xref: /openbmc/linux/arch/arm64/Kconfig (revision aec499c7)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_STATE
14	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
15	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
16	select ARCH_ENABLE_MEMORY_HOTPLUG
17	select ARCH_ENABLE_MEMORY_HOTREMOVE
18	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
19	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
20	select ARCH_HAS_CACHE_LINE_SIZE
21	select ARCH_HAS_DEBUG_VIRTUAL
22	select ARCH_HAS_DEBUG_VM_PGTABLE
23	select ARCH_HAS_DMA_PREP_COHERENT
24	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
25	select ARCH_HAS_FAST_MULTIPLIER
26	select ARCH_HAS_FORTIFY_SOURCE
27	select ARCH_HAS_GCOV_PROFILE_ALL
28	select ARCH_HAS_GIGANTIC_PAGE
29	select ARCH_HAS_KCOV
30	select ARCH_HAS_KEEPINITRD
31	select ARCH_HAS_MEMBARRIER_SYNC_CORE
32	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
33	select ARCH_HAS_PTE_DEVMAP
34	select ARCH_HAS_PTE_SPECIAL
35	select ARCH_HAS_SETUP_DMA_OPS
36	select ARCH_HAS_SET_DIRECT_MAP
37	select ARCH_HAS_SET_MEMORY
38	select ARCH_STACKWALK
39	select ARCH_HAS_STRICT_KERNEL_RWX
40	select ARCH_HAS_STRICT_MODULE_RWX
41	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
42	select ARCH_HAS_SYNC_DMA_FOR_CPU
43	select ARCH_HAS_SYSCALL_WRAPPER
44	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
45	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
46	select ARCH_HAS_ZONE_DMA_SET if EXPERT
47	select ARCH_HAVE_ELF_PROT
48	select ARCH_HAVE_NMI_SAFE_CMPXCHG
49	select ARCH_INLINE_READ_LOCK if !PREEMPTION
50	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
51	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
52	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
53	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
54	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
55	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
56	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
57	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
58	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
59	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
60	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
61	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
62	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
63	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
64	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
65	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
66	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
67	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
68	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
69	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
70	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
71	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
72	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
73	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
74	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
75	select ARCH_KEEP_MEMBLOCK
76	select ARCH_USE_CMPXCHG_LOCKREF
77	select ARCH_USE_GNU_PROPERTY
78	select ARCH_USE_MEMTEST
79	select ARCH_USE_QUEUED_RWLOCKS
80	select ARCH_USE_QUEUED_SPINLOCKS
81	select ARCH_USE_SYM_ANNOTATIONS
82	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
83	select ARCH_SUPPORTS_HUGETLBFS
84	select ARCH_SUPPORTS_MEMORY_FAILURE
85	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
86	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
87	select ARCH_SUPPORTS_LTO_CLANG_THIN
88	select ARCH_SUPPORTS_CFI_CLANG
89	select ARCH_SUPPORTS_ATOMIC_RMW
90	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
91	select ARCH_SUPPORTS_NUMA_BALANCING
92	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
93	select ARCH_WANT_DEFAULT_BPF_JIT
94	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
95	select ARCH_WANT_FRAME_POINTERS
96	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
97	select ARCH_WANT_LD_ORPHAN_WARN
