xref: /openbmc/linux/arch/arm64/Kconfig (revision c24c57a4)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_CLOCKSOURCE_DATA
13	select ARCH_HAS_DEBUG_VIRTUAL
14	select ARCH_HAS_DEVMEM_IS_ALLOWED
15	select ARCH_HAS_DMA_COHERENT_TO_PFN
16	select ARCH_HAS_DMA_PREP_COHERENT
17	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
18	select ARCH_HAS_FAST_MULTIPLIER
19	select ARCH_HAS_FORTIFY_SOURCE
20	select ARCH_HAS_GCOV_PROFILE_ALL
21	select ARCH_HAS_GIGANTIC_PAGE
22	select ARCH_HAS_KCOV
23	select ARCH_HAS_KEEPINITRD
24	select ARCH_HAS_MEMBARRIER_SYNC_CORE
25	select ARCH_HAS_PTE_DEVMAP
26	select ARCH_HAS_PTE_SPECIAL
27	select ARCH_HAS_SETUP_DMA_OPS
28	select ARCH_HAS_SET_DIRECT_MAP
29	select ARCH_HAS_SET_MEMORY
30	select ARCH_HAS_STRICT_KERNEL_RWX
31	select ARCH_HAS_STRICT_MODULE_RWX
32	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
33	select ARCH_HAS_SYNC_DMA_FOR_CPU
34	select ARCH_HAS_SYSCALL_WRAPPER
35	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
36	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
37	select ARCH_HAVE_NMI_SAFE_CMPXCHG
38	select ARCH_INLINE_READ_LOCK if !PREEMPT
39	select ARCH_INLINE_READ_LOCK_BH if !PREEMPT
40	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPT
41	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPT
42	select ARCH_INLINE_READ_UNLOCK if !PREEMPT
43	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPT
44	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPT
45	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPT
46	select ARCH_INLINE_WRITE_LOCK if !PREEMPT
47	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPT
48	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPT
49	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPT
50	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPT
51	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPT
52	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPT
53	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPT
54	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPT
55	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPT
56	select ARCH_INLINE_SPIN_LOCK if !PREEMPT
57	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPT
58	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPT
59	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPT
60	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPT
61	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPT
62	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPT
63	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPT
64	select ARCH_KEEP_MEMBLOCK
65	select ARCH_USE_CMPXCHG_LOCKREF
66	select ARCH_USE_QUEUED_RWLOCKS
67	select ARCH_USE_QUEUED_SPINLOCKS
68	select ARCH_SUPPORTS_MEMORY_FAILURE
69	select ARCH_SUPPORTS_ATOMIC_RMW
70	select ARCH_SUPPORTS_INT128 if GCC_VERSION >= 50000 || CC_IS_CLANG
71	select ARCH_SUPPORTS_NUMA_BALANCING
72	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
73	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
74	select ARCH_WANT_FRAME_POINTERS
75	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
76	select ARCH_HAS_UBSAN_SANITIZE_ALL
77	select ARM_AMBA
78	select ARM_ARCH_TIMER
79	select ARM_GIC
80	select AUDIT_ARCH_COMPAT_GENERIC
81	select ARM_GIC_V2M if PCI
82	select ARM_GIC_V3
83	select ARM_GIC_V3_ITS if PCI
84	select ARM_PSCI_FW
85	select BUILDTIME_EXTABLE_SORT
86	select CLONE_BACKWARDS
87	select COMMON_CLK
88	select CPU_PM if (SUSPEND || CPU_IDLE)
89	select CRC32
90	select DCACHE_WORD_ACCESS
91	select DMA_DIRECT_REMAP
92	select EDAC_SUPPORT
93	select FRAME_POINTER
94	select GENERIC_ALLOCATOR
95	select GENERIC_ARCH_TOPOLOGY
96	select GENERIC_CLOCKEVENTS
97	select GENERIC_CLOCKEVENTS_BROADCAST
98	select GENERIC_CPU_AUTOPROBE
99	select GENERIC_CPU_VULNERABILITIES
100	select GENERIC_EARLY_IOREMAP
101	select GENERIC_IDLE_POLL_SETUP
102	select GENERIC_IRQ_MULTI_HANDLER
103	select GENERIC_IRQ_PROBE
104	select GENERIC_IRQ_SHOW
105	select GENERIC_IRQ_SHOW_LEVEL
106	select GENERIC_PCI_IOMAP
107	select GENERIC_SCHED_CLOCK
108	select GENERIC_SMP_IDLE_THREAD
109	select GENERIC_STRNCPY_FROM_USER
110	select GENERIC_STRNLEN_USER
111	select GENERIC_TIME_VSYSCALL
112	select GENERIC_GETTIMEOFDAY
113	select HANDLE_DOMAIN_IRQ
114	select HARDIRQS_SW_RESEND
115	select HAVE_PCI
116	select HAVE_ACPI_APEI if (ACPI && EFI)
117	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
118	select HAVE_ARCH_AUDITSYSCALL
119	select HAVE_ARCH_BITREVERSE
120	select HAVE_ARCH_HUGE_VMAP
121	select HAVE_ARCH_JUMP_LABEL
122	select HAVE_ARCH_JUMP_LABEL_RELATIVE
123	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
124	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
125	select HAVE_ARCH_KGDB
126	select HAVE_ARCH_MMAP_RND_BITS
127	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
128	select HAVE_ARCH_PREL32_RELOCATIONS
129	select HAVE_ARCH_SECCOMP_FILTER
130	select HAVE_ARCH_STACKLEAK
131	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
132	select HAVE_ARCH_TRACEHOOK
133	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
134	select HAVE_ARCH_VMAP_STACK
135	select HAVE_ARM_SMCCC
136	select HAVE_ASM_MODVERSIONS
137	select HAVE_EBPF_JIT
138	select HAVE_C_RECORDMCOUNT
139	select HAVE_CMPXCHG_DOUBLE
140	select HAVE_CMPXCHG_LOCAL
141	select HAVE_CONTEXT_TRACKING
142	select HAVE_DEBUG_BUGVERBOSE
143	select HAVE_DEBUG_KMEMLEAK
144	select HAVE_DMA_CONTIGUOUS
145	select HAVE_DYNAMIC_FTRACE
146	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
147		if $(cc-option,-fpatchable-function-entry=2)
148	select HAVE_EFFICIENT_UNALIGNED_ACCESS
149	select HAVE_FAST_GUP
150	select HAVE_FTRACE_MCOUNT_RECORD
151	select HAVE_FUNCTION_TRACER
152	select HAVE_FUNCTION_ERROR_INJECTION
153	select HAVE_FUNCTION_GRAPH_TRACER
154	select HAVE_GCC_PLUGINS
155	select HAVE_HW_BREAKPOINT if PERF_EVENTS
156	select HAVE_IRQ_TIME_ACCOUNTING
157	select HAVE_MEMBLOCK_NODE_MAP if NUMA
158	select HAVE_NMI
159	select HAVE_PATA_PLATFORM
160	select HAVE_PERF_EVENTS
161	select HAVE_PERF_REGS
162	select HAVE_PERF_USER_STACK_DUMP
163	select HAVE_REGS_AND_STACK_ACCESS_API
164	select HAVE_FUNCTION_ARG_ACCESS_API
165	select HAVE_RCU_TABLE_FREE
166	select HAVE_RSEQ
167	select HAVE_STACKPROTECTOR
168	select HAVE_SYSCALL_TRACEPOINTS
169	select HAVE_KPROBES
170	select HAVE_KRETPROBES
171	select HAVE_GENERIC_VDSO
172	select IOMMU_DMA if IOMMU_SUPPORT
173	select IRQ_DOMAIN
174	select IRQ_FORCED_THREADING
175	select MODULES_USE_ELF_RELA
176	select NEED_DMA_MAP_STATE
177	select NEED_SG_DMA_LENGTH
178	select OF
179	select OF_EARLY_FLATTREE
180	select PCI_DOMAINS_GENERIC if PCI
181	select PCI_ECAM if (ACPI && PCI)
