1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_APMT if ACPI 5 select ACPI_CCA_REQUIRED if ACPI 6 select ACPI_GENERIC_GSI if ACPI 7 select ACPI_GTDT if ACPI 8 select ACPI_IORT if ACPI 9 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 10 select ACPI_MCFG if (ACPI && PCI) 11 select ACPI_SPCR_TABLE if ACPI 12 select ACPI_PPTT if ACPI 13 select ARCH_HAS_DEBUG_WX 14 select ARCH_BINFMT_ELF_EXTRA_PHDRS 15 select ARCH_BINFMT_ELF_STATE 16 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE 17 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 18 select ARCH_ENABLE_MEMORY_HOTPLUG 19 select ARCH_ENABLE_MEMORY_HOTREMOVE 20 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 21 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 22 select ARCH_HAS_CACHE_LINE_SIZE 23 select ARCH_HAS_CURRENT_STACK_POINTER 24 select ARCH_HAS_DEBUG_VIRTUAL 25 select ARCH_HAS_DEBUG_VM_PGTABLE 26 select ARCH_HAS_DMA_PREP_COHERENT 27 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 28 select ARCH_HAS_FAST_MULTIPLIER 29 select ARCH_HAS_FORTIFY_SOURCE 30 select ARCH_HAS_GCOV_PROFILE_ALL 31 select ARCH_HAS_GIGANTIC_PAGE 32 select ARCH_HAS_KCOV 33 select ARCH_HAS_KEEPINITRD 34 select ARCH_HAS_MEMBARRIER_SYNC_CORE 35 select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS 36 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 37 select ARCH_HAS_PTE_DEVMAP 38 select ARCH_HAS_PTE_SPECIAL 39 select ARCH_HAS_SETUP_DMA_OPS 40 select ARCH_HAS_SET_DIRECT_MAP 41 select ARCH_HAS_SET_MEMORY 42 select ARCH_STACKWALK 43 select ARCH_HAS_STRICT_KERNEL_RWX 44 select ARCH_HAS_STRICT_MODULE_RWX 45 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 46 select ARCH_HAS_SYNC_DMA_FOR_CPU 47 select ARCH_HAS_SYSCALL_WRAPPER 48 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 49 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 50 select ARCH_HAS_ZONE_DMA_SET if EXPERT 51 select ARCH_HAVE_ELF_PROT 52 select ARCH_HAVE_NMI_SAFE_CMPXCHG 53 select ARCH_HAVE_TRACE_MMIO_ACCESS 54 select ARCH_INLINE_READ_LOCK if !PREEMPTION 55 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 56 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 57 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 58 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 59 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 60 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 61 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 62 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 63 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 64 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 65 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 66 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 67 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 68 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 69 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 70 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 71 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 72 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 73 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 74 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 75 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 76 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 77 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 78 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 79 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 80 select ARCH_KEEP_MEMBLOCK 81 select ARCH_USE_CMPXCHG_LOCKREF 82 select ARCH_USE_GNU_PROPERTY 83 select ARCH_USE_MEMTEST 84 select ARCH_USE_QUEUED_RWLOCKS 85 select ARCH_USE_QUEUED_SPINLOCKS 86 select ARCH_USE_SYM_ANNOTATIONS 87 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 88 select ARCH_SUPPORTS_HUGETLBFS 89 select ARCH_SUPPORTS_MEMORY_FAILURE 90 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 91 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 92 select ARCH_SUPPORTS_LTO_CLANG_THIN 93 select ARCH_SUPPORTS_CFI_CLANG 94 select ARCH_SUPPORTS_ATOMIC_RMW 95 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 96 select ARCH_SUPPORTS_NUMA_BALANCING 97 select ARCH_SUPPORTS_PAGE_TABLE_CHECK 98 select ARCH_SUPPORTS_PER_VMA_LOCK 99 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 100 select ARCH_WANT_DEFAULT_BPF_JIT 101 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 102 select ARCH_WANT_FRAME_POINTERS 103 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 104 select ARCH_WANT_LD_ORPHAN_WARN 105 select ARCH_WANTS_NO_INSTR 106 select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES 107 select ARCH_HAS_UBSAN_SANITIZE_ALL 108 select ARM_AMBA 109 select ARM_ARCH_TIMER 110 select ARM_GIC 111 select AUDIT_ARCH_COMPAT_GENERIC 112 select ARM_GIC_V2M if PCI 113 select ARM_GIC_V3 114 select ARM_GIC_V3_ITS if PCI 115 select ARM_PSCI_FW 116 select BUILDTIME_TABLE_SORT 117 select CLONE_BACKWARDS 118 select COMMON_CLK 119 select CPU_PM if (SUSPEND || CPU_IDLE) 120 select CRC32 121 select DCACHE_WORD_ACCESS 122 select DYNAMIC_FTRACE if FUNCTION_TRACER 123 select DMA_BOUNCE_UNALIGNED_KMALLOC 124 select DMA_DIRECT_REMAP 125 select EDAC_SUPPORT 126 select FRAME_POINTER 127 select FUNCTION_ALIGNMENT_4B 128 select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS 129 select GENERIC_ALLOCATOR 130 select GENERIC_ARCH_TOPOLOGY 131 select GENERIC_CLOCKEVENTS_BROADCAST 132 select GENERIC_CPU_AUTOPROBE 133 select GENERIC_CPU_VULNERABILITIES 134 select GENERIC_EARLY_IOREMAP 135 select GENERIC_IDLE_POLL_SETUP 136 select GENERIC_IOREMAP 137 select GENERIC_IRQ_IPI 138 select GENERIC_IRQ_PROBE 139 select GENERIC_IRQ_SHOW 140 select GENERIC_IRQ_SHOW_LEVEL 141 select GENERIC_LIB_DEVMEM_IS_ALLOWED 142 select GENERIC_PCI_IOMAP 143 select GENERIC_PTDUMP 144 select GENERIC_SCHED_CLOCK 145 select GENERIC_SMP_IDLE_THREAD 146 select GENERIC_TIME_VSYSCALL 147 select GENERIC_GETTIMEOFDAY 148 select GENERIC_VDSO_TIME_NS 149 select HARDIRQS_SW_RESEND 150 select HAS_IOPORT 151 select HAVE_MOVE_PMD 152 select HAVE_MOVE_PUD 153 select HAVE_PCI 154 select HAVE_ACPI_APEI if (ACPI && EFI) 155 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 156 select HAVE_ARCH_AUDITSYSCALL 157 select HAVE_ARCH_BITREVERSE 158 select HAVE_ARCH_COMPILER_H 159 select HAVE_ARCH_HUGE_VMALLOC 160 select HAVE_ARCH_HUGE_VMAP 161 select HAVE_ARCH_JUMP_LABEL 162 select HAVE_ARCH_JUMP_LABEL_RELATIVE 163 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 164 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN 165 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 166 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE) 167 # Some instrumentation may be unsound, hence EXPERT 168 select HAVE_ARCH_KCSAN if EXPERT 169 select HAVE_ARCH_KFENCE 170 select HAVE_ARCH_KGDB 171 select HAVE_ARCH_MMAP_RND_BITS 172 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 173 select HAVE_ARCH_PREL32_RELOCATIONS 174 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 175 select HAVE_ARCH_SECCOMP_FILTER 176 select HAVE_ARCH_STACKLEAK 177 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 178 select HAVE_ARCH_TRACEHOOK 179 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 180 select HAVE_ARCH_VMAP_STACK 181 select HAVE_ARM_SMCCC 182 select HAVE_ASM_MODVERSIONS 183 select HAVE_EBPF_JIT 184 select HAVE_C_RECORDMCOUNT 185 select HAVE_CMPXCHG_DOUBLE 186 select HAVE_CMPXCHG_LOCAL 187 select HAVE_CONTEXT_TRACKING_USER 188 select HAVE_DEBUG_KMEMLEAK 189 select HAVE_DMA_CONTIGUOUS 190 select HAVE_DYNAMIC_FTRACE 191 select HAVE_DYNAMIC_FTRACE_WITH_ARGS \ 192 if $(cc-option,-fpatchable-function-entry=2) 193 select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \ 194 if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS 195 select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \ 196 if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \ 197 !CC_OPTIMIZE_FOR_SIZE) 198 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 199 if DYNAMIC_FTRACE_WITH_ARGS 200 select HAVE_EFFICIENT_UNALIGNED_ACCESS 201 select HAVE_FAST_GUP 202 select HAVE_FTRACE_MCOUNT_RECORD 203 select HAVE_FUNCTION_TRACER 204 select HAVE_FUNCTION_ERROR_INJECTION 205 select HAVE_FUNCTION_GRAPH_TRACER 206 select HAVE_GCC_PLUGINS 207 select HAVE_HARDLOCKUP_DETECTOR_PERF if PERF_EVENTS && \ 208 HW_PERF_EVENTS && HAVE_PERF_EVENTS_NMI 209 select HAVE_HW_BREAKPOINT if PERF_EVENTS 210 select HAVE_IOREMAP_PROT 211 select HAVE_IRQ_TIME_ACCOUNTING 212 select HAVE_KVM 213 select HAVE_MOD_ARCH_SPECIFIC 214 select HAVE_NMI 215 select HAVE_PERF_EVENTS 216 select HAVE_PERF_EVENTS_NMI if ARM64_PSEUDO_NMI 217 select HAVE_PERF_REGS 218 select HAVE_PERF_USER_STACK_DUMP 219 select HAVE_PREEMPT_DYNAMIC_KEY 220 select HAVE_REGS_AND_STACK_ACCESS_API 221 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 222 select HAVE_FUNCTION_ARG_ACCESS_API 223 select MMU_GATHER_RCU_TABLE_FREE 224 select HAVE_RSEQ 225 select HAVE_STACKPROTECTOR 226 select HAVE_SYSCALL_TRACEPOINTS 227 select HAVE_KPROBES 228 select HAVE_KRETPROBES 229 select HAVE_GENERIC_VDSO 230 select HOTPLUG_CORE_SYNC_DEAD if HOTPLUG_CPU 231 select IRQ_DOMAIN 232 select IRQ_FORCED_THREADING 233 select KASAN_VMALLOC if KASAN 234 select MODULES_USE_ELF_RELA 235 select NEED_DMA_MAP_STATE 236 select NEED_SG_DMA_LENGTH 237 select OF 238 select OF_EARLY_FLATTREE 239 select PCI_DOMAINS_GENERIC if PCI 240 select PCI_ECAM if (ACPI && PCI) 241 select PCI_SYSCALL if PCI 242 select POWER_RESET 243 select POWER_SUPPLY 244 select SPARSE_IRQ 245 select SWIOTLB 246 select SYSCTL_EXCEPTION_TRACE 247 select THREAD_INFO_IN_TASK 248 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 249 select TRACE_IRQFLAGS_SUPPORT 250 select TRACE_IRQFLAGS_NMI_SUPPORT 251 select HAVE_SOFTIRQ_ON_OWN_STACK 252 help 253 ARM 64-bit (AArch64) Linux support. 