98	select ARCH_WANTS_NO_INSTR
99	select ARCH_HAS_UBSAN_SANITIZE_ALL
100	select ARM_AMBA
101	select ARM_ARCH_TIMER
102	select ARM_GIC
103	select AUDIT_ARCH_COMPAT_GENERIC
104	select ARM_GIC_V2M if PCI
105	select ARM_GIC_V3
106	select ARM_GIC_V3_ITS if PCI
107	select ARM_PSCI_FW
108	select BUILDTIME_TABLE_SORT
109	select CLONE_BACKWARDS
110	select COMMON_CLK
111	select CPU_PM if (SUSPEND || CPU_IDLE)
112	select CRC32
113	select DCACHE_WORD_ACCESS
114	select DMA_DIRECT_REMAP
115	select EDAC_SUPPORT
116	select FRAME_POINTER
117	select GENERIC_ALLOCATOR
118	select GENERIC_ARCH_TOPOLOGY
119	select GENERIC_CLOCKEVENTS_BROADCAST
120	select GENERIC_CPU_AUTOPROBE
121	select GENERIC_CPU_VULNERABILITIES
122	select GENERIC_EARLY_IOREMAP
123	select GENERIC_IDLE_POLL_SETUP
124	select GENERIC_IRQ_IPI
125	select GENERIC_IRQ_PROBE
126	select GENERIC_IRQ_SHOW
127	select GENERIC_IRQ_SHOW_LEVEL
128	select GENERIC_LIB_DEVMEM_IS_ALLOWED
129	select GENERIC_PCI_IOMAP
130	select GENERIC_PTDUMP
131	select GENERIC_SCHED_CLOCK
132	select GENERIC_SMP_IDLE_THREAD
133	select GENERIC_TIME_VSYSCALL
134	select GENERIC_GETTIMEOFDAY
135	select GENERIC_VDSO_TIME_NS
136	select HARDIRQS_SW_RESEND
137	select HAVE_MOVE_PMD
138	select HAVE_MOVE_PUD
139	select HAVE_PCI
140	select HAVE_ACPI_APEI if (ACPI && EFI)
141	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
142	select HAVE_ARCH_AUDITSYSCALL
143	select HAVE_ARCH_BITREVERSE
144	select HAVE_ARCH_COMPILER_H
145	select HAVE_ARCH_HUGE_VMAP
146	select HAVE_ARCH_JUMP_LABEL
147	select HAVE_ARCH_JUMP_LABEL_RELATIVE
148	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
149	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
150	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
151	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
152	# Some instrumentation may be unsound, hence EXPERT
153	select HAVE_ARCH_KCSAN if EXPERT
154	select HAVE_ARCH_KFENCE
155	select HAVE_ARCH_KGDB
156	select HAVE_ARCH_MMAP_RND_BITS
157	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
158	select HAVE_ARCH_PREL32_RELOCATIONS
159	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
160	select HAVE_ARCH_SECCOMP_FILTER
161	select HAVE_ARCH_STACKLEAK
162	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
163	select HAVE_ARCH_TRACEHOOK
164	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
165	select HAVE_ARCH_VMAP_STACK
166	select HAVE_ARM_SMCCC
167	select HAVE_ASM_MODVERSIONS
168	select HAVE_EBPF_JIT
169	select HAVE_C_RECORDMCOUNT
170	select HAVE_CMPXCHG_DOUBLE
171	select HAVE_CMPXCHG_LOCAL
172	select HAVE_CONTEXT_TRACKING
173	select HAVE_DEBUG_KMEMLEAK
174	select HAVE_DMA_CONTIGUOUS
175	select HAVE_DYNAMIC_FTRACE
176	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
177		if $(cc-option,-fpatchable-function-entry=2)
178	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
179		if DYNAMIC_FTRACE_WITH_REGS
180	select HAVE_EFFICIENT_UNALIGNED_ACCESS
181	select HAVE_FAST_GUP
182	select HAVE_FTRACE_MCOUNT_RECORD
183	select HAVE_FUNCTION_TRACER
184	select HAVE_FUNCTION_ERROR_INJECTION
185	select HAVE_FUNCTION_GRAPH_TRACER
186	select HAVE_GCC_PLUGINS
187	select HAVE_HW_BREAKPOINT if PERF_EVENTS
188	select HAVE_IRQ_TIME_ACCOUNTING
189	select HAVE_KVM
190	select HAVE_NMI
191	select HAVE_PATA_PLATFORM
192	select HAVE_PERF_EVENTS
193	select HAVE_PERF_REGS
194	select HAVE_PERF_USER_STACK_DUMP
195	select HAVE_REGS_AND_STACK_ACCESS_API
196	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
197	select HAVE_FUNCTION_ARG_ACCESS_API
198	select MMU_GATHER_RCU_TABLE_FREE
199	select HAVE_RSEQ
200	select HAVE_STACKPROTECTOR
201	select HAVE_SYSCALL_TRACEPOINTS
202	select HAVE_KPROBES
203	select HAVE_KRETPROBES
204	select HAVE_GENERIC_VDSO
205	select IOMMU_DMA if IOMMU_SUPPORT
206	select IRQ_DOMAIN
207	select IRQ_FORCED_THREADING
208	select KASAN_VMALLOC if KASAN_GENERIC
209	select MODULES_USE_ELF_RELA
210	select NEED_DMA_MAP_STATE
211	select NEED_SG_DMA_LENGTH