182	select PCI_SYSCALL if PCI
183	select POWER_RESET
184	select POWER_SUPPLY
185	select REFCOUNT_FULL
186	select SPARSE_IRQ
187	select SWIOTLB
188	select SYSCTL_EXCEPTION_TRACE
189	select THREAD_INFO_IN_TASK
190	help
191	  ARM 64-bit (AArch64) Linux support.
192
193config 64BIT
194	def_bool y
195
196config MMU
197	def_bool y
198
199config ARM64_PAGE_SHIFT
200	int
201	default 16 if ARM64_64K_PAGES
202	default 14 if ARM64_16K_PAGES
203	default 12
204
205config ARM64_CONT_SHIFT
206	int
207	default 5 if ARM64_64K_PAGES
208	default 7 if ARM64_16K_PAGES
209	default 4
210
211config ARCH_MMAP_RND_BITS_MIN
212       default 14 if ARM64_64K_PAGES
213       default 16 if ARM64_16K_PAGES
214       default 18
215
216# max bits determined by the following formula:
217#  VA_BITS - PAGE_SHIFT - 3
218config ARCH_MMAP_RND_BITS_MAX
219       default 19 if ARM64_VA_BITS=36
220       default 24 if ARM64_VA_BITS=39
221       default 27 if ARM64_VA_BITS=42
222       default 30 if ARM64_VA_BITS=47
223       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
224       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
225       default 33 if ARM64_VA_BITS=48
226       default 14 if ARM64_64K_PAGES
227       default 16 if ARM64_16K_PAGES
228       default 18
229
230config ARCH_MMAP_RND_COMPAT_BITS_MIN
231       default 7 if ARM64_64K_PAGES
232       default 9 if ARM64_16K_PAGES
233       default 11
234
235config ARCH_MMAP_RND_COMPAT_BITS_MAX
236       default 16
237
238config NO_IOPORT_MAP
239	def_bool y if !PCI
240
241config STACKTRACE_SUPPORT
242	def_bool y
243
244config ILLEGAL_POINTER_VALUE
245	hex
246	default 0xdead000000000000
247
248config LOCKDEP_SUPPORT
249	def_bool y
250
251config TRACE_IRQFLAGS_SUPPORT
252	def_bool y
253
254config GENERIC_BUG
255	def_bool y
256	depends on BUG
257
258config GENERIC_BUG_RELATIVE_POINTERS
259	def_bool y
260	depends on GENERIC_BUG
261
262config GENERIC_HWEIGHT
263	def_bool y
264
265config GENERIC_CSUM
266        def_bool y
267
268config GENERIC_CALIBRATE_DELAY
269	def_bool y
270
271config ZONE_DMA
272	bool "Support DMA zone" if EXPERT
273	default y
274
275config ZONE_DMA32
276	bool "Support DMA32 zone" if EXPERT
277	default y
278
279config ARCH_ENABLE_MEMORY_HOTPLUG
280	def_bool y
281
282config SMP
283	def_bool y
284
285config KERNEL_MODE_NEON
286	def_bool y
287
288config FIX_EARLYCON_MEM
289	def_bool y
290
291config PGTABLE_LEVELS
292	int
293	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
294	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
295	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
296	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
297	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
298	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
299
300config ARCH_SUPPORTS_UPROBES
301	def_bool y
302
303config ARCH_PROC_KCORE_TEXT
304	def_bool y
305
306config KASAN_SHADOW_OFFSET
307	hex
308	depends on KASAN
309	default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
310	default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
311	default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
312	default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
313	default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
314	default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
315	default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
316	default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
317	default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
318	default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
319	default 0xffffffffffffffff
320
321source "arch/arm64/Kconfig.platforms"
322
323menu "Kernel Features"
324
325menu "ARM errata workarounds via the alternatives framework"
326
327config ARM64_WORKAROUND_CLEAN_CACHE
328	bool
329
330config ARM64_ERRATUM_826319
331	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
332	default y
333	select ARM64_WORKAROUND_CLEAN_CACHE
334	help
335	  This option adds an alternative code sequence to work around ARM
336	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
337	  AXI master interface and an L2 cache.
338
339	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
340	  and is unable to accept a certain write via this interface, it will
341	  not progress on read data presented on the read data channel and the
342	  system can deadlock.
343
344	  The workaround promotes data cache clean instructions to
345	  data cache clean-and-invalidate.
346	  Please note that this does not necessarily enable the workaround,
347	  as it depends on the alternative framework, which will only patch
348	  the kernel if an affected CPU is detected.
349
350	  If unsure, say Y.
351
352config ARM64_ERRATUM_827319
353	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
354	default y
355	select ARM64_WORKAROUND_CLEAN_CACHE
356	help
357	  This option adds an alternative code sequence to work around ARM
358	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
359	  master interface and an L2 cache.
360
361	  Under certain conditions this erratum can cause a clean line eviction
362	  to occur at the same time as another transaction to the same address
363	  on the AMBA 5 CHI interface, which can cause data corruption if the
364	  interconnect reorders the two transactions.
365
366	  The workaround promotes data cache clean instructions to
367	  data cache clean-and-invalidate.
368	  Please note that this does not necessarily enable the workaround,
369	  as it depends on the alternative framework, which will only patch
370	  the kernel if an affected CPU is detected.
371
372	  If unsure, say Y.
373
374config ARM64_ERRATUM_824069
375	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
376	default y
377	select ARM64_WORKAROUND_CLEAN_CACHE
378	help
379	  This option adds an alternative code sequence to work around ARM
380	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
381	  to a coherent interconnect.
382
383	  If a Cortex-A53 processor is executing a store or prefetch for
384	  write instruction at the same time as a processor in another
385	  cluster is executing a cache maintenance operation to the same
386	  address, then this erratum might cause a clean cache line to be
387	  incorrectly marked as dirty.
388
389	  The workaround promotes data cache clean instructions to
390	  data cache clean-and-invalidate.
391	  Please note that this option does not necessarily enable the
392	  workaround, as it depends on the alternative framework, which will
393	  only patch the kernel if an affected CPU is detected.
394
395	  If unsure, say Y.
396
397config ARM64_ERRATUM_819472
398	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
399	default y
400	select ARM64_WORKAROUND_CLEAN_CACHE
401	help
402	  This option adds an alternative code sequence to work around ARM
403	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
404	  present when it is connected to a coherent interconnect.
405
406	  If the processor is executing a load and store exclusive sequence at
407	  the same time as a processor in another cluster is executing a cache
408	  maintenance operation to the same address, then this erratum might
409	  cause data corruption.
410
411	  The workaround promotes data cache clean instructions to
412	  data cache clean-and-invalidate.
413	  Please note that this does not necessarily enable the workaround,
414	  as it depends on the alternative framework, which will only patch
415	  the kernel if an affected CPU is detected.
