242	help
2243	  Always use the default kernel command string, even if the boot
2244	  loader passes other arguments to the kernel.
2245	  This is useful if you cannot or don't want to change the
2246	  command-line options your boot loader passes to the kernel.
2247
2248endchoice
2249
2250config EFI_STUB
2251	bool
2252
2253config EFI
2254	bool "UEFI runtime support"
2255	depends on OF && !CPU_BIG_ENDIAN
2256	depends on KERNEL_MODE_NEON
2257	select ARCH_SUPPORTS_ACPI
2258	select LIBFDT
2259	select UCS2_STRING
2260	select EFI_PARAMS_FROM_FDT
2261	select EFI_RUNTIME_WRAPPERS
2262	select EFI_STUB
2263	select EFI_GENERIC_STUB
2264	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2265	default y
2266	help
2267	  This option provides support for runtime services provided
2268	  by UEFI firmware (such as non-volatile variables, realtime
2269	  clock, and platform reset). A UEFI stub is also provided to
2270	  allow the kernel to be booted as an EFI application. This
2271	  is only useful on systems that have UEFI firmware.
2272
2273config DMI
2274	bool "Enable support for SMBIOS (DMI) tables"
2275	depends on EFI
2276	default y
2277	help
2278	  This enables SMBIOS/DMI feature for systems.
2279
2280	  This option is only useful on systems that have UEFI firmware.
2281	  However, even with this option, the resultant kernel should
2282	  continue to boot on existing non-UEFI platforms.
2283
2284endmenu # "Boot options"
2285
2286menu "Power management options"
2287
2288source "kernel/power/Kconfig"
2289
2290config ARCH_HIBERNATION_POSSIBLE
2291	def_bool y
2292	depends on CPU_PM
2293
2294config ARCH_HIBERNATION_HEADER
2295	def_bool y
2296	depends on HIBERNATION
2297
2298config ARCH_SUSPEND_POSSIBLE
2299	def_bool y
2300
2301endmenu # "Power management options"
2302
2303menu "CPU Power Management"
2304
2305source "drivers/cpuidle/Kconfig"
2306
2307source "drivers/cpufreq/Kconfig"
2308
2309endmenu # "CPU Power Management"
2310
2311source "drivers/acpi/Kconfig"
2312
2313source "arch/arm64/kvm/Kconfig"
2314
2315