254 255config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 256 def_bool CC_IS_CLANG 257 # https://github.com/ClangBuiltLinux/linux/issues/1507 258 depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600)) 259 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 260 261config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS 262 def_bool CC_IS_GCC 263 depends on $(cc-option,-fpatchable-function-entry=2) 264 select HAVE_DYNAMIC_FTRACE_WITH_ARGS 265 266config 64BIT 267 def_bool y 268 269config MMU 270 def_bool y 271 272config ARM64_PAGE_SHIFT 273 int 274 default 16 if ARM64_64K_PAGES 275 default 14 if ARM64_16K_PAGES 276 default 12 277 278config ARM64_CONT_PTE_SHIFT 279 int 280 default 5 if ARM64_64K_PAGES 281 default 7 if ARM64_16K_PAGES 282 default 4 283 284config ARM64_CONT_PMD_SHIFT 285 int 286 default 5 if ARM64_64K_PAGES 287 default 5 if ARM64_16K_PAGES 288 default 4 289 290config ARCH_MMAP_RND_BITS_MIN 291 default 14 if ARM64_64K_PAGES 292 default 16 if ARM64_16K_PAGES 293 default 18 294 295# max bits determined by the following formula: 296# VA_BITS - PAGE_SHIFT - 3 297config ARCH_MMAP_RND_BITS_MAX 298 default 19 if ARM64_VA_BITS=36 299 default 24 if ARM64_VA_BITS=39 300 default 27 if ARM64_VA_BITS=42 301 default 30 if ARM64_VA_BITS=47 302 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 303 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 304 default 33 if ARM64_VA_BITS=48 305 default 14 if ARM64_64K_PAGES 306 default 16 if ARM64_16K_PAGES 307 default 18 308 309config ARCH_MMAP_RND_COMPAT_BITS_MIN 310 default 7 if ARM64_64K_PAGES 311 default 9 if ARM64_16K_PAGES 312 default 11 313 314config ARCH_MMAP_RND_COMPAT_BITS_MAX 315 default 16 316 317config NO_IOPORT_MAP 318 def_bool y if !PCI 319 320config STACKTRACE_SUPPORT 321 def_bool y 322 323config ILLEGAL_POINTER_VALUE 324 hex 325 default 0xdead000000000000 326 327config LOCKDEP_SUPPORT 328 def_bool y 329 330config GENERIC_BUG 331 def_bool y 332 depends on BUG 333 334config GENERIC_BUG_RELATIVE_POINTERS 335 def_bool y 336 depends on GENERIC_BUG 337 338config GENERIC_HWEIGHT 339 def_bool y 340 341config GENERIC_CSUM 342 def_bool y 343 344config GENERIC_CALIBRATE_DELAY 345 def_bool y 346 347config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 348 def_bool y 349 350config SMP 351 def_bool y 352 353config KERNEL_MODE_NEON 354 def_bool y 355 356config FIX_EARLYCON_MEM 357 def_bool y 358 359config PGTABLE_LEVELS 360 int 361 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 362 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 363 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 364 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 365 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 366 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 367 368config ARCH_SUPPORTS_UPROBES 369 def_bool y 370 371config ARCH_PROC_KCORE_TEXT 372 def_bool y 373 374config BROKEN_GAS_INST 375 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 376 377config BUILTIN_RETURN_ADDRESS_STRIPS_PAC 378 bool 379 # Clang's __builtin_return_adddress() strips the PAC since 12.0.0 380 # https://reviews.llvm.org/D75044 381 default y if CC_IS_CLANG && (CLANG_VERSION >= 120000) 382 # GCC's __builtin_return_address() strips the PAC since 11.1.0, 383 # and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier 384 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891 385 default y if CC_IS_GCC && (GCC_VERSION >= 110100) 386 default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000) 387 default y if CC_IS_GCC && (GCC_VERSION >= 90400) && (GCC_VERSION < 100000) 388 default y if CC_IS_GCC && (GCC_VERSION >= 80500) && (GCC_VERSION < 90000) 389 default n 390 391config KASAN_SHADOW_OFFSET 392 hex 393 depends on KASAN_GENERIC || KASAN_SW_TAGS 394 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 395 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 396 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 397 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 398 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 399 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 400 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 401 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 402 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 403 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 404 default 0xffffffffffffffff 405 406config UNWIND_TABLES 407 bool 408 409source "arch/arm64/Kconfig.platforms" 410 411menu "Kernel Features" 412 413menu "ARM errata workarounds via the alternatives framework" 414 415config ARM64_WORKAROUND_CLEAN_CACHE 416 bool 417 418config ARM64_ERRATUM_826319 419 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 420 default y 421 select ARM64_WORKAROUND_CLEAN_CACHE 422 help 423 This option adds an alternative code sequence to work around ARM 424 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 425 AXI master interface and an L2 cache. 426 427 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 428 and is unable to accept a certain write via this interface, it will 429 not progress on read data presented on the read data channel and the 430 system can deadlock. 431 432 The workaround promotes data cache clean instructions to 433 data cache clean-and-invalidate. 434 Please note that this does not necessarily enable the workaround, 435 as it depends on the alternative framework, which will only patch 436 the kernel if an affected CPU is detected. 437 438 If unsure, say Y. 439 440config ARM64_ERRATUM_827319 441 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 442 default y 443 select ARM64_WORKAROUND_CLEAN_CACHE 444 help 445 This option adds an alternative code sequence to work around ARM 446 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 447 master interface and an L2 cache. 448 449 Under certain conditions this erratum can cause a clean line eviction 450 to occur at the same time as another transaction to the same address 451 on the AMBA 5 CHI interface, which can cause data corruption if the 452 interconnect reorders the two transactions. 453 454 The workaround promotes data cache clean instructions to 455 data cache clean-and-invalidate. 456 Please note that this does not necessarily enable the workaround, 457 as it depends on the alternative framework, which will only patch 458 the kernel if an affected CPU is detected. 459 460 If unsure, say Y. 461 462config ARM64_ERRATUM_824069 463 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 464 default y 465 select ARM64_WORKAROUND_CLEAN_CACHE 466 help 467 This option adds an alternative code sequence to work around ARM 468 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 469 to a coherent interconnect. 470 471 If a Cortex-A53 processor is executing a store or prefetch for 472 write instruction at the same time as a processor in another 473 cluster is executing a cache maintenance operation to the same 474 address, then this erratum might cause a clean cache line to be 475 incorrectly marked as dirty. 476 477 The workaround promotes data cache clean instructions to 478 data cache clean-and-invalidate. 479 Please note that this option does not necessarily enable the 480 workaround, as it depends on the alternative framework, which will 481 only patch the kernel if an affected CPU is detected. 482 483 If unsure, say Y. 484 485config ARM64_ERRATUM_819472 486 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 487 default y 488 select ARM64_WORKAROUND_CLEAN_CACHE 489 help 490 This option adds an alternative code sequence to work around ARM 491 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 492 present when it is connected to a coherent interconnect. 493 494 If the processor is executing a load and store exclusive sequence at 495 the same time as a processor in another cluster is executing a cache 496 maintenance operation to the same address, then this erratum might 497 cause data corruption. 498 499 The workaround promotes data cache clean instructions to 500 data cache clean-and-invalidate. 501 Please note that this does not necessarily enable the workaround, 502 as it depends on the alternative framework, which will only patch 503 the kernel if an affected CPU is detected. 504 505 If unsure, say Y. 506 507config ARM64_ERRATUM_832075 508 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 509 default y 510 help 511 This option adds an alternative code sequence to work around ARM 512 erratum 832075 on Cortex-A57 parts up to r1p2. 513 514 Affected Cortex-A57 parts might deadlock when exclusive load/store 515 instructions to Write-Back memory are mixed with Device loads. 516 517 The workaround is to promote device loads to use Load-Acquire 518 semantics. 519 Please note that this does not necessarily enable the workaround, 520 as it depends on the alternative framework, which will only patch 521 the kernel if an affected CPU is detected. 522 523 If unsure, say Y. 524 525config ARM64_ERRATUM_834220 526 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 527 depends on KVM 528 default y 529 help 530 This option adds an alternative code sequence to work around ARM 531 erratum 834220 on Cortex-A57 parts up to r1p2. 532 533 Affected Cortex-A57 parts might report a Stage 2 translation 534 fault as the result of a Stage 1 fault for load crossing a 535 page boundary when there is a permission or device memory 536 alignment fault at Stage 1 and a translation fault at Stage 2. 537 538 The workaround is to verify that the Stage 1 translation 539 doesn't generate a fault before handling the Stage 2 fault. 540 Please note that this does not necessarily enable the workaround, 541 as it depends on the alternative framework, which will only patch 542 the kernel if an affected CPU is detected. 543 544 If unsure, say Y. 545 546config ARM64_ERRATUM_1742098 547 bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence" 548 depends on COMPAT 549 default y 550 help 551 This option removes the AES hwcap for aarch32 user-space to 552 workaround erratum 1742098 on Cortex-A57 and Cortex-A72. 553 554 Affected parts may corrupt the AES state if an interrupt is 555 taken between a pair of AES instructions. These instructions 556 are only present if the cryptography extensions are present. 557 All software should have a fallback implementation for CPUs 558 that don't implement the cryptography extensions. 559 560 If unsure, say Y. 561 562config ARM64_ERRATUM_845719 563 bool "Cortex-A53: 845719: a load might read incorrect data" 564 depends on COMPAT 565 default y 566 help 567 This option adds an alternative code sequence to work around ARM 568 erratum 845719 on Cortex-A53 parts up to r0p4. 569 570 When running a compat (AArch32) userspace on an affected Cortex-A53 571 part, a load at EL0 from a virtual address that matches the bottom 32 572 bits of the virtual address used by a recent load at (AArch64) EL1 573 might return incorrect data. 574 575 The workaround is to write the contextidr_el1 register on exception 576 return to a 32-bit task. 577 Please note that this does not necessarily enable the workaround, 578 as it depends on the alternative framework, which will only patch 579 the kernel if an affected CPU is detected. 580 581 If unsure, say Y. 582 583config ARM64_ERRATUM_843419 584 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 585 default y 586 help 587 This option links the kernel with '--fix-cortex-a53-843419' and 588 enables PLT support to replace certain ADRP instructions, which can 589 cause subsequent memory accesses to use an incorrect address on 590 Cortex-A53 parts up to r0p4. 