416
417	  If unsure, say Y.
418
419config ARM64_ERRATUM_832075
420	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
421	default y
422	help
423	  This option adds an alternative code sequence to work around ARM
424	  erratum 832075 on Cortex-A57 parts up to r1p2.
425
426	  Affected Cortex-A57 parts might deadlock when exclusive load/store
427	  instructions to Write-Back memory are mixed with Device loads.
428
429	  The workaround is to promote device loads to use Load-Acquire
430	  semantics.
431	  Please note that this does not necessarily enable the workaround,
432	  as it depends on the alternative framework, which will only patch
433	  the kernel if an affected CPU is detected.
434
435	  If unsure, say Y.
436
437config ARM64_ERRATUM_834220
438	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
439	depends on KVM
440	default y
441	help
442	  This option adds an alternative code sequence to work around ARM
443	  erratum 834220 on Cortex-A57 parts up to r1p2.
444
445	  Affected Cortex-A57 parts might report a Stage 2 translation
446	  fault as the result of a Stage 1 fault for load crossing a
447	  page boundary when there is a permission or device memory
448	  alignment fault at Stage 1 and a translation fault at Stage 2.
449
450	  The workaround is to verify that the Stage 1 translation
451	  doesn't generate a fault before handling the Stage 2 fault.
452	  Please note that this does not necessarily enable the workaround,
453	  as it depends on the alternative framework, which will only patch
454	  the kernel if an affected CPU is detected.
455
456	  If unsure, say Y.
457
458config ARM64_ERRATUM_845719
459	bool "Cortex-A53: 845719: a load might read incorrect data"
460	depends on COMPAT
461	default y
462	help
463	  This option adds an alternative code sequence to work around ARM
464	  erratum 845719 on Cortex-A53 parts up to r0p4.
465
466	  When running a compat (AArch32) userspace on an affected Cortex-A53
467	  part, a load at EL0 from a virtual address that matches the bottom 32
468	  bits of the virtual address used by a recent load at (AArch64) EL1
469	  might return incorrect data.
470
471	  The workaround is to write the contextidr_el1 register on exception
472	  return to a 32-bit task.
473	  Please note that this does not necessarily enable the workaround,
474	  as it depends on the alternative framework, which will only patch
475	  the kernel if an affected CPU is detected.
476
477	  If unsure, say Y.
478
479config ARM64_ERRATUM_843419
480	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
481	default y
482	select ARM64_MODULE_PLTS if MODULES
483	help
484	  This option links the kernel with '--fix-cortex-a53-843419' and
485	  enables PLT support to replace certain ADRP instructions, which can
486	  cause subsequent memory accesses to use an incorrect address on
487	  Cortex-A53 parts up to r0p4.
488
489	  If unsure, say Y.
490
491config ARM64_ERRATUM_1024718
492	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
493	default y
494	help
495	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
496
497	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect
498	  update of the hardware dirty bit when the DBM/AP bits are updated
499	  without a break-before-make. The workaround is to disable the usage
500	  of hardware DBM locally on the affected cores. CPUs not affected by
501	  this erratum will continue to use the feature.
502
503	  If unsure, say Y.
504
505config ARM64_ERRATUM_1418040
506	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
507	default y
508	depends on COMPAT
509	help
510	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
511	  errata 1188873 and 1418040.
512
513	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
514	  cause register corruption when accessing the timer registers
515	  from AArch32 userspace.
516
517	  If unsure, say Y.
518
519config ARM64_ERRATUM_1165522
520	bool "Cortex-A76: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
521	default y
522	help
523	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
524
525	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
526	  corrupted TLBs by speculating an AT instruction during a guest
527	  context switch.
528
529	  If unsure, say Y.
530
531config ARM64_ERRATUM_1286807
532	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
533	default y
534	select ARM64_WORKAROUND_REPEAT_TLBI
535	help
536	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
537
538	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
539	  address for a cacheable mapping of a location is being
540	  accessed by a core while another core is remapping the virtual
541	  address to a new physical page using the recommended
542	  break-before-make sequence, then under very rare circumstances
543	  TLBI+DSB completes before a read using the translation being
544	  invalidated has been observed by other observers. The
545	  workaround repeats the TLBI+DSB operation.
546
547config ARM64_ERRATUM_1319367
548	bool "Cortex-A57/A72: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
549	default y
550	help
551	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
552	  and A72 erratum 1319367
553
554	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
555	  speculating an AT instruction during a guest context switch.
556
557	  If unsure, say Y.
558
559config ARM64_ERRATUM_1463225
560	bool "Cortex-A76: Software Step might prevent interrupt recognition"
561	default y
562	help
563	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
564
565	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
566	  of a system call instruction (SVC) can prevent recognition of
567	  subsequent interrupts when software stepping is disabled in the
568	  exception handler of the system call and either kernel debugging
569	  is enabled or VHE is in use.
570
571	  Work around the erratum by triggering a dummy step exception
572	  when handling a system call from a task that is being stepped
573	  in a VHE configuration of the kernel.
574
575	  If unsure, say Y.
576
577config ARM64_ERRATUM_1542419
578	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
579	default y
580	help
581	  This option adds a workaround for ARM Neoverse-N1 erratum
582	  1542419.
583
584	  Affected Neoverse-N1 cores could execute a stale instruction when
585	  modified by another CPU. The workaround depends on a firmware
586	  counterpart.
587
588	  Workaround the issue by hiding the DIC feature from EL0. This
589	  forces user-space to perform cache maintenance.
590
591	  If unsure, say Y.
592
593config CAVIUM_ERRATUM_22375
594	bool "Cavium erratum 22375, 24313"
595	default y
596	help
597	  Enable workaround for errata 22375 and 24313.
598
599	  This implements two gicv3-its errata workarounds for ThunderX. Both
600	  with a small impact affecting only ITS table allocation.
601
602	    erratum 22375: only alloc 8MB table size
603	    erratum 24313: ignore memory access type
604
605	  The fixes are in ITS initialization and basically ignore memory access
606	  type and table size provided by the TYPER and BASER registers.
607
608	  If unsure, say Y.
609
610config CAVIUM_ERRATUM_23144
611	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
612	depends on NUMA
613	default y
614	help
615	  ITS SYNC command hang for cross node io and collections/cpu mapping.
616
617	  If unsure, say Y.
618
619config CAVIUM_ERRATUM_23154
620	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
621	default y
622	help
623	  The gicv3 of ThunderX requires a modified version for
624	  reading the IAR status to ensure data synchronization
625	  (access to icc_iar1_el1 is not sync'ed before and after).
626
627	  If unsure, say Y.
628
629config CAVIUM_ERRATUM_27456
630	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
631	default y
632	help
633	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
634	  instructions may cause the icache to become corrupted if it
635	  contains data for a non-current ASID.  The fix is to
636	  invalidate the icache when changing the mm context.
637
638	  If unsure, say Y.
639
640config CAVIUM_ERRATUM_30115
641	bool "Cavium erratum 30115: Guest may disable interrupts in host"
642	default y
643	help
644	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
645	  1.2, and T83 Pass 1.0, KVM guest execution may disable
646	  interrupts in host. Trapping both GICv3 group-0 and group-1
647	  accesses sidesteps the issue.
648
649	  If unsure, say Y.
650
651config CAVIUM_TX2_ERRATUM_219
652	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
653	default y
654	help
655	  On Cavium ThunderX2, a load, store or prefetch instruction between a
656	  TTBR update and the corresponding context synchronizing operation can
657	  cause a spurious Data Abort to be delivered to any hardware thread in
658	  the CPU core.