212	select OF
213	select OF_EARLY_FLATTREE
214	select PCI_DOMAINS_GENERIC if PCI
215	select PCI_ECAM if (ACPI && PCI)
216	select PCI_SYSCALL if PCI
217	select POWER_RESET
218	select POWER_SUPPLY
219	select SPARSE_IRQ
220	select SWIOTLB
221	select SYSCTL_EXCEPTION_TRACE
222	select THREAD_INFO_IN_TASK
223	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
224	select TRACE_IRQFLAGS_SUPPORT
225	help
226	  ARM 64-bit (AArch64) Linux support.
227
228config 64BIT
229	def_bool y
230
231config MMU
232	def_bool y
233
234config ARM64_PAGE_SHIFT
235	int
236	default 16 if ARM64_64K_PAGES
237	default 14 if ARM64_16K_PAGES
238	default 12
239
240config ARM64_CONT_PTE_SHIFT
241	int
242	default 5 if ARM64_64K_PAGES
243	default 7 if ARM64_16K_PAGES
244	default 4
245
246config ARM64_CONT_PMD_SHIFT
247	int
248	default 5 if ARM64_64K_PAGES
249	default 5 if ARM64_16K_PAGES
250	default 4
251
252config ARCH_MMAP_RND_BITS_MIN
253       default 14 if ARM64_64K_PAGES
254       default 16 if ARM64_16K_PAGES
255       default 18
256
257# max bits determined by the following formula:
258#  VA_BITS - PAGE_SHIFT - 3
259config ARCH_MMAP_RND_BITS_MAX
260       default 19 if ARM64_VA_BITS=36
261       default 24 if ARM64_VA_BITS=39
262       default 27 if ARM64_VA_BITS=42
263       default 30 if ARM64_VA_BITS=47
264       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
265       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
266       default 33 if ARM64_VA_BITS=48
267       default 14 if ARM64_64K_PAGES
268       default 16 if ARM64_16K_PAGES
269       default 18
270
271config ARCH_MMAP_RND_COMPAT_BITS_MIN
272       default 7 if ARM64_64K_PAGES
273       default 9 if ARM64_16K_PAGES
274       default 11
275
276config ARCH_MMAP_RND_COMPAT_BITS_MAX
277       default 16
278
279config NO_IOPORT_MAP
280	def_bool y if !PCI
281
282config STACKTRACE_SUPPORT
283	def_bool y
284
285config ILLEGAL_POINTER_VALUE
286	hex
287	default 0xdead000000000000
288
289config LOCKDEP_SUPPORT
290	def_bool y
291
292config GENERIC_BUG
293	def_bool y
294	depends on BUG
295
296config GENERIC_BUG_RELATIVE_POINTERS
297	def_bool y
298	depends on GENERIC_BUG
299
300config GENERIC_HWEIGHT
301	def_bool y
302
303config GENERIC_CSUM
304        def_bool y
305
306config GENERIC_CALIBRATE_DELAY
307	def_bool y
308
309config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
310	def_bool y
311
312config SMP
313	def_bool y
314
315config KERNEL_MODE_NEON
316	def_bool y
317
318config FIX_EARLYCON_MEM
319	def_bool y
320
321config PGTABLE_LEVELS
322	int
323	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
324	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
325	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
326	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
327	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
328	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
329
330config ARCH_SUPPORTS_UPROBES
331	def_bool y
332
333config ARCH_PROC_KCORE_TEXT
334	def_bool y
335
336config BROKEN_GAS_INST
337	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
338
339config KASAN_SHADOW_OFFSET
340	hex
341	depends on KASAN_GENERIC || KASAN_SW_TAGS
342	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
343	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
344	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
345	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
346	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
347	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
348	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
349	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
350	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
351	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
352	default 0xffffffffffffffff
353
354source "arch/arm64/Kconfig.platforms"
355
356menu "Kernel Features"
357
358menu "ARM errata workarounds via the alternatives framework"