591 592 If unsure, say Y. 593 594config ARM64_LD_HAS_FIX_ERRATUM_843419 595 def_bool $(ld-option,--fix-cortex-a53-843419) 596 597config ARM64_ERRATUM_1024718 598 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 599 default y 600 help 601 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 602 603 Affected Cortex-A55 cores (all revisions) could cause incorrect 604 update of the hardware dirty bit when the DBM/AP bits are updated 605 without a break-before-make. The workaround is to disable the usage 606 of hardware DBM locally on the affected cores. CPUs not affected by 607 this erratum will continue to use the feature. 608 609 If unsure, say Y. 610 611config ARM64_ERRATUM_1418040 612 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 613 default y 614 depends on COMPAT 615 help 616 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 617 errata 1188873 and 1418040. 618 619 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 620 cause register corruption when accessing the timer registers 621 from AArch32 userspace. 622 623 If unsure, say Y. 624 625config ARM64_WORKAROUND_SPECULATIVE_AT 626 bool 627 628config ARM64_ERRATUM_1165522 629 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 630 default y 631 select ARM64_WORKAROUND_SPECULATIVE_AT 632 help 633 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 634 635 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 636 corrupted TLBs by speculating an AT instruction during a guest 637 context switch. 638 639 If unsure, say Y. 640 641config ARM64_ERRATUM_1319367 642 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 643 default y 644 select ARM64_WORKAROUND_SPECULATIVE_AT 645 help 646 This option adds work arounds for ARM Cortex-A57 erratum 1319537 647 and A72 erratum 1319367 648 649 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 650 speculating an AT instruction during a guest context switch. 651 652 If unsure, say Y. 653 654config ARM64_ERRATUM_1530923 655 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 656 default y 657 select ARM64_WORKAROUND_SPECULATIVE_AT 658 help 659 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 660 661 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 662 corrupted TLBs by speculating an AT instruction during a guest 663 context switch. 664 665 If unsure, say Y. 666 667config ARM64_WORKAROUND_REPEAT_TLBI 668 bool 669 670config ARM64_ERRATUM_2441007 671 bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI" 672 default y 673 select ARM64_WORKAROUND_REPEAT_TLBI 674 help 675 This option adds a workaround for ARM Cortex-A55 erratum #2441007. 676 677 Under very rare circumstances, affected Cortex-A55 CPUs 678 may not handle a race between a break-before-make sequence on one 679 CPU, and another CPU accessing the same page. This could allow a 680 store to a page that has been unmapped. 681 682 Work around this by adding the affected CPUs to the list that needs 683 TLB sequences to be done twice. 684 685 If unsure, say Y. 686 687config ARM64_ERRATUM_1286807 688 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 689 default y 690 select ARM64_WORKAROUND_REPEAT_TLBI 691 help 692 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 693 694 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 695 address for a cacheable mapping of a location is being 696 accessed by a core while another core is remapping the virtual 697 address to a new physical page using the recommended 698 break-before-make sequence, then under very rare circumstances 699 TLBI+DSB completes before a read using the translation being 700 invalidated has been observed by other observers. The 701 workaround repeats the TLBI+DSB operation. 702 703config ARM64_ERRATUM_1463225 704 bool "Cortex-A76: Software Step might prevent interrupt recognition" 705 default y 706 help 707 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 708 709 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 710 of a system call instruction (SVC) can prevent recognition of 711 subsequent interrupts when software stepping is disabled in the 712 exception handler of the system call and either kernel debugging 713 is enabled or VHE is in use. 714 715 Work around the erratum by triggering a dummy step exception 716 when handling a system call from a task that is being stepped 717 in a VHE configuration of the kernel. 718 719 If unsure, say Y. 720 721config ARM64_ERRATUM_1542419 722 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 723 default y 724 help 725 This option adds a workaround for ARM Neoverse-N1 erratum 726 1542419. 727 728 Affected Neoverse-N1 cores could execute a stale instruction when 729 modified by another CPU. The workaround depends on a firmware 730 counterpart. 731 732 Workaround the issue by hiding the DIC feature from EL0. This 733 forces user-space to perform cache maintenance. 734 735 If unsure, say Y. 736 737config ARM64_ERRATUM_1508412 738 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 739 default y 740 help 741 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 742 743 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 744 of a store-exclusive or read of PAR_EL1 and a load with device or 745 non-cacheable memory attributes. The workaround depends on a firmware 746 counterpart. 747 748 KVM guests must also have the workaround implemented or they can 749 deadlock the system. 750 751 Work around the issue by inserting DMB SY barriers around PAR_EL1 752 register reads and warning KVM users. The DMB barrier is sufficient 753 to prevent a speculative PAR_EL1 read. 754 755 If unsure, say Y. 756 757config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 758 bool 759 760config ARM64_ERRATUM_2051678 761 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit" 762 default y 763 help 764 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678. 765 Affected Cortex-A510 might not respect the ordering rules for 766 hardware update of the page table's dirty bit. The workaround 767 is to not enable the feature on affected CPUs. 768 769 If unsure, say Y. 770 771config ARM64_ERRATUM_2077057 772 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2" 773 default y 774 help 775 This option adds the workaround for ARM Cortex-A510 erratum 2077057. 776 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is 777 expected, but a Pointer Authentication trap is taken instead. The 778 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow 779 EL1 to cause a return to EL2 with a guest controlled ELR_EL2. 780 781 This can only happen when EL2 is stepping EL1. 782 783 When these conditions occur, the SPSR_EL2 value is unchanged from the 784 previous guest entry, and can be restored from the in-memory copy. 785 786 If unsure, say Y. 787 788config ARM64_ERRATUM_2658417 789 bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result" 790 default y 791 help 792 This option adds the workaround for ARM Cortex-A510 erratum 2658417. 793 Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for 794 BFMMLA or VMMLA instructions in rare circumstances when a pair of 795 A510 CPUs are using shared neon hardware. As the sharing is not 796 discoverable by the kernel, hide the BF16 HWCAP to indicate that 797 user-space should not be using these instructions. 798 799 If unsure, say Y. 800 801config ARM64_ERRATUM_2119858 802 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode" 803 default y 804 depends on CORESIGHT_TRBE 805 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 806 help 807 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858. 808 809 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace 810 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 811 the event of a WRAP event. 812 813 Work around the issue by always making sure we move the TRBPTR_EL1 by 814 256 bytes before enabling the buffer and filling the first 256 bytes of 815 the buffer with ETM ignore packets upon disabling. 816 817 If unsure, say Y. 818 819config ARM64_ERRATUM_2139208 820 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode" 821 default y 822 depends on CORESIGHT_TRBE 823 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 824 help 825 This option adds the workaround for ARM Neoverse-N2 erratum 2139208. 826 827 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace 828 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 829 the event of a WRAP event. 830 831 Work around the issue by always making sure we move the TRBPTR_EL1 by 832 256 bytes before enabling the buffer and filling the first 256 bytes of 833 the buffer with ETM ignore packets upon disabling. 834 835 If unsure, say Y. 836 837config ARM64_WORKAROUND_TSB_FLUSH_FAILURE 838 bool 839 840config ARM64_ERRATUM_2054223 841 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace" 842 default y 843 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 844 help 845 Enable workaround for ARM Cortex-A710 erratum 2054223 846 847 Affected cores may fail to flush the trace data on a TSB instruction, when 848 the PE is in trace prohibited state. This will cause losing a few bytes 849 of the trace cached. 850 851 Workaround is to issue two TSB consecutively on affected cores. 852 853 If unsure, say Y. 854 855config ARM64_ERRATUM_2067961 856 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace" 857 default y 858 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 859 help 860 Enable workaround for ARM Neoverse-N2 erratum 2067961 861 862 Affected cores may fail to flush the trace data on a TSB instruction, when 863 the PE is in trace prohibited state. This will cause losing a few bytes 864 of the trace cached. 865 866 Workaround is to issue two TSB consecutively on affected cores. 867 868 If unsure, say Y. 869 870config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 871 bool 872 873config ARM64_ERRATUM_2253138 874 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range" 875 depends on CORESIGHT_TRBE 876 default y 877 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 878 help 879 This option adds the workaround for ARM Neoverse-N2 erratum 2253138. 880 881 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved 882 for TRBE. Under some conditions, the TRBE might generate a write to the next 883 virtually addressed page following the last page of the TRBE address space 884 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 885 886 Work around this in the driver by always making sure that there is a 887 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 888 889 If unsure, say Y. 890 891config ARM64_ERRATUM_2224489 892 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range" 893 depends on CORESIGHT_TRBE 894 default y 895 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 896 help 897 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489. 