659
660	  Work around the issue by avoiding the problematic code sequence and
661	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
662	  trap handler performs the corresponding register access, skips the
663	  instruction and ensures context synchronization by virtue of the
664	  exception return.
665
666	  If unsure, say Y.
667
668config QCOM_FALKOR_ERRATUM_1003
669	bool "Falkor E1003: Incorrect translation due to ASID change"
670	default y
671	help
672	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
673	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
674	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
675	  then only for entries in the walk cache, since the leaf translation
676	  is unchanged. Work around the erratum by invalidating the walk cache
677	  entries for the trampoline before entering the kernel proper.
678
679config ARM64_WORKAROUND_REPEAT_TLBI
680	bool
681
682config QCOM_FALKOR_ERRATUM_1009
683	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
684	default y
685	select ARM64_WORKAROUND_REPEAT_TLBI
686	help
687	  On Falkor v1, the CPU may prematurely complete a DSB following a
688	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
689	  one more time to fix the issue.
690
691	  If unsure, say Y.
692
693config QCOM_QDF2400_ERRATUM_0065
694	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
695	default y
696	help
697	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
698	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
699	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
700
701	  If unsure, say Y.
702
703config SOCIONEXT_SYNQUACER_PREITS
704	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
705	default y
706	help
707	  Socionext Synquacer SoCs implement a separate h/w block to generate
708	  MSI doorbell writes with non-zero values for the device ID.
709
710	  If unsure, say Y.
711
712config HISILICON_ERRATUM_161600802
713	bool "Hip07 161600802: Erroneous redistributor VLPI base"
714	default y
715	help
716	  The HiSilicon Hip07 SoC uses the wrong redistributor base
717	  when issued ITS commands such as VMOVP and VMAPP, and requires
718	  a 128kB offset to be applied to the target address in this commands.
719
720	  If unsure, say Y.
721
722config QCOM_FALKOR_ERRATUM_E1041
723	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
724	default y
725	help
726	  Falkor CPU may speculatively fetch instructions from an improper
727	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
728	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
729
730	  If unsure, say Y.
731
732config FUJITSU_ERRATUM_010001
733	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
734	default y
735	help
736	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
737	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
738	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
739	  This fault occurs under a specific hardware condition when a
740	  load/store instruction performs an address translation using:
741	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
742	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
743	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
744	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
745
746	  The workaround is to ensure these bits are clear in TCR_ELx.
747	  The workaround only affects the Fujitsu-A64FX.
748
749	  If unsure, say Y.
750
751endmenu
752
753
754choice
755	prompt "Page size"
756	default ARM64_4K_PAGES
757	help
758	  Page size (translation granule) configuration.
759
760config ARM64_4K_PAGES
761	bool "4KB"
762	help
763	  This feature enables 4KB pages support.
764
765config ARM64_16K_PAGES
766	bool "16KB"
767	help
768	  The system will use 16KB pages support. AArch32 emulation
769	  requires applications compiled with 16K (or a multiple of 16K)
770	  aligned segments.
771
772config ARM64_64K_PAGES
773	bool "64KB"
774	help
775	  This feature enables 64KB pages support (4KB by default)
776	  allowing only two levels of page tables and faster TLB
777	  look-up. AArch32 emulation requires applications compiled
778	  with 64K aligned segments.
779
780endchoice
781
782choice
783	prompt "Virtual address space size"
784	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
785	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
786	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
787	help
788	  Allows choosing one of multiple possible virtual address
789	  space sizes. The level of translation table is determined by
790	  a combination of page size and virtual address space size.
791
792config ARM64_VA_BITS_36
793	bool "36-bit" if EXPERT
794	depends on ARM64_16K_PAGES
795
796config ARM64_VA_BITS_39
797	bool "39-bit"
798	depends on ARM64_4K_PAGES
799
800config ARM64_VA_BITS_42
801	bool "42-bit"
802	depends on ARM64_64K_PAGES
803
804config ARM64_VA_BITS_47
805	bool "47-bit"
806	depends on ARM64_16K_PAGES
807
808config ARM64_VA_BITS_48
809	bool "48-bit"
810
811config ARM64_VA_BITS_52
812	bool "52-bit"
813	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
814	help
815	  Enable 52-bit virtual addressing for userspace when explicitly
816	  requested via a hint to mmap(). The kernel will also use 52-bit
817	  virtual addresses for its own mappings (provided HW support for
818	  this feature is available, otherwise it reverts to 48-bit).
819
820	  NOTE: Enabling 52-bit virtual addressing in conjunction with
821	  ARMv8.3 Pointer Authentication will result in the PAC being
822	  reduced from 7 bits to 3 bits, which may have a significant
823	  impact on its susceptibility to brute-force attacks.
824
825	  If unsure, select 48-bit virtual addressing instead.
826
827endchoice
828
829config ARM64_FORCE_52BIT
830	bool "Force 52-bit virtual addresses for userspace"
831	depends on ARM64_VA_BITS_52 && EXPERT
832	help
833	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
834	  to maintain compatibility with older software by providing 48-bit VAs
835	  unless a hint is supplied to mmap.
836
837	  This configuration option disables the 48-bit compatibility logic, and
838	  forces all userspace addresses to be 52-bit on HW that supports it. One
839	  should only enable this configuration option for stress testing userspace
840	  memory management code. If unsure say N here.
841
842config ARM64_VA_BITS
843	int
844	default 36 if ARM64_VA_BITS_36
845	default 39 if ARM64_VA_BITS_39
846	default 42 if ARM64_VA_BITS_42
847	default 47 if ARM64_VA_BITS_47
848	default 48 if ARM64_VA_BITS_48
849	default 52 if ARM64_VA_BITS_52
850
851choice
852	prompt "Physical address space size"
853	default ARM64_PA_BITS_48
854	help
855	  Choose the maximum physical address range that the kernel will
856	  support.
857
858config ARM64_PA_BITS_48
859	bool "48-bit"
860
861config ARM64_PA_BITS_52
862	bool "52-bit (ARMv8.2)"
863	depends on ARM64_64K_PAGES
864	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
865	help
866	  Enable support for a 52-bit physical address space, introduced as
867	  part of the ARMv8.2-LPA extension.
868
869	  With this enabled, the kernel will also continue to work on CPUs that
870	  do not support ARMv8.2-LPA, but with some added memory overhead (and
871	  minor performance overhead).
872
873endchoice
874
875config ARM64_PA_BITS
876	int
877	default 48 if ARM64_PA_BITS_48
878	default 52 if ARM64_PA_BITS_52
879
880choice
881	prompt "Endianness"
882	default CPU_LITTLE_ENDIAN
883	help
884	  Select the endianness of data accesses performed by the CPU. Userspace
885	  applications will need to be compiled and linked for the endianness
886	  that is selected here.
887
888config CPU_BIG_ENDIAN
889       bool "Build big-endian kernel"
890       help
891	  Say Y if you plan on running a kernel with a big-endian userspace.
892
893config CPU_LITTLE_ENDIAN
894	bool "Build little-endian kernel"
895	help
896	  Say Y if you plan on running a kernel with a little-endian userspace.
897	  This is usually the case for distributions targeting arm64.
898
899endchoice
900
901config SCHED_MC
902	bool "Multi-core scheduler support"
903	help
904	  Multi-core scheduler support improves the CPU scheduler's decision
905	  making when dealing with multi-core CPU chips at a cost of slightly
906	  increased overhead in some places. If unsure say N here.