359
360config ARM64_WORKAROUND_CLEAN_CACHE
361	bool
362
363config ARM64_ERRATUM_826319
364	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
365	default y
366	select ARM64_WORKAROUND_CLEAN_CACHE
367	help
368	  This option adds an alternative code sequence to work around ARM
369	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
370	  AXI master interface and an L2 cache.
371
372	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
373	  and is unable to accept a certain write via this interface, it will
374	  not progress on read data presented on the read data channel and the
375	  system can deadlock.
376
377	  The workaround promotes data cache clean instructions to
378	  data cache clean-and-invalidate.
379	  Please note that this does not necessarily enable the workaround,
380	  as it depends on the alternative framework, which will only patch
381	  the kernel if an affected CPU is detected.
382
383	  If unsure, say Y.
384
385config ARM64_ERRATUM_827319
386	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
387	default y
388	select ARM64_WORKAROUND_CLEAN_CACHE
389	help
390	  This option adds an alternative code sequence to work around ARM
391	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
392	  master interface and an L2 cache.
393
394	  Under certain conditions this erratum can cause a clean line eviction
395	  to occur at the same time as another transaction to the same address
396	  on the AMBA 5 CHI interface, which can cause data corruption if the
397	  interconnect reorders the two transactions.
398
399	  The workaround promotes data cache clean instructions to
400	  data cache clean-and-invalidate.
401	  Please note that this does not necessarily enable the workaround,
402	  as it depends on the alternative framework, which will only patch
403	  the kernel if an affected CPU is detected.
404
405	  If unsure, say Y.
406
407config ARM64_ERRATUM_824069
408	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
409	default y
410	select ARM64_WORKAROUND_CLEAN_CACHE
411	help
412	  This option adds an alternative code sequence to work around ARM
413	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
414	  to a coherent interconnect.
415
416	  If a Cortex-A53 processor is executing a store or prefetch for
417	  write instruction at the same time as a processor in another
418	  cluster is executing a cache maintenance operation to the same
419	  address, then this erratum might cause a clean cache line to be
420	  incorrectly marked as dirty.
421
422	  The workaround promotes data cache clean instructions to
423	  data cache clean-and-invalidate.
424	  Please note that this option does not necessarily enable the
425	  workaround, as it depends on the alternative framework, which will
426	  only patch the kernel if an affected CPU is detected.
427
428	  If unsure, say Y.
429
430config ARM64_ERRATUM_819472
431	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
432	default y
433	select ARM64_WORKAROUND_CLEAN_CACHE
434	help
435	  This option adds an alternative code sequence to work around ARM
436	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
437	  present when it is connected to a coherent interconnect.
438
439	  If the processor is executing a load and store exclusive sequence at
440	  the same time as a processor in another cluster is executing a cache
441	  maintenance operation to the same address, then this erratum might
442	  cause data corruption.
443
444	  The workaround promotes data cache clean instructions to
445	  data cache clean-and-invalidate.
446	  Please note that this does not necessarily enable the workaround,
447	  as it depends on the alternative framework, which will only patch
448	  the kernel if an affected CPU is detected.
449
450	  If unsure, say Y.
451
452config ARM64_ERRATUM_832075
453	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
454	default y
455	help
456	  This option adds an alternative code sequence to work around ARM
457	  erratum 832075 on Cortex-A57 parts up to r1p2.
458
459	  Affected Cortex-A57 parts might deadlock when exclusive load/store
460	  instructions to Write-Back memory are mixed with Device loads.