898 899 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved 900 for TRBE. Under some conditions, the TRBE might generate a write to the next 901 virtually addressed page following the last page of the TRBE address space 902 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 903 904 Work around this in the driver by always making sure that there is a 905 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 906 907 If unsure, say Y. 908 909config ARM64_ERRATUM_2441009 910 bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI" 911 default y 912 select ARM64_WORKAROUND_REPEAT_TLBI 913 help 914 This option adds a workaround for ARM Cortex-A510 erratum #2441009. 915 916 Under very rare circumstances, affected Cortex-A510 CPUs 917 may not handle a race between a break-before-make sequence on one 918 CPU, and another CPU accessing the same page. This could allow a 919 store to a page that has been unmapped. 920 921 Work around this by adding the affected CPUs to the list that needs 922 TLB sequences to be done twice. 923 924 If unsure, say Y. 925 926config ARM64_ERRATUM_2064142 927 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled" 928 depends on CORESIGHT_TRBE 929 default y 930 help 931 This option adds the workaround for ARM Cortex-A510 erratum 2064142. 932 933 Affected Cortex-A510 core might fail to write into system registers after the 934 TRBE has been disabled. Under some conditions after the TRBE has been disabled 935 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1, 936 and TRBTRG_EL1 will be ignored and will not be effected. 937 938 Work around this in the driver by executing TSB CSYNC and DSB after collection 939 is stopped and before performing a system register write to one of the affected 940 registers. 941 942 If unsure, say Y. 943 944config ARM64_ERRATUM_2038923 945 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable" 946 depends on CORESIGHT_TRBE 947 default y 948 help 949 This option adds the workaround for ARM Cortex-A510 erratum 2038923. 950 951 Affected Cortex-A510 core might cause an inconsistent view on whether trace is 952 prohibited within the CPU. As a result, the trace buffer or trace buffer state 953 might be corrupted. This happens after TRBE buffer has been enabled by setting 954 TRBLIMITR_EL1.E, followed by just a single context synchronization event before 955 execution changes from a context, in which trace is prohibited to one where it 956 isn't, or vice versa. In these mentioned conditions, the view of whether trace 957 is prohibited is inconsistent between parts of the CPU, and the trace buffer or 958 the trace buffer state might be corrupted. 959 960 Work around this in the driver by preventing an inconsistent view of whether the 961 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a 962 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or 963 two ISB instructions if no ERET is to take place. 964 965 If unsure, say Y. 966 967config ARM64_ERRATUM_1902691 968 bool "Cortex-A510: 1902691: workaround TRBE trace corruption" 969 depends on CORESIGHT_TRBE 970 default y 971 help 972 This option adds the workaround for ARM Cortex-A510 erratum 1902691. 973 974 Affected Cortex-A510 core might cause trace data corruption, when being written 975 into the memory. Effectively TRBE is broken and hence cannot be used to capture 976 trace data. 977 978 Work around this problem in the driver by just preventing TRBE initialization on 979 affected cpus. The firmware must have disabled the access to TRBE for the kernel 980 on such implementations. This will cover the kernel for any firmware that doesn't 981 do this already. 982 983 If unsure, say Y. 984 985config ARM64_ERRATUM_2457168 986 bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly" 987 depends on ARM64_AMU_EXTN 988 default y 989 help 990 This option adds the workaround for ARM Cortex-A510 erratum 2457168. 991 992 The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate 993 as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments 994 incorrectly giving a significantly higher output value. 995 996 Work around this problem by returning 0 when reading the affected counter in 997 key locations that results in disabling all users of this counter. This effect 998 is the same to firmware disabling affected counters. 999 1000 If unsure, say Y. 1001 1002config ARM64_ERRATUM_2645198 1003 bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption" 1004 default y 1005 help 1006 This option adds the workaround for ARM Cortex-A715 erratum 2645198. 1007 1008 If a Cortex-A715 cpu sees a page mapping permissions change from executable 1009 to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the 1010 next instruction abort caused by permission fault. 1011 1012 Only user-space does executable to non-executable permission transition via 1013 mprotect() system call. Workaround the problem by doing a break-before-make 1014 TLB invalidation, for all changes to executable user space mappings. 1015 1016 If unsure, say Y. 1017 1018config CAVIUM_ERRATUM_22375 1019 bool "Cavium erratum 22375, 24313" 1020 default y 1021 help 1022 Enable workaround for errata 22375 and 24313. 1023 1024 This implements two gicv3-its errata workarounds for ThunderX. Both 1025 with a small impact affecting only ITS table allocation. 1026 1027 erratum 22375: only alloc 8MB table size 1028 erratum 24313: ignore memory access type 1029 1030 The fixes are in ITS initialization and basically ignore memory access 1031 type and table size provided by the TYPER and BASER registers. 1032 1033 If unsure, say Y. 1034 1035config CAVIUM_ERRATUM_23144 1036 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 1037 depends on NUMA 1038 default y 1039 help 1040 ITS SYNC command hang for cross node io and collections/cpu mapping. 1041 1042 If unsure, say Y. 1043 1044config CAVIUM_ERRATUM_23154 1045 bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation" 1046 default y 1047 help 1048 The ThunderX GICv3 implementation requires a modified version for 1049 reading the IAR status to ensure data synchronization 1050 (access to icc_iar1_el1 is not sync'ed before and after). 1051 1052 It also suffers from erratum 38545 (also present on Marvell's 1053 OcteonTX and OcteonTX2), resulting in deactivated interrupts being 1054 spuriously presented to the CPU interface. 1055 1056 If unsure, say Y. 1057 1058config CAVIUM_ERRATUM_27456 1059 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 1060 default y 1061 help 1062 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 1063 instructions may cause the icache to become corrupted if it 1064 contains data for a non-current ASID. The fix is to 1065 invalidate the icache when changing the mm context. 1066 1067 If unsure, say Y. 1068 1069config CAVIUM_ERRATUM_30115 1070 bool "Cavium erratum 30115: Guest may disable interrupts in host" 1071 default y 1072 help 1073 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 1074 1.2, and T83 Pass 1.0, KVM guest execution may disable 1075 interrupts in host. Trapping both GICv3 group-0 and group-1 1076 accesses sidesteps the issue. 1077 1078 If unsure, say Y. 1079 1080config CAVIUM_TX2_ERRATUM_219 1081 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 1082 default y 1083 help 1084 On Cavium ThunderX2, a load, store or prefetch instruction between a 1085 TTBR update and the corresponding context synchronizing operation can 1086 cause a spurious Data Abort to be delivered to any hardware thread in 1087 the CPU core. 1088 1089 Work around the issue by avoiding the problematic code sequence and 1090 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 1091 trap handler performs the corresponding register access, skips the 1092 instruction and ensures context synchronization by virtue of the 1093 exception return. 1094 1095 If unsure, say Y. 1096 1097config FUJITSU_ERRATUM_010001 1098 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 1099 default y 1100 help 1101 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 1102 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 1103 accesses may cause undefined fault (Data abort, DFSC=0b111111). 1104 This fault occurs under a specific hardware condition when a 1105 load/store instruction performs an address translation using: 1106 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 1107 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 1108 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 1109 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 1110 1111 The workaround is to ensure these bits are clear in TCR_ELx. 1112 The workaround only affects the Fujitsu-A64FX. 1113 1114 If unsure, say Y. 1115 1116config HISILICON_ERRATUM_161600802 1117 bool "Hip07 161600802: Erroneous redistributor VLPI base" 1118 default y 1119 help 1120 The HiSilicon Hip07 SoC uses the wrong redistributor base 1121 when issued ITS commands such as VMOVP and VMAPP, and requires 1122 a 128kB offset to be applied to the target address in this commands. 1123 1124 If unsure, say Y. 1125 1126config QCOM_FALKOR_ERRATUM_1003 1127 bool "Falkor E1003: Incorrect translation due to ASID change" 1128 default y 1129 help 1130 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 1131 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 1132 in TTBR1_EL1, this situation only occurs in the entry trampoline and 1133 then only for entries in the walk cache, since the leaf translation 1134 is unchanged. Work around the erratum by invalidating the walk cache 1135 entries for the trampoline before entering the kernel proper. 1136 1137config QCOM_FALKOR_ERRATUM_1009 1138 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 1139 default y 1140 select ARM64_WORKAROUND_REPEAT_TLBI 1141 help 1142 On Falkor v1, the CPU may prematurely complete a DSB following a 1143 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 1144 one more time to fix the issue. 