907
908config SCHED_SMT
909	bool "SMT scheduler support"
910	help
911	  Improves the CPU scheduler's decision making when dealing with
912	  MultiThreading at a cost of slightly increased overhead in some
913	  places. If unsure say N here.
914
915config NR_CPUS
916	int "Maximum number of CPUs (2-4096)"
917	range 2 4096
918	default "256"
919
920config HOTPLUG_CPU
921	bool "Support for hot-pluggable CPUs"
922	select GENERIC_IRQ_MIGRATION
923	help
924	  Say Y here to experiment with turning CPUs off and on.  CPUs
925	  can be controlled through /sys/devices/system/cpu.
926
927# Common NUMA Features
928config NUMA
929	bool "Numa Memory Allocation and Scheduler Support"
930	select ACPI_NUMA if ACPI
931	select OF_NUMA
932	help
933	  Enable NUMA (Non Uniform Memory Access) support.
934
935	  The kernel will try to allocate memory used by a CPU on the
936	  local memory of the CPU and add some more
937	  NUMA awareness to the kernel.
938
939config NODES_SHIFT
940	int "Maximum NUMA Nodes (as a power of 2)"
941	range 1 10
942	default "2"
943	depends on NEED_MULTIPLE_NODES
944	help
945	  Specify the maximum number of NUMA Nodes available on the target
946	  system.  Increases memory reserved to accommodate various tables.
947
948config USE_PERCPU_NUMA_NODE_ID
949	def_bool y
950	depends on NUMA
951
952config HAVE_SETUP_PER_CPU_AREA
953	def_bool y
954	depends on NUMA
955
956config NEED_PER_CPU_EMBED_FIRST_CHUNK
957	def_bool y
958	depends on NUMA
959
960config HOLES_IN_ZONE
961	def_bool y
962
963source "kernel/Kconfig.hz"
964
965config ARCH_SUPPORTS_DEBUG_PAGEALLOC
966	def_bool y
967
968config ARCH_SPARSEMEM_ENABLE
969	def_bool y
970	select SPARSEMEM_VMEMMAP_ENABLE
971
972config ARCH_SPARSEMEM_DEFAULT
973	def_bool ARCH_SPARSEMEM_ENABLE
974
975config ARCH_SELECT_MEMORY_MODEL
976	def_bool ARCH_SPARSEMEM_ENABLE
977
978config ARCH_FLATMEM_ENABLE
979	def_bool !NUMA
980
981config HAVE_ARCH_PFN_VALID
982	def_bool y
983
984config HW_PERF_EVENTS
985	def_bool y
986	depends on ARM_PMU
987
988config SYS_SUPPORTS_HUGETLBFS
989	def_bool y
990
991config ARCH_WANT_HUGE_PMD_SHARE
992
993config ARCH_HAS_CACHE_LINE_SIZE
994	def_bool y
995
996config ARCH_ENABLE_SPLIT_PMD_PTLOCK
997	def_bool y if PGTABLE_LEVELS > 2
998
999config SECCOMP
1000	bool "Enable seccomp to safely compute untrusted bytecode"
1001	---help---
1002	  This kernel feature is useful for number crunching applications
1003	  that may need to compute untrusted bytecode during their
1004	  execution. By using pipes or other transports made available to
1005	  the process as file descriptors supporting the read/write
1006	  syscalls, it's possible to isolate those applications in
1007	  their own address space using seccomp. Once seccomp is
1008	  enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1009	  and the task is only allowed to execute a few safe syscalls
1010	  defined by each seccomp mode.
1011
1012config PARAVIRT
1013	bool "Enable paravirtualization code"
1014	help
1015	  This changes the kernel so it can modify itself when it is run
1016	  under a hypervisor, potentially improving performance significantly
1017	  over full virtualization.
1018
1019config PARAVIRT_TIME_ACCOUNTING
1020	bool "Paravirtual steal time accounting"
1021	select PARAVIRT
1022	help
1023	  Select this option to enable fine granularity task steal time
1024	  accounting. Time spent executing other tasks in parallel with
1025	  the current vCPU is discounted from the vCPU power. To account for
1026	  that, there can be a small performance impact.
1027
1028	  If in doubt, say N here.
1029
1030config KEXEC
1031	depends on PM_SLEEP_SMP
1032	select KEXEC_CORE
1033	bool "kexec system call"
1034	---help---
1035	  kexec is a system call that implements the ability to shutdown your
1036	  current kernel, and to start another kernel.  It is like a reboot
1037	  but it is independent of the system firmware.   And like a reboot
1038	  you can start any kernel with it, not just Linux.
1039
1040config KEXEC_FILE
1041	bool "kexec file based system call"
1042	select KEXEC_CORE
1043	help
1044	  This is new version of kexec system call. This system call is
1045	  file based and takes file descriptors as system call argument
1046	  for kernel and initramfs as opposed to list of segments as
1047	  accepted by previous system call.
1048
1049config KEXEC_SIG
1050	bool "Verify kernel signature during kexec_file_load() syscall"
1051	depends on KEXEC_FILE
1052	help
1053	  Select this option to verify a signature with loaded kernel
1054	  image. If configured, any attempt of loading a image without
1055	  valid signature will fail.
1056
1057	  In addition to that option, you need to enable signature
1058	  verification for the corresponding kernel image type being
1059	  loaded in order for this to work.
1060
1061config KEXEC_IMAGE_VERIFY_SIG
1062	bool "Enable Image signature verification support"
1063	default y
1064	depends on KEXEC_SIG
1065	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1066	help
1067	  Enable Image signature verification support.
1068
1069comment "Support for PE file signature verification disabled"
1070	depends on KEXEC_SIG
1071	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1072
1073config CRASH_DUMP
1074	bool "Build kdump crash kernel"
1075	help
1076	  Generate crash dump after being started by kexec. This should
1077	  be normally only set in special crash dump kernels which are
1078	  loaded in the main kernel with kexec-tools into a specially
1079	  reserved region and then later executed after a crash by
1080	  kdump/kexec.
1081
1082	  For more details see Documentation/admin-guide/kdump/kdump.rst
1083
1084config XEN_DOM0
1085	def_bool y
1086	depends on XEN
1087
1088config XEN
1089	bool "Xen guest support on ARM64"
1090	depends on ARM64 && OF
1091	select SWIOTLB_XEN
1092	select PARAVIRT
1093	help
1094	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1095
1096config FORCE_MAX_ZONEORDER
1097	int
1098	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
1099	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
1100	default "11"
1101	help
1102	  The kernel memory allocator divides physically contiguous memory
1103	  blocks into "zones", where each zone is a power of two number of
1104	  pages.  This option selects the largest power of two that the kernel
1105	  keeps in the memory allocator.  If you need to allocate very large
1106	  blocks of physically contiguous memory, then you may need to
1107	  increase this value.
1108
1109	  This config option is actually maximum order plus one. For example,
1110	  a value of 11 means that the largest free memory block is 2^10 pages.
1111
1112	  We make sure that we can allocate upto a HugePage size for each configuration.
1113	  Hence we have :
1114		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1115
1116	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1117	  4M allocations matching the default size used by generic code.
1118
1119config UNMAP_KERNEL_AT_EL0
1120	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1121	default y
1122	help
1123	  Speculation attacks against some high-performance processors can
1124	  be used to bypass MMU permission checks and leak kernel data to
1125	  userspace. This can be defended against by unmapping the kernel
1126	  when running in userspace, mapping it back in on exception entry
1127	  via a trampoline page in the vector table.