1145 1146 If unsure, say Y. 1147 1148config QCOM_QDF2400_ERRATUM_0065 1149 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 1150 default y 1151 help 1152 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 1153 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 1154 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 1155 1156 If unsure, say Y. 1157 1158config QCOM_FALKOR_ERRATUM_E1041 1159 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 1160 default y 1161 help 1162 Falkor CPU may speculatively fetch instructions from an improper 1163 memory location when MMU translation is changed from SCTLR_ELn[M]=1 1164 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 1165 1166 If unsure, say Y. 1167 1168config NVIDIA_CARMEL_CNP_ERRATUM 1169 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 1170 default y 1171 help 1172 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 1173 invalidate shared TLB entries installed by a different core, as it would 1174 on standard ARM cores. 1175 1176 If unsure, say Y. 1177 1178config ROCKCHIP_ERRATUM_3588001 1179 bool "Rockchip 3588001: GIC600 can not support shareability attributes" 1180 default y 1181 help 1182 The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite. 1183 This means, that its sharability feature may not be used, even though it 1184 is supported by the IP itself. 1185 1186 If unsure, say Y. 1187 1188config SOCIONEXT_SYNQUACER_PREITS 1189 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 1190 default y 1191 help 1192 Socionext Synquacer SoCs implement a separate h/w block to generate 1193 MSI doorbell writes with non-zero values for the device ID. 1194 1195 If unsure, say Y. 1196 1197endmenu # "ARM errata workarounds via the alternatives framework" 1198 1199choice 1200 prompt "Page size" 1201 default ARM64_4K_PAGES 1202 help 1203 Page size (translation granule) configuration. 1204 1205config ARM64_4K_PAGES 1206 bool "4KB" 1207 help 1208 This feature enables 4KB pages support. 1209 1210config ARM64_16K_PAGES 1211 bool "16KB" 1212 help 1213 The system will use 16KB pages support. AArch32 emulation 1214 requires applications compiled with 16K (or a multiple of 16K) 1215 aligned segments. 1216 1217config ARM64_64K_PAGES 1218 bool "64KB" 1219 help 1220 This feature enables 64KB pages support (4KB by default) 1221 allowing only two levels of page tables and faster TLB 1222 look-up. AArch32 emulation requires applications compiled 1223 with 64K aligned segments. 1224 1225endchoice 1226 1227choice 1228 prompt "Virtual address space size" 1229 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 1230 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 1231 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 1232 help 1233 Allows choosing one of multiple possible virtual address 1234 space sizes. The level of translation table is determined by 1235 a combination of page size and virtual address space size. 1236 1237config ARM64_VA_BITS_36 1238 bool "36-bit" if EXPERT 1239 depends on ARM64_16K_PAGES 1240 1241config ARM64_VA_BITS_39 1242 bool "39-bit" 1243 depends on ARM64_4K_PAGES 1244 1245config ARM64_VA_BITS_42 1246 bool "42-bit" 1247 depends on ARM64_64K_PAGES 1248 1249config ARM64_VA_BITS_47 1250 bool "47-bit" 1251 depends on ARM64_16K_PAGES 1252 1253config ARM64_VA_BITS_48 1254 bool "48-bit" 1255 1256config ARM64_VA_BITS_52 1257 bool "52-bit" 1258 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 1259 help 1260 Enable 52-bit virtual addressing for userspace when explicitly 1261 requested via a hint to mmap(). The kernel will also use 52-bit 1262 virtual addresses for its own mappings (provided HW support for 1263 this feature is available, otherwise it reverts to 48-bit). 1264 1265 NOTE: Enabling 52-bit virtual addressing in conjunction with 1266 ARMv8.3 Pointer Authentication will result in the PAC being 1267 reduced from 7 bits to 3 bits, which may have a significant 1268 impact on its susceptibility to brute-force attacks. 1269 1270 If unsure, select 48-bit virtual addressing instead. 1271 1272endchoice 1273 1274config ARM64_FORCE_52BIT 1275 bool "Force 52-bit virtual addresses for userspace" 1276 depends on ARM64_VA_BITS_52 && EXPERT 1277 help 1278 For systems with 52-bit userspace VAs enabled, the kernel will attempt 1279 to maintain compatibility with older software by providing 48-bit VAs 1280 unless a hint is supplied to mmap. 1281 1282 This configuration option disables the 48-bit compatibility logic, and 1283 forces all userspace addresses to be 52-bit on HW that supports it. One 1284 should only enable this configuration option for stress testing userspace 1285 memory management code. If unsure say N here. 1286 1287config ARM64_VA_BITS 1288 int 1289 default 36 if ARM64_VA_BITS_36 1290 default 39 if ARM64_VA_BITS_39 1291 default 42 if ARM64_VA_BITS_42 1292 default 47 if ARM64_VA_BITS_47 1293 default 48 if ARM64_VA_BITS_48 1294 default 52 if ARM64_VA_BITS_52 1295 1296choice 1297 prompt "Physical address space size" 1298 default ARM64_PA_BITS_48 1299 help 1300 Choose the maximum physical address range that the kernel will 1301 support. 1302 1303config ARM64_PA_BITS_48 1304 bool "48-bit" 1305 1306config ARM64_PA_BITS_52 1307 bool "52-bit (ARMv8.2)" 1308 depends on ARM64_64K_PAGES 1309 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1310 help 1311 Enable support for a 52-bit physical address space, introduced as 1312 part of the ARMv8.2-LPA extension. 1313 1314 With this enabled, the kernel will also continue to work on CPUs that 1315 do not support ARMv8.2-LPA, but with some added memory overhead (and 1316 minor performance overhead). 1317 1318endchoice 1319 1320config ARM64_PA_BITS 1321 int 1322 default 48 if ARM64_PA_BITS_48 1323 default 52 if ARM64_PA_BITS_52 1324 1325choice 1326 prompt "Endianness" 1327 default CPU_LITTLE_ENDIAN 1328 help 1329 Select the endianness of data accesses performed by the CPU. Userspace 1330 applications will need to be compiled and linked for the endianness 1331 that is selected here. 1332 1333config CPU_BIG_ENDIAN 1334 bool "Build big-endian kernel" 1335 depends on !LD_IS_LLD || LLD_VERSION >= 130000 1336 help 1337 Say Y if you plan on running a kernel with a big-endian userspace. 1338 1339config CPU_LITTLE_ENDIAN 1340 bool "Build little-endian kernel" 1341 help 1342 Say Y if you plan on running a kernel with a little-endian userspace. 1343 This is usually the case for distributions targeting arm64. 1344 1345endchoice 1346 1347config SCHED_MC 1348 bool "Multi-core scheduler support" 1349 help 1350 Multi-core scheduler support improves the CPU scheduler's decision 1351 making when dealing with multi-core CPU chips at a cost of slightly 1352 increased overhead in some places. If unsure say N here. 1353 1354config SCHED_CLUSTER 1355 bool "Cluster scheduler support" 1356 help 1357 Cluster scheduler support improves the CPU scheduler's decision 1358 making when dealing with machines that have clusters of CPUs. 1359 Cluster usually means a couple of CPUs which are placed closely 1360 by sharing mid-level caches, last-level cache tags or internal 1361 busses. 1362 1363config SCHED_SMT 1364 bool "SMT scheduler support" 1365 help 1366 Improves the CPU scheduler's decision making when dealing with 1367 MultiThreading at a cost of slightly increased overhead in some 1368 places. If unsure say N here. 1369 1370config NR_CPUS 1371 int "Maximum number of CPUs (2-4096)" 1372 range 2 4096 1373 default "256" 1374 1375config HOTPLUG_CPU 1376 bool "Support for hot-pluggable CPUs" 1377 select GENERIC_IRQ_MIGRATION 1378 help 1379 Say Y here to experiment with turning CPUs off and on. CPUs 1380 can be controlled through /sys/devices/system/cpu. 1381 1382# Common NUMA Features 1383config NUMA 1384 bool "NUMA Memory Allocation and Scheduler Support" 1385 select GENERIC_ARCH_NUMA 1386 select ACPI_NUMA if ACPI 1387 select OF_NUMA 1388 select HAVE_SETUP_PER_CPU_AREA 1389 select NEED_PER_CPU_EMBED_FIRST_CHUNK 1390 select NEED_PER_CPU_PAGE_FIRST_CHUNK 1391 select USE_PERCPU_NUMA_NODE_ID 1392 help 1393 Enable NUMA (Non-Uniform Memory Access) support. 1394 1395 The kernel will try to allocate memory used by a CPU on the 1396 local memory of the CPU and add some more 1397 NUMA awareness to the kernel. 1398 1399config NODES_SHIFT 1400 int "Maximum NUMA Nodes (as a power of 2)" 1401 range 1 10 1402 default "4" 1403 depends on NUMA 1404 help 1405 Specify the maximum number of NUMA Nodes available on the target 1406 system. Increases memory reserved to accommodate various tables. 1407 1408source "kernel/Kconfig.hz" 1409 1410config ARCH_SPARSEMEM_ENABLE 1411 def_bool y 1412 select SPARSEMEM_VMEMMAP_ENABLE 1413 select SPARSEMEM_VMEMMAP 1414 1415config HW_PERF_EVENTS 1416 def_bool y 1417 depends on ARM_PMU 1418 1419# Supported by clang >= 7.0 or GCC >= 12.0.0 1420config CC_HAVE_SHADOW_CALL_STACK 1421 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1422 1423config PARAVIRT 1424 bool "Enable paravirtualization code" 1425 help 1426 This changes the kernel so it can modify itself when it is run 1427 under a hypervisor, potentially improving performance significantly 1428 over full virtualization. 1429 1430config PARAVIRT_TIME_ACCOUNTING 1431 bool "Paravirtual steal time accounting" 1432 select PARAVIRT 1433 help 1434 Select this option to enable fine granularity task steal time 1435 accounting. Time spent executing other tasks in parallel with 1436 the current vCPU is discounted from the vCPU power. To account for 1437 that, there can be a small performance impact. 1438 1439 If in doubt, say N here. 1440 1441config KEXEC 1442 depends on PM_SLEEP_SMP 1443 select KEXEC_CORE 1444 bool "kexec system call" 1445 help 1446 kexec is a system call that implements the ability to shutdown your 1447 current kernel, and to start another kernel. It is like a reboot 1448 but it is independent of the system firmware. And like a reboot 1449 you can start any kernel with it, not just Linux. 1450 1451config KEXEC_FILE 1452 bool "kexec file based system call" 1453 select KEXEC_CORE 1454 select HAVE_IMA_KEXEC if IMA 1455 help 1456 This is new version of kexec system call. This system call is 1457 file based and takes file descriptors as system call argument 1458 for kernel and initramfs as opposed to list of segments as 1459 accepted by previous system call. 1460 1461config KEXEC_SIG 1462 bool "Verify kernel signature during kexec_file_load() syscall" 1463 depends on KEXEC_FILE 1464 help 1465 Select this option to verify a signature with loaded kernel 1466 image. If configured, any attempt of loading a image without 1467 valid signature will fail. 1468 1469 In addition to that option, you need to enable signature 1470 verification for the corresponding kernel image type being 1471 loaded in order for this to work. 1472 1473config KEXEC_IMAGE_VERIFY_SIG 1474 bool "Enable Image signature verification support" 1475 default y 1476 depends on KEXEC_SIG 1477 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1478 help 1479 Enable Image signature verification support. 