1128
1129	  If unsure, say Y.
1130
1131config HARDEN_BRANCH_PREDICTOR
1132	bool "Harden the branch predictor against aliasing attacks" if EXPERT
1133	default y
1134	help
1135	  Speculation attacks against some high-performance processors rely on
1136	  being able to manipulate the branch predictor for a victim context by
1137	  executing aliasing branches in the attacker context.  Such attacks
1138	  can be partially mitigated against by clearing internal branch
1139	  predictor state and limiting the prediction logic in some situations.
1140
1141	  This config option will take CPU-specific actions to harden the
1142	  branch predictor against aliasing attacks and may rely on specific
1143	  instruction sequences or control bits being set by the system
1144	  firmware.
1145
1146	  If unsure, say Y.
1147
1148config HARDEN_EL2_VECTORS
1149	bool "Harden EL2 vector mapping against system register leak" if EXPERT
1150	default y
1151	help
1152	  Speculation attacks against some high-performance processors can
1153	  be used to leak privileged information such as the vector base
1154	  register, resulting in a potential defeat of the EL2 layout
1155	  randomization.
1156
1157	  This config option will map the vectors to a fixed location,
1158	  independent of the EL2 code mapping, so that revealing VBAR_EL2
1159	  to an attacker does not give away any extra information. This
1160	  only gets enabled on affected CPUs.
1161
1162	  If unsure, say Y.
1163
1164config ARM64_SSBD
1165	bool "Speculative Store Bypass Disable" if EXPERT
1166	default y
1167	help
1168	  This enables mitigation of the bypassing of previous stores
1169	  by speculative loads.
1170
1171	  If unsure, say Y.
1172
1173config RODATA_FULL_DEFAULT_ENABLED
1174	bool "Apply r/o permissions of VM areas also to their linear aliases"
1175	default y
1176	help
1177	  Apply read-only attributes of VM areas to the linear alias of
1178	  the backing pages as well. This prevents code or read-only data
1179	  from being modified (inadvertently or intentionally) via another
1180	  mapping of the same memory page. This additional enhancement can
1181	  be turned off at runtime by passing rodata=[off|on] (and turned on
1182	  with rodata=full if this option is set to 'n')
1183
1184	  This requires the linear region to be mapped down to pages,
1185	  which may adversely affect performance in some cases.
1186
1187config ARM64_SW_TTBR0_PAN
1188	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1189	help
1190	  Enabling this option prevents the kernel from accessing
1191	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1192	  zeroed area and reserved ASID. The user access routines
1193	  restore the valid TTBR0_EL1 temporarily.
1194
1195config ARM64_TAGGED_ADDR_ABI
1196	bool "Enable the tagged user addresses syscall ABI"
1197	default y
1198	help
1199	  When this option is enabled, user applications can opt in to a
1200	  relaxed ABI via prctl() allowing tagged addresses to be passed
1201	  to system calls as pointer arguments. For details, see
1202	  Documentation/arm64/tagged-address-abi.rst.
1203
1204menuconfig COMPAT
1205	bool "Kernel support for 32-bit EL0"
1206	depends on ARM64_4K_PAGES || EXPERT
1207	select COMPAT_BINFMT_ELF if BINFMT_ELF
1208	select HAVE_UID16
1209	select OLD_SIGSUSPEND3
1210	select COMPAT_OLD_SIGACTION
1211	help
1212	  This option enables support for a 32-bit EL0 running under a 64-bit
1213	  kernel at EL1. AArch32-specific components such as system calls,
1214	  the user helper functions, VFP support and the ptrace interface are
1215	  handled appropriately by the kernel.
1216
1217	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1218	  that you will only be able to execute AArch32 binaries that were compiled
1219	  with page size aligned segments.
1220
1221	  If you want to execute 32-bit userspace applications, say Y.
1222
1223if COMPAT
1224
1225config KUSER_HELPERS
1226	bool "Enable kuser helpers page for 32-bit applications"
1227	default y
1228	help
1229	  Warning: disabling this option may break 32-bit user programs.
1230
1231	  Provide kuser helpers to compat tasks. The kernel provides
1232	  helper code to userspace in read only form at a fixed location
1233	  to allow userspace to be independent of the CPU type fitted to
1234	  the system. This permits binaries to be run on ARMv4 through
1235	  to ARMv8 without modification.
1236
1237	  See Documentation/arm/kernel_user_helpers.rst for details.
1238
1239	  However, the fixed address nature of these helpers can be used
1240	  by ROP (return orientated programming) authors when creating
1241	  exploits.
1242
1243	  If all of the binaries and libraries which run on your platform
1244	  are built specifically for your platform, and make no use of
1245	  these helpers, then you can turn this option off to hinder
1246	  such exploits. However, in that case, if a binary or library
1247	  relying on those helpers is run, it will not function correctly.
1248
1249	  Say N here only if you are absolutely certain that you do not
1250	  need these helpers; otherwise, the safe option is to say Y.
1251
1252config COMPAT_VDSO
1253	bool "Enable vDSO for 32-bit applications"
1254	depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
1255	select GENERIC_COMPAT_VDSO
1256	default y
1257	help
1258	  Place in the process address space of 32-bit applications an
1259	  ELF shared object providing fast implementations of gettimeofday
1260	  and clock_gettime.
1261
1262	  You must have a 32-bit build of glibc 2.22 or later for programs
1263	  to seamlessly take advantage of this.
1264
1265menuconfig ARMV8_DEPRECATED
1266	bool "Emulate deprecated/obsolete ARMv8 instructions"
1267	depends on SYSCTL
1268	help
1269	  Legacy software support may require certain instructions
1270	  that have been deprecated or obsoleted in the architecture.
1271
1272	  Enable this config to enable selective emulation of these
1273	  features.
1274
1275	  If unsure, say Y
1276
1277if ARMV8_DEPRECATED
1278
1279config SWP_EMULATION
1280	bool "Emulate SWP/SWPB instructions"
1281	help
1282	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1283	  they are always undefined. Say Y here to enable software
1284	  emulation of these instructions for userspace using LDXR/STXR.
1285
1286	  In some older versions of glibc [<=2.8] SWP is used during futex
1287	  trylock() operations with the assumption that the code will not
1288	  be preempted. This invalid assumption may be more likely to fail
1289	  with SWP emulation enabled, leading to deadlock of the user
1290	  application.
1291
1292	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1293	  on an external transaction monitoring block called a global
1294	  monitor to maintain update atomicity. If your system does not
1295	  implement a global monitor, this option can cause programs that
1296	  perform SWP operations to uncached memory to deadlock.
1297
1298	  If unsure, say Y
1299
1300config CP15_BARRIER_EMULATION
1301	bool "Emulate CP15 Barrier instructions"
1302	help
1303	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1304	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1305	  strongly recommended to use the ISB, DSB, and DMB
1306	  instructions instead.
1307
1308	  Say Y here to enable software emulation of these
1309	  instructions for AArch32 userspace code. When this option is
1310	  enabled, CP15 barrier usage is traced which can help
1311	  identify software that needs updating.
1312
1313	  If unsure, say Y
1314
1315config SETEND_EMULATION
1316	bool "Emulate SETEND instruction"
1317	help
1318	  The SETEND instruction alters the data-endianness of the
1319	  AArch32 EL0, and is deprecated in ARMv8.
1320
1321	  Say Y here to enable software emulation of the instruction
1322	  for AArch32 userspace code.
1323
1324	  Note: All the cpus on the system must have mixed endian support at EL0
1325	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1326	  endian - is hotplugged in after this feature has been enabled, there could
1327	  be unexpected results in the applications.
1328
1329	  If unsure, say Y
1330endif
1331
1332endif
1333
1334menu "ARMv8.1 architectural features"
1335
1336config ARM64_HW_AFDBM
1337	bool "Support for hardware updates of the Access and Dirty page flags"
1338	default y
1339	help
1340	  The ARMv8.1 architecture extensions introduce support for
1341	  hardware updates of the access and dirty information in page
1342	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1343	  capable processors, accesses to pages with PTE_AF cleared will
1344	  set this bit instead of raising an access flag fault.
1345	  Similarly, writes to read-only pages with the DBM bit set will
1346	  clear the read-only bit (AP[2]) instead of raising a
1347	  permission fault.
1348
1349	  Kernels built with this configuration option enabled continue
1350	  to work on pre-ARMv8.1 hardware and the performance impact is
1351	  minimal. If unsure, say Y.
1352
1353config ARM64_PAN
1354	bool "Enable support for Privileged Access Never (PAN)"
1355	default y
1356	help
1357	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1358	 prevents the kernel or hypervisor from accessing user-space (EL0)
1359	 memory directly.
1360
1361	 Choosing this option will cause any unprotected (not using
1362	 copy_to_user et al) memory access to fail with a permission fault.
1363
1364	 The feature is detected at runtime, and will remain as a 'nop'
1365	 instruction if the cpu does not implement the feature.
1366
1367config ARM64_LSE_ATOMICS
1368	bool "Atomic instructions"
1369	depends on JUMP_LABEL
1370	default y
1371	help
1372	  As part of the Large System Extensions, ARMv8.1 introduces new
1373	  atomic instructions that are designed specifically to scale in
1374	  very large systems.
1375
1376	  Say Y here to make use of these instructions for the in-kernel
1377	  atomic routines. This incurs a small overhead on CPUs that do
1378	  not support these instructions and requires the kernel to be
1379	  built with binutils >= 2.25 in order for the new instructions
1380	  to be used.
1381
1382config ARM64_VHE
1383	bool "Enable support for Virtualization Host Extensions (VHE)"
1384	default y
1385	help
1386	  Virtualization Host Extensions (VHE) allow the kernel to run
1387	  directly at EL2 (instead of EL1) on processors that support
1388	  it. This leads to better performance for KVM, as they reduce
1389	  the cost of the world switch.
1390
1391	  Selecting this option allows the VHE feature to be detected
1392	  at runtime, and does not affect processors that do not
1393	  implement this feature.
1394
1395endmenu
1396
1397menu "ARMv8.2 architectural features"
1398
1399config ARM64_UAO
1400	bool "Enable support for User Access Override (UAO)"
1401	default y
1402	help
1403	  User Access Override (UAO; part of the ARMv8.2 Extensions)
1404	  causes the 'unprivileged' variant of the load/store instructions to
1405	  be overridden to be privileged.
1406
1407	  This option changes get_user() and friends to use the 'unprivileged'
1408	  variant of the load/store instructions. This ensures that user-space
1409	  really did have access to the supplied memory. When addr_limit is
1410	  set to kernel memory the UAO bit will be set, allowing privileged
1411	  access to kernel memory.
1412
1413	  Choosing this option will cause copy_to_user() et al to use user-space
1414	  memory permissions.
1415
1416	  The feature is detected at runtime, the kernel will use the
1417	  regular load/store instructions if the cpu does not implement the
1418	  feature.
1419
1420config ARM64_PMEM
1421	bool "Enable support for persistent memory"
1422	select ARCH_HAS_PMEM_API
1423	select ARCH_HAS_UACCESS_FLUSHCACHE
1424	help
1425	  Say Y to enable support for the persistent memory API based on the
1426	  ARMv8.2 DCPoP feature.
1427
1428	  The feature is detected at runtime, and the kernel will use DC CVAC
1429	  operations if DC CVAP is not supported (following the behaviour of
1430	  DC CVAP itself if the system does not define a point of persistence).
1431
1432config ARM64_RAS_EXTN
1433	bool "Enable support for RAS CPU Extensions"
1434	default y
1435	help
1436	  CPUs that support the Reliability, Availability and Serviceability
1437	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1438	  errors, classify them and report them to software.
1439
1440	  On CPUs with these extensions system software can use additional
1441	  barriers to determine if faults are pending and read the
1442	  classification from a new set of registers.
1443
1444	  Selecting this feature will allow the kernel to use these barriers
1445	  and access the new registers if the system supports the extension.
1446	  Platform RAS features may additionally depend on firmware support.
1447
1448config ARM64_CNP
1449	bool "Enable support for Common Not Private (CNP) translations"
1450	default y
1451	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1452	help
1453	  Common Not Private (CNP) allows translation table entries to
1454	  be shared between different PEs in the same inner shareable
1455	  domain, so the hardware can use this fact to optimise the
1456	  caching of such entries in the TLB.
1457
1458	  Selecting this option allows the CNP feature to be detected
1459	  at runtime, and does not affect PEs that do not implement
1460	  this feature.
1461
1462endmenu
1463
1464menu "ARMv8.3 architectural features"
1465
1466config ARM64_PTR_AUTH
1467	bool "Enable support for pointer authentication"
1468	default y
1469	depends on !KVM || ARM64_VHE
1470	help
1471	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1472	  instructions for signing and authenticating pointers against secret
1473	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1474	  and other attacks.
1475
1476	  This option enables these instructions at EL0 (i.e. for userspace).
1477
1478	  Choosing this option will cause the kernel to initialise secret keys
1479	  for each process at exec() time, with these keys being
1480	  context-switched along with the process.
1481
1482	  The feature is detected at runtime. If the feature is not present in
1483	  hardware it will not be advertised to userspace/KVM guest nor will it
1484	  be enabled. However, KVM guest also require VHE mode and hence
1485	  CONFIG_ARM64_VHE=y option to use this feature.
1486
1487endmenu
1488
1489config ARM64_SVE
1490	bool "ARM Scalable Vector Extension support"
1491	default y
1492	depends on !KVM || ARM64_VHE
1493	help
1494	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1495	  execution state which complements and extends the SIMD functionality
1496	  of the base architecture to support much larger vectors and to enable
1497	  additional vectorisation opportunities.
1498
1499	  To enable use of this extension on CPUs that implement it, say Y.
1500
1501	  On CPUs that support the SVE2 extensions, this option will enable
1502	  those too.
1503
1504	  Note that for architectural reasons, firmware _must_ implement SVE
1505	  support when running on SVE capable hardware.  The required support
1506	  is present in:
1507
1508	    * version 1.5 and later of the ARM Trusted Firmware
1509	    * the AArch64 boot wrapper since commit 5e1261e08abf
1510	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1511
1512	  For other firmware implementations, consult the firmware documentation
1513	  or vendor.
1514
1515	  If you need the kernel to boot on SVE-capable hardware with broken
1516	  firmware, you may need to say N here until you get your firmware
1517	  fixed.  Otherwise, you may experience firmware panics or lockups when
1518	  booting the kernel.  If unsure and you are not observing these
1519	  symptoms, you should assume that it is safe to say Y.
1520
1521	  CPUs that support SVE are architecturally required to support the
1522	  Virtualization Host Extensions (VHE), so the kernel makes no
1523	  provision for supporting SVE alongside KVM without VHE enabled.