1480 1481comment "Support for PE file signature verification disabled" 1482 depends on KEXEC_SIG 1483 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1484 1485config CRASH_DUMP 1486 bool "Build kdump crash kernel" 1487 help 1488 Generate crash dump after being started by kexec. This should 1489 be normally only set in special crash dump kernels which are 1490 loaded in the main kernel with kexec-tools into a specially 1491 reserved region and then later executed after a crash by 1492 kdump/kexec. 1493 1494 For more details see Documentation/admin-guide/kdump/kdump.rst 1495 1496config TRANS_TABLE 1497 def_bool y 1498 depends on HIBERNATION || KEXEC_CORE 1499 1500config XEN_DOM0 1501 def_bool y 1502 depends on XEN 1503 1504config XEN 1505 bool "Xen guest support on ARM64" 1506 depends on ARM64 && OF 1507 select SWIOTLB_XEN 1508 select PARAVIRT 1509 help 1510 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1511 1512# include/linux/mmzone.h requires the following to be true: 1513# 1514# MAX_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1515# 1516# so the maximum value of MAX_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT: 1517# 1518# | SECTION_SIZE_BITS | PAGE_SHIFT | max MAX_ORDER | default MAX_ORDER | 1519# ----+-------------------+--------------+-----------------+--------------------+ 1520# 4K | 27 | 12 | 15 | 10 | 1521# 16K | 27 | 14 | 13 | 11 | 1522# 64K | 29 | 16 | 13 | 13 | 1523config ARCH_FORCE_MAX_ORDER 1524 int 1525 default "13" if ARM64_64K_PAGES 1526 default "11" if ARM64_16K_PAGES 1527 default "10" 1528 help 1529 The kernel page allocator limits the size of maximal physically 1530 contiguous allocations. The limit is called MAX_ORDER and it 1531 defines the maximal power of two of number of pages that can be 1532 allocated as a single contiguous block. This option allows 1533 overriding the default setting when ability to allocate very 1534 large blocks of physically contiguous memory is required. 1535 1536 The maximal size of allocation cannot exceed the size of the 1537 section, so the value of MAX_ORDER should satisfy 1538 1539 MAX_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS 1540 1541 Don't change if unsure. 1542 1543config UNMAP_KERNEL_AT_EL0 1544 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1545 default y 1546 help 1547 Speculation attacks against some high-performance processors can 1548 be used to bypass MMU permission checks and leak kernel data to 1549 userspace. This can be defended against by unmapping the kernel 1550 when running in userspace, mapping it back in on exception entry 1551 via a trampoline page in the vector table. 1552 1553 If unsure, say Y. 1554 1555config MITIGATE_SPECTRE_BRANCH_HISTORY 1556 bool "Mitigate Spectre style attacks against branch history" if EXPERT 1557 default y 1558 help 1559 Speculation attacks against some high-performance processors can 1560 make use of branch history to influence future speculation. 1561 When taking an exception from user-space, a sequence of branches 1562 or a firmware call overwrites the branch history. 1563 1564config RODATA_FULL_DEFAULT_ENABLED 1565 bool "Apply r/o permissions of VM areas also to their linear aliases" 1566 default y 1567 help 1568 Apply read-only attributes of VM areas to the linear alias of 1569 the backing pages as well. This prevents code or read-only data 1570 from being modified (inadvertently or intentionally) via another 1571 mapping of the same memory page. This additional enhancement can 1572 be turned off at runtime by passing rodata=[off|on] (and turned on 1573 with rodata=full if this option is set to 'n') 1574 1575 This requires the linear region to be mapped down to pages, 1576 which may adversely affect performance in some cases. 1577 1578config ARM64_SW_TTBR0_PAN 1579 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1580 help 1581 Enabling this option prevents the kernel from accessing 1582 user-space memory directly by pointing TTBR0_EL1 to a reserved 1583 zeroed area and reserved ASID. The user access routines 1584 restore the valid TTBR0_EL1 temporarily. 1585 1586config ARM64_TAGGED_ADDR_ABI 1587 bool "Enable the tagged user addresses syscall ABI" 1588 default y 1589 help 1590 When this option is enabled, user applications can opt in to a 1591 relaxed ABI via prctl() allowing tagged addresses to be passed 1592 to system calls as pointer arguments. For details, see 1593 Documentation/arch/arm64/tagged-address-abi.rst. 1594 1595menuconfig COMPAT 1596 bool "Kernel support for 32-bit EL0" 1597 depends on ARM64_4K_PAGES || EXPERT 1598 select HAVE_UID16 1599 select OLD_SIGSUSPEND3 1600 select COMPAT_OLD_SIGACTION 1601 help 1602 This option enables support for a 32-bit EL0 running under a 64-bit 1603 kernel at EL1. AArch32-specific components such as system calls, 1604 the user helper functions, VFP support and the ptrace interface are 1605 handled appropriately by the kernel. 1606 1607 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1608 that you will only be able to execute AArch32 binaries that were compiled 1609 with page size aligned segments. 1610 1611 If you want to execute 32-bit userspace applications, say Y. 1612 1613if COMPAT 1614 1615config KUSER_HELPERS 1616 bool "Enable kuser helpers page for 32-bit applications" 1617 default y 1618 help 1619 Warning: disabling this option may break 32-bit user programs. 1620 1621 Provide kuser helpers to compat tasks. The kernel provides 1622 helper code to userspace in read only form at a fixed location 1623 to allow userspace to be independent of the CPU type fitted to 1624 the system. This permits binaries to be run on ARMv4 through 1625 to ARMv8 without modification. 1626 1627 See Documentation/arch/arm/kernel_user_helpers.rst for details. 1628 1629 However, the fixed address nature of these helpers can be used 1630 by ROP (return orientated programming) authors when creating 1631 exploits. 1632 1633 If all of the binaries and libraries which run on your platform 1634 are built specifically for your platform, and make no use of 1635 these helpers, then you can turn this option off to hinder 1636 such exploits. However, in that case, if a binary or library 1637 relying on those helpers is run, it will not function correctly. 1638 1639 Say N here only if you are absolutely certain that you do not 1640 need these helpers; otherwise, the safe option is to say Y. 1641 1642config COMPAT_VDSO 1643 bool "Enable vDSO for 32-bit applications" 1644 depends on !CPU_BIG_ENDIAN 1645 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" 1646 select GENERIC_COMPAT_VDSO 1647 default y 1648 help 1649 Place in the process address space of 32-bit applications an 1650 ELF shared object providing fast implementations of gettimeofday 1651 and clock_gettime. 1652 1653 You must have a 32-bit build of glibc 2.22 or later for programs 1654 to seamlessly take advantage of this. 1655 1656config THUMB2_COMPAT_VDSO 1657 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1658 depends on COMPAT_VDSO 1659 default y 1660 help 1661 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1662 otherwise with '-marm'. 1663 1664config COMPAT_ALIGNMENT_FIXUPS 1665 bool "Fix up misaligned multi-word loads and stores in user space" 1666 1667menuconfig ARMV8_DEPRECATED 1668 bool "Emulate deprecated/obsolete ARMv8 instructions" 1669 depends on SYSCTL 1670 help 1671 Legacy software support may require certain instructions 1672 that have been deprecated or obsoleted in the architecture. 1673 1674 Enable this config to enable selective emulation of these 1675 features. 1676 1677 If unsure, say Y 1678 1679if ARMV8_DEPRECATED 1680 1681config SWP_EMULATION 1682 bool "Emulate SWP/SWPB instructions" 1683 help 1684 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1685 they are always undefined. Say Y here to enable software 1686 emulation of these instructions for userspace using LDXR/STXR. 1687 This feature can be controlled at runtime with the abi.swp 1688 sysctl which is disabled by default. 1689 1690 In some older versions of glibc [<=2.8] SWP is used during futex 1691 trylock() operations with the assumption that the code will not 1692 be preempted. This invalid assumption may be more likely to fail 1693 with SWP emulation enabled, leading to deadlock of the user 1694 application. 1695 1696 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1697 on an external transaction monitoring block called a global 1698 monitor to maintain update atomicity. If your system does not 1699 implement a global monitor, this option can cause programs that 1700 perform SWP operations to uncached memory to deadlock. 1701 1702 If unsure, say Y 1703 1704config CP15_BARRIER_EMULATION 1705 bool "Emulate CP15 Barrier instructions" 1706 help 1707 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1708 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1709 strongly recommended to use the ISB, DSB, and DMB 1710 instructions instead. 1711 1712 Say Y here to enable software emulation of these 1713 instructions for AArch32 userspace code. When this option is 1714 enabled, CP15 barrier usage is traced which can help 1715 identify software that needs updating. This feature can be 1716 controlled at runtime with the abi.cp15_barrier sysctl. 1717 1718 If unsure, say Y 1719 1720config SETEND_EMULATION 1721 bool "Emulate SETEND instruction" 1722 help 1723 The SETEND instruction alters the data-endianness of the 1724 AArch32 EL0, and is deprecated in ARMv8. 1725 1726 Say Y here to enable software emulation of the instruction 1727 for AArch32 userspace code. This feature can be controlled 1728 at runtime with the abi.setend sysctl. 1729 1730 Note: All the cpus on the system must have mixed endian support at EL0 1731 for this feature to be enabled. If a new CPU - which doesn't support mixed 1732 endian - is hotplugged in after this feature has been enabled, there could 1733 be unexpected results in the applications. 1734 1735 If unsure, say Y 1736endif # ARMV8_DEPRECATED 1737 1738endif # COMPAT 1739 1740menu "ARMv8.1 architectural features" 1741 1742config ARM64_HW_AFDBM 1743 bool "Support for hardware updates of the Access and Dirty page flags" 1744 default y 1745 help 1746 The ARMv8.1 architecture extensions introduce support for 1747 hardware updates of the access and dirty information in page 1748 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1749 capable processors, accesses to pages with PTE_AF cleared will 1750 set this bit instead of raising an access flag fault. 1751 Similarly, writes to read-only pages with the DBM bit set will 1752 clear the read-only bit (AP[2]) instead of raising a 1753 permission fault. 