1524	  Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
1525	  KVM in the same kernel image.
1526
1527config ARM64_MODULE_PLTS
1528	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1529	depends on MODULES
1530	select HAVE_MOD_ARCH_SPECIFIC
1531	help
1532	  Allocate PLTs when loading modules so that jumps and calls whose
1533	  targets are too far away for their relative offsets to be encoded
1534	  in the instructions themselves can be bounced via veneers in the
1535	  module's PLT. This allows modules to be allocated in the generic
1536	  vmalloc area after the dedicated module memory area has been
1537	  exhausted.
1538
1539	  When running with address space randomization (KASLR), the module
1540	  region itself may be too far away for ordinary relative jumps and
1541	  calls, and so in that case, module PLTs are required and cannot be
1542	  disabled.
1543
1544	  Specific errata workaround(s) might also force module PLTs to be
1545	  enabled (ARM64_ERRATUM_843419).
1546
1547config ARM64_PSEUDO_NMI
1548	bool "Support for NMI-like interrupts"
1549	select CONFIG_ARM_GIC_V3
1550	help
1551	  Adds support for mimicking Non-Maskable Interrupts through the use of
1552	  GIC interrupt priority. This support requires version 3 or later of
1553	  ARM GIC.
1554
1555	  This high priority configuration for interrupts needs to be
1556	  explicitly enabled by setting the kernel parameter
1557	  "irqchip.gicv3_pseudo_nmi" to 1.
1558
1559	  If unsure, say N
1560
1561if ARM64_PSEUDO_NMI
1562config ARM64_DEBUG_PRIORITY_MASKING
1563	bool "Debug interrupt priority masking"
1564	help
1565	  This adds runtime checks to functions enabling/disabling
1566	  interrupts when using priority masking. The additional checks verify
1567	  the validity of ICC_PMR_EL1 when calling concerned functions.
1568
1569	  If unsure, say N
1570endif
1571
1572config RELOCATABLE
1573	bool
1574	select ARCH_HAS_RELR
1575	help
1576	  This builds the kernel as a Position Independent Executable (PIE),
1577	  which retains all relocation metadata required to relocate the
1578	  kernel binary at runtime to a different virtual address than the
1579	  address it was linked at.
1580	  Since AArch64 uses the RELA relocation format, this requires a
1581	  relocation pass at runtime even if the kernel is loaded at the
1582	  same address it was linked at.
1583
1584config RANDOMIZE_BASE
1585	bool "Randomize the address of the kernel image"
1586	select ARM64_MODULE_PLTS if MODULES
1587	select RELOCATABLE
1588	help
1589	  Randomizes the virtual address at which the kernel image is
1590	  loaded, as a security feature that deters exploit attempts
1591	  relying on knowledge of the location of kernel internals.
1592
1593	  It is the bootloader's job to provide entropy, by passing a
1594	  random u64 value in /chosen/kaslr-seed at kernel entry.
1595
1596	  When booting via the UEFI stub, it will invoke the firmware's
1597	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1598	  to the kernel proper. In addition, it will randomise the physical
1599	  location of the kernel Image as well.
1600
1601	  If unsure, say N.
1602
1603config RANDOMIZE_MODULE_REGION_FULL
1604	bool "Randomize the module region over a 4 GB range"
1605	depends on RANDOMIZE_BASE
1606	default y
1607	help
1608	  Randomizes the location of the module region inside a 4 GB window
1609	  covering the core kernel. This way, it is less likely for modules
1610	  to leak information about the location of core kernel data structures
1611	  but it does imply that function calls between modules and the core
1612	  kernel will need to be resolved via veneers in the module PLT.
1613
1614	  When this option is not set, the module region will be randomized over
1615	  a limited range that contains the [_stext, _etext] interval of the
1616	  core kernel, so branch relocations are always in range.
1617
1618config CC_HAVE_STACKPROTECTOR_SYSREG
1619	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1620
1621config STACKPROTECTOR_PER_TASK
1622	def_bool y
1623	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1624
1625endmenu
1626
1627menu "Boot options"
1628
1629config ARM64_ACPI_PARKING_PROTOCOL
1630	bool "Enable support for the ARM64 ACPI parking protocol"
1631	depends on ACPI
1632	help
1633	  Enable support for the ARM64 ACPI parking protocol. If disabled
1634	  the kernel will not allow booting through the ARM64 ACPI parking
1635	  protocol even if the corresponding data is present in the ACPI
1636	  MADT table.
1637
1638config CMDLINE
1639	string "Default kernel command string"
1640	default ""
1641	help
1642	  Provide a set of default command-line options at build time by
1643	  entering them here. As a minimum, you should specify the the
1644	  root device (e.g. root=/dev/nfs).
1645
1646config CMDLINE_FORCE
1647	bool "Always use the default kernel command string"
1648	depends on CMDLINE != ""
1649	help
1650	  Always use the default kernel command string, even if the boot
1651	  loader passes other arguments to the kernel.
1652	  This is useful if you cannot or don't want to change the
1653	  command-line options your boot loader passes to the kernel.
1654
1655config EFI_STUB
1656	bool
1657
1658config EFI
1659	bool "UEFI runtime support"
1660	depends on OF && !CPU_BIG_ENDIAN
1661	depends on KERNEL_MODE_NEON
1662	select ARCH_SUPPORTS_ACPI
1663	select LIBFDT
1664	select UCS2_STRING
1665	select EFI_PARAMS_FROM_FDT
1666	select EFI_RUNTIME_WRAPPERS
1667	select EFI_STUB
1668	select EFI_ARMSTUB
1669	default y
1670	help
1671	  This option provides support for runtime services provided
1672	  by UEFI firmware (such as non-volatile variables, realtime
1673          clock, and platform reset). A UEFI stub is also provided to
1674	  allow the kernel to be booted as an EFI application. This
1675	  is only useful on systems that have UEFI firmware.
1676
1677config DMI
1678	bool "Enable support for SMBIOS (DMI) tables"
1679	depends on EFI
1680	default y
1681	help
1682	  This enables SMBIOS/DMI feature for systems.
1683
1684	  This option is only useful on systems that have UEFI firmware.
1685	  However, even with this option, the resultant kernel should
1686	  continue to boot on existing non-UEFI platforms.
1687
1688endmenu
1689
1690config SYSVIPC_COMPAT
1691	def_bool y
1692	depends on COMPAT && SYSVIPC
1693
1694config ARCH_ENABLE_HUGEPAGE_MIGRATION
1695	def_bool y
1696	depends on HUGETLB_PAGE && MIGRATION
1697
1698menu "Power management options"
1699
1700source "kernel/power/Kconfig"
1701
1702config ARCH_HIBERNATION_POSSIBLE
1703	def_bool y
1704	depends on CPU_PM
1705
1706config ARCH_HIBERNATION_HEADER
1707	def_bool y
1708	depends on HIBERNATION
1709
1710config ARCH_SUSPEND_POSSIBLE
1711	def_bool y
1712
1713endmenu
1714
1715menu "CPU Power Management"
1716
1717source "drivers/cpuidle/Kconfig"
1718
1719source "drivers/cpufreq/Kconfig"
1720
1721endmenu
1722
1723source "drivers/firmware/Kconfig"
1724
1725source "drivers/acpi/Kconfig"
1726
1727source "arch/arm64/kvm/Kconfig"
1728
1729if CRYPTO
1730source "arch/arm64/crypto/Kconfig"
1731endif
1732