1754 1755 Kernels built with this configuration option enabled continue 1756 to work on pre-ARMv8.1 hardware and the performance impact is 1757 minimal. If unsure, say Y. 1758 1759config ARM64_PAN 1760 bool "Enable support for Privileged Access Never (PAN)" 1761 default y 1762 help 1763 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1764 prevents the kernel or hypervisor from accessing user-space (EL0) 1765 memory directly. 1766 1767 Choosing this option will cause any unprotected (not using 1768 copy_to_user et al) memory access to fail with a permission fault. 1769 1770 The feature is detected at runtime, and will remain as a 'nop' 1771 instruction if the cpu does not implement the feature. 1772 1773config AS_HAS_LDAPR 1774 def_bool $(as-instr,.arch_extension rcpc) 1775 1776config AS_HAS_LSE_ATOMICS 1777 def_bool $(as-instr,.arch_extension lse) 1778 1779config ARM64_LSE_ATOMICS 1780 bool 1781 default ARM64_USE_LSE_ATOMICS 1782 depends on AS_HAS_LSE_ATOMICS 1783 1784config ARM64_USE_LSE_ATOMICS 1785 bool "Atomic instructions" 1786 default y 1787 help 1788 As part of the Large System Extensions, ARMv8.1 introduces new 1789 atomic instructions that are designed specifically to scale in 1790 very large systems. 1791 1792 Say Y here to make use of these instructions for the in-kernel 1793 atomic routines. This incurs a small overhead on CPUs that do 1794 not support these instructions and requires the kernel to be 1795 built with binutils >= 2.25 in order for the new instructions 1796 to be used. 1797 1798endmenu # "ARMv8.1 architectural features" 1799 1800menu "ARMv8.2 architectural features" 1801 1802config AS_HAS_ARMV8_2 1803 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a) 1804 1805config AS_HAS_SHA3 1806 def_bool $(as-instr,.arch armv8.2-a+sha3) 1807 1808config ARM64_PMEM 1809 bool "Enable support for persistent memory" 1810 select ARCH_HAS_PMEM_API 1811 select ARCH_HAS_UACCESS_FLUSHCACHE 1812 help 1813 Say Y to enable support for the persistent memory API based on the 1814 ARMv8.2 DCPoP feature. 1815 1816 The feature is detected at runtime, and the kernel will use DC CVAC 1817 operations if DC CVAP is not supported (following the behaviour of 1818 DC CVAP itself if the system does not define a point of persistence). 1819 1820config ARM64_RAS_EXTN 1821 bool "Enable support for RAS CPU Extensions" 1822 default y 1823 help 1824 CPUs that support the Reliability, Availability and Serviceability 1825 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1826 errors, classify them and report them to software. 1827 1828 On CPUs with these extensions system software can use additional 1829 barriers to determine if faults are pending and read the 1830 classification from a new set of registers. 1831 1832 Selecting this feature will allow the kernel to use these barriers 1833 and access the new registers if the system supports the extension. 1834 Platform RAS features may additionally depend on firmware support. 1835 1836config ARM64_CNP 1837 bool "Enable support for Common Not Private (CNP) translations" 1838 default y 1839 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1840 help 1841 Common Not Private (CNP) allows translation table entries to 1842 be shared between different PEs in the same inner shareable 1843 domain, so the hardware can use this fact to optimise the 1844 caching of such entries in the TLB. 1845 1846 Selecting this option allows the CNP feature to be detected 1847 at runtime, and does not affect PEs that do not implement 1848 this feature. 1849 1850endmenu # "ARMv8.2 architectural features" 1851 1852menu "ARMv8.3 architectural features" 1853 1854config ARM64_PTR_AUTH 1855 bool "Enable support for pointer authentication" 1856 default y 1857 help 1858 Pointer authentication (part of the ARMv8.3 Extensions) provides 1859 instructions for signing and authenticating pointers against secret 1860 keys, which can be used to mitigate Return Oriented Programming (ROP) 1861 and other attacks. 1862 1863 This option enables these instructions at EL0 (i.e. for userspace). 1864 Choosing this option will cause the kernel to initialise secret keys 1865 for each process at exec() time, with these keys being 1866 context-switched along with the process. 1867 1868 The feature is detected at runtime. If the feature is not present in 1869 hardware it will not be advertised to userspace/KVM guest nor will it 1870 be enabled. 1871 1872 If the feature is present on the boot CPU but not on a late CPU, then 1873 the late CPU will be parked. Also, if the boot CPU does not have 1874 address auth and the late CPU has then the late CPU will still boot 1875 but with the feature disabled. On such a system, this option should 1876 not be selected. 1877 1878config ARM64_PTR_AUTH_KERNEL 1879 bool "Use pointer authentication for kernel" 1880 default y 1881 depends on ARM64_PTR_AUTH 1882 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3 1883 # Modern compilers insert a .note.gnu.property section note for PAC 1884 # which is only understood by binutils starting with version 2.33.1. 1885 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1886 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1887 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 1888 help 1889 If the compiler supports the -mbranch-protection or 1890 -msign-return-address flag (e.g. GCC 7 or later), then this option 1891 will cause the kernel itself to be compiled with return address 1892 protection. In this case, and if the target hardware is known to 1893 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1894 disabled with minimal loss of protection. 1895 1896 This feature works with FUNCTION_GRAPH_TRACER option only if 1897 DYNAMIC_FTRACE_WITH_ARGS is enabled. 1898 1899config CC_HAS_BRANCH_PROT_PAC_RET 1900 # GCC 9 or later, clang 8 or later 1901 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1902 1903config CC_HAS_SIGN_RETURN_ADDRESS 1904 # GCC 7, 8 1905 def_bool $(cc-option,-msign-return-address=all) 1906 1907config AS_HAS_ARMV8_3 1908 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1909 1910config AS_HAS_CFI_NEGATE_RA_STATE 1911 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1912 1913endmenu # "ARMv8.3 architectural features" 1914 1915menu "ARMv8.4 architectural features" 1916 1917config ARM64_AMU_EXTN 1918 bool "Enable support for the Activity Monitors Unit CPU extension" 1919 default y 1920 help 1921 The activity monitors extension is an optional extension introduced 1922 by the ARMv8.4 CPU architecture. This enables support for version 1 1923 of the activity monitors architecture, AMUv1. 1924 1925 To enable the use of this extension on CPUs that implement it, say Y. 1926 1927 Note that for architectural reasons, firmware _must_ implement AMU 1928 support when running on CPUs that present the activity monitors 1929 extension. The required support is present in: 1930 * Version 1.5 and later of the ARM Trusted Firmware 1931 1932 For kernels that have this configuration enabled but boot with broken 1933 firmware, you may need to say N here until the firmware is fixed. 1934 Otherwise you may experience firmware panics or lockups when 1935 accessing the counter registers. Even if you are not observing these 1936 symptoms, the values returned by the register reads might not 1937 correctly reflect reality. Most commonly, the value read will be 0, 1938 indicating that the counter is not enabled. 1939 1940config AS_HAS_ARMV8_4 1941 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1942 1943config ARM64_TLB_RANGE 1944 bool "Enable support for tlbi range feature" 1945 default y 1946 depends on AS_HAS_ARMV8_4 1947 help 1948 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1949 range of input addresses. 1950 1951 The feature introduces new assembly instructions, and they were 1952 support when binutils >= 2.30. 1953 1954endmenu # "ARMv8.4 architectural features" 1955 1956menu "ARMv8.5 architectural features" 1957 1958config AS_HAS_ARMV8_5 1959 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 1960 1961config ARM64_BTI 1962 bool "Branch Target Identification support" 1963 default y 1964 help 1965 Branch Target Identification (part of the ARMv8.5 Extensions) 1966 provides a mechanism to limit the set of locations to which computed 1967 branch instructions such as BR or BLR can jump. 1968 1969 To make use of BTI on CPUs that support it, say Y. 1970 1971 BTI is intended to provide complementary protection to other control 1972 flow integrity protection mechanisms, such as the Pointer 1973 authentication mechanism provided as part of the ARMv8.3 Extensions. 1974 For this reason, it does not make sense to enable this option without 1975 also enabling support for pointer authentication. Thus, when 1976 enabling this option you should also select ARM64_PTR_AUTH=y. 1977 1978 Userspace binaries must also be specifically compiled to make use of 1979 this mechanism. If you say N here or the hardware does not support 1980 BTI, such binaries can still run, but you get no additional 1981 enforcement of branch destinations. 1982 1983config ARM64_BTI_KERNEL 1984 bool "Use Branch Target Identification for kernel" 1985 default y 1986 depends on ARM64_BTI 1987 depends on ARM64_PTR_AUTH_KERNEL 1988 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 1989 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 1990 depends on !CC_IS_GCC || GCC_VERSION >= 100100 1991 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671 1992 depends on !CC_IS_GCC 1993 # https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9 1994 depends on !CC_IS_CLANG || CLANG_VERSION >= 120000 1995 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS) 1996 help 1997 Build the kernel with Branch Target Identification annotations 1998 and enable enforcement of this for kernel code. When this option 1999 is enabled and the system supports BTI all kernel code including 2000 modular code must have BTI enabled. 2001 2002config CC_HAS_BRANCH_PROT_PAC_RET_BTI 2003 # GCC 9 or later, clang 8 or later 2004 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 2005 2006config ARM64_E0PD 2007 bool "Enable support for E0PD" 2008 default y 2009 help 2010 E0PD (part of the ARMv8.5 extensions) allows us to ensure 2011 that EL0 accesses made via TTBR1 always fault in constant time, 2012 providing similar benefits to KASLR as those provided by KPTI, but 2013 with lower overhead and without disrupting legitimate access to 2014 kernel memory such as SPE. 2015 2016 This option enables E0PD for TTBR1 where available. 2017 2018config ARM64_AS_HAS_MTE 2019 # Initial support for MTE went in binutils 2.32.0, checked with 2020 # ".arch armv8.5-a+memtag" below. However, this was incomplete 2021 # as a late addition to the final architecture spec (LDGM/STGM) 2022 # is only supported in the newer 2.32.x and 2.33 binutils 2023 # versions, hence the extra "stgm" instruction check below. 2024 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 2025 2026config ARM64_MTE 2027 bool "Memory Tagging Extension support" 2028 default y 2029 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 2030 depends on AS_HAS_ARMV8_5 2031 depends on AS_HAS_LSE_ATOMICS 2032 # Required for tag checking in the uaccess routines 2033 depends on ARM64_PAN 2034 select ARCH_HAS_SUBPAGE_FAULTS 2035 select ARCH_USES_HIGH_VMA_FLAGS 2036 select ARCH_USES_PG_ARCH_X 2037 help 2038 Memory Tagging (part of the ARMv8.5 Extensions) provides 2039 architectural support for run-time, always-on detection of 2040 various classes of memory error to aid with software debugging 2041 to eliminate vulnerabilities arising from memory-unsafe 2042 languages. 2043 2044 This option enables the support for the Memory Tagging 2045 Extension at EL0 (i.e. for userspace). 2046 2047 Selecting this option allows the feature to be detected at 2048 runtime. Any secondary CPU not implementing this feature will 2049 not be allowed a late bring-up. 2050 2051 Userspace binaries that want to use this feature must 2052 explicitly opt in. The mechanism for the userspace is 2053 described in: 2054 2055 Documentation/arch/arm64/memory-tagging-extension.rst. 2056 2057endmenu # "ARMv8.5 architectural features" 2058 2059menu "ARMv8.7 architectural features" 2060 2061config ARM64_EPAN 2062 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 2063 default y 2064 depends on ARM64_PAN 2065 help 2066 Enhanced Privileged Access Never (EPAN) allows Privileged 2067 Access Never to be used with Execute-only mappings. 2068 2069 The feature is detected at runtime, and will remain disabled 2070 if the cpu does not implement the feature. 2071endmenu # "ARMv8.7 architectural features" 2072 2073config ARM64_SVE 2074 bool "ARM Scalable Vector Extension support" 2075 default y 2076 help 2077 The Scalable Vector Extension (SVE) is an extension to the AArch64 2078 execution state which complements and extends the SIMD functionality 2079 of the base architecture to support much larger vectors and to enable 2080 additional vectorisation opportunities. 2081 2082 To enable use of this extension on CPUs that implement it, say Y. 2083 2084 On CPUs that support the SVE2 extensions, this option will enable 2085 those too. 2086 2087 Note that for architectural reasons, firmware _must_ implement SVE 2088 support when running on SVE capable hardware. The required support 2089 is present in: 2090 2091 * version 1.5 and later of the ARM Trusted Firmware 2092 * the AArch64 boot wrapper since commit 5e1261e08abf 2093 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 2094 2095 For other firmware implementations, consult the firmware documentation 2096 or vendor. 2097 2098 If you need the kernel to boot on SVE-capable hardware with broken 2099 firmware, you may need to say N here until you get your firmware 2100 fixed. Otherwise, you may experience firmware panics or lockups when 2101 booting the kernel. If unsure and you are not observing these 2102 symptoms, you should assume that it is safe to say Y. 2103 2104config ARM64_SME 2105 bool "ARM Scalable Matrix Extension support" 2106 default y 2107 depends on ARM64_SVE 2108 help 2109 The Scalable Matrix Extension (SME) is an extension to the AArch64 2110 execution state which utilises a substantial subset of the SVE 2111 instruction set, together with the addition of new architectural 2112 register state capable of holding two dimensional matrix tiles to 2113 enable various matrix operations. 2114 2115config ARM64_PSEUDO_NMI 2116 bool "Support for NMI-like interrupts" 2117 select ARM_GIC_V3 2118 help 2119 Adds support for mimicking Non-Maskable Interrupts through the use of 2120 GIC interrupt priority. This support requires version 3 or later of 2121 ARM GIC. 2122 2123 This high priority configuration for interrupts needs to be 2124 explicitly enabled by setting the kernel parameter 2125 "irqchip.gicv3_pseudo_nmi" to 1. 2126 2127 If unsure, say N 2128 2129if ARM64_PSEUDO_NMI 2130config ARM64_DEBUG_PRIORITY_MASKING 2131 bool "Debug interrupt priority masking" 2132 help 2133 This adds runtime checks to functions enabling/disabling 2134 interrupts when using priority masking. The additional checks verify 2135 the validity of ICC_PMR_EL1 when calling concerned functions. 2136 2137 If unsure, say N 2138endif # ARM64_PSEUDO_NMI 2139 2140config RELOCATABLE 2141 bool "Build a relocatable kernel image" if EXPERT 2142 select ARCH_HAS_RELR 2143 default y 2144 help 2145 This builds the kernel as a Position Independent Executable (PIE), 2146 which retains all relocation metadata required to relocate the 2147 kernel binary at runtime to a different virtual address than the 2148 address it was linked at. 2149 Since AArch64 uses the RELA relocation format, this requires a 2150 relocation pass at runtime even if the kernel is loaded at the 2151 same address it was linked at. 2152 2153config RANDOMIZE_BASE 2154 bool "Randomize the address of the kernel image" 2155 select RELOCATABLE 2156 help 2157 Randomizes the virtual address at which the kernel image is 2158 loaded, as a security feature that deters exploit attempts 2159 relying on knowledge of the location of kernel internals. 2160 2161 It is the bootloader's job to provide entropy, by passing a 2162 random u64 value in /chosen/kaslr-seed at kernel entry. 2163 2164 When booting via the UEFI stub, it will invoke the firmware's 2165 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 2166 to the kernel proper. In addition, it will randomise the physical 2167 location of the kernel Image as well. 2168 2169 If unsure, say N. 2170 2171config RANDOMIZE_MODULE_REGION_FULL 2172 bool "Randomize the module region over a 2 GB range" 2173 depends on RANDOMIZE_BASE 2174 default y 2175 help 2176 Randomizes the location of the module region inside a 2 GB window 2177 covering the core kernel. This way, it is less likely for modules 2178 to leak information about the location of core kernel data structures 2179 but it does imply that function calls between modules and the core 2180 kernel will need to be resolved via veneers in the module PLT. 2181 2182 When this option is not set, the module region will be randomized over 2183 a limited range that contains the [_stext, _etext] interval of the 2184 core kernel, so branch relocations are almost always in range unless 2185 the region is exhausted. In this particular case of region 2186 exhaustion, modules might be able to fall back to a larger 2GB area. 2187 2188config CC_HAVE_STACKPROTECTOR_SYSREG 2189 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 2190 2191config STACKPROTECTOR_PER_TASK 2192 def_bool y 2193 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 2194 2195config UNWIND_PATCH_PAC_INTO_SCS 2196 bool "Enable shadow call stack dynamically using code patching" 2197 # needs Clang with https://reviews.llvm.org/D111780 incorporated 2198 depends on CC_IS_CLANG && CLANG_VERSION >= 150000 2199 depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET 2200 depends on SHADOW_CALL_STACK 2201 select UNWIND_TABLES 2202 select DYNAMIC_SCS 2203 2204endmenu # "Kernel Features" 2205 2206menu "Boot options" 2207 2208config ARM64_ACPI_PARKING_PROTOCOL 2209 bool "Enable support for the ARM64 ACPI parking protocol" 2210 depends on ACPI 2211 help 2212 Enable support for the ARM64 ACPI parking protocol. If disabled 2213 the kernel will not allow booting through the ARM64 ACPI parking 2214 protocol even if the corresponding data is present in the ACPI 2215 MADT table. 2216 2217config CMDLINE 2218 string "Default kernel command string" 2219 default "" 2220 help 2221 Provide a set of default command-line options at build time by 2222 entering them here. As a minimum, you should specify the the 2223 root device (e.g. root=/dev/nfs). 2224 2225choice 2226 prompt "Kernel command line type" if CMDLINE != "" 2227 default CMDLINE_FROM_BOOTLOADER 2228 help 2229 Choose how the kernel will handle the provided default kernel 2230 command line string. 2231 2232config CMDLINE_FROM_BOOTLOADER 2233 bool "Use bootloader kernel arguments if available" 2234 help 2235 Uses the command-line options passed by the boot loader. If 2236 the boot loader doesn't provide any, the default kernel command 2237 string provided in CMDLINE will be used. 2238 2239config CMDLINE_FORCE 2240 bool "Always use the default kernel command string" 2241 help 2242 Always use the default kernel command string, even if the boot 2243 loader passes other arguments to the kernel. 2244 This is useful if you cannot or don't want to change the 2245 command-line options your boot loader passes to the kernel. 2246 2247endchoice 2248 2249config EFI_STUB 2250 bool 2251 2252config EFI 2253 bool "UEFI runtime support" 2254 depends on OF && !CPU_BIG_ENDIAN 2255 depends on KERNEL_MODE_NEON 2256 select ARCH_SUPPORTS_ACPI 2257 select LIBFDT 2258 select UCS2_STRING 2259 select EFI_PARAMS_FROM_FDT 2260 select EFI_RUNTIME_WRAPPERS 2261 select EFI_STUB 2262 select EFI_GENERIC_STUB 2263 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 2264 default y 2265 help 2266 This option provides support for runtime services provided 2267 by UEFI firmware (such as non-volatile variables, realtime 2268 clock, and platform reset). A UEFI stub is also provided to 2269 allow the kernel to be booted as an EFI application. This 2270 is only useful on systems that have UEFI firmware. 2271 2272config DMI 2273 bool "Enable support for SMBIOS (DMI) tables" 2274 depends on EFI 2275 default y 2276 help 2277 This enables SMBIOS/DMI feature for systems. 2278 2279 This option is only useful on systems that have UEFI firmware. 2280 However, even with this option, the resultant kernel should 2281 continue to boot on existing non-UEFI platforms. 2282 2283endmenu # "Boot options" 2284 2285menu "Power management options" 2286 2287source "kernel/power/Kconfig" 2288 2289config ARCH_HIBERNATION_POSSIBLE 2290 def_bool y 2291 depends on CPU_PM 2292 2293config ARCH_HIBERNATION_HEADER 2294 def_bool y 2295 depends on HIBERNATION 2296 2297config ARCH_SUSPEND_POSSIBLE 2298 def_bool y 2299 2300endmenu # "Power management options" 2301 2302menu "CPU Power Management" 2303 2304source "drivers/cpuidle/Kconfig" 2305 2306source "drivers/cpufreq/Kconfig" 2307 2308endmenu # "CPU Power Management" 2309 2310source "drivers/acpi/Kconfig" 2311 2312source "arch/arm64/kvm/Kconfig" 2313 2314