461
462	  The workaround is to promote device loads to use Load-Acquire
463	  semantics.
464	  Please note that this does not necessarily enable the workaround,
465	  as it depends on the alternative framework, which will only patch
466	  the kernel if an affected CPU is detected.
467
468	  If unsure, say Y.
469
470config ARM64_ERRATUM_834220
471	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
472	depends on KVM
473	default y
474	help
475	  This option adds an alternative code sequence to work around ARM
476	  erratum 834220 on Cortex-A57 parts up to r1p2.
477
478	  Affected Cortex-A57 parts might report a Stage 2 translation
479	  fault as the result of a Stage 1 fault for load crossing a
480	  page boundary when there is a permission or device memory
481	  alignment fault at Stage 1 and a translation fault at Stage 2.
482
483	  The workaround is to verify that the Stage 1 translation
484	  doesn't generate a fault before handling the Stage 2 fault.
485	  Please note that this does not necessarily enable the workaround,
486	  as it depends on the alternative framework, which will only patch
487	  the kernel if an affected CPU is detected.
488
489	  If unsure, say Y.
490
491config ARM64_ERRATUM_845719
492	bool "Cortex-A53: 845719: a load might read incorrect data"
493	depends on COMPAT
494	default y
495	help
496	  This option adds an alternative code sequence to work around ARM
497	  erratum 845719 on Cortex-A53 parts up to r0p4.
498
499	  When running a compat (AArch32) userspace on an affected Cortex-A53
500	  part, a load at EL0 from a virtual address that matches the bottom 32
501	  bits of the virtual address used by a recent load at (AArch64) EL1
502	  might return incorrect data.
503
504	  The workaround is to write the contextidr_el1 register on exception
505	  return to a 32-bit task.
506	  Please note that this does not necessarily enable the workaround,
507	  as it depends on the alternative framework, which will only patch
508	  the kernel if an affected CPU is detected.
509
510	  If unsure, say Y.
511
512config ARM64_ERRATUM_843419
513	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
514	default y
515	select ARM64_MODULE_PLTS if MODULES
516	help
517	  This option links the kernel with '--fix-cortex-a53-843419' and
518	  enables PLT support to replace certain ADRP instructions, which can
519	  cause subsequent memory accesses to use an incorrect address on
520	  Cortex-A53 parts up to r0p4.
521
522	  If unsure, say Y.
523
524config ARM64_LD_HAS_FIX_ERRATUM_843419
525	def_bool $(ld-option,--fix-cortex-a53-843419)
526
527config ARM64_ERRATUM_1024718
528	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
529	default y
530	help
531	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
532
533	  Affected Cortex-A55 cores (all revisions) could cause incorrect
534	  update of the hardware dirty bit when the DBM/AP bits are updated
535	  without a break-before-make. The workaround is to disable the usage
536	  of hardware DBM locally on the affected cores. CPUs not affected by
537	  this erratum will continue to use the feature.
538
539	  If unsure, say Y.
540
541config ARM64_ERRATUM_1418040
542	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
543	default y
544	depends on COMPAT
545	help
546	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
547	  errata 1188873 and 1418040.
548
549	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
550	  cause register corruption when accessing the timer registers
551	  from AArch32 userspace.
552
553	  If unsure, say Y.
554
555config ARM64_WORKAROUND_SPECULATIVE_AT
556	bool
557
558config ARM64_ERRATUM_1165522
559	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
560	default y
561	select ARM64_WORKAROUND_SPECULATIVE_AT
562	help
563	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
564
565	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
566	  corrupted TLBs by speculating an AT instruction during a guest
567	  context switch.
568
569	  If unsure, say Y.
570
571config ARM64_ERRATUM_1319367
572	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
573	default y
574	select ARM64_WORKAROUND_SPECULATIVE_AT
575	help
576	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
577	  and A72 erratum 1319367
578
579	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
580	  speculating an AT instruction during a guest context switch.
581
582	  If unsure, say Y.
583
584config ARM64_ERRATUM_1530923
585	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
586	default y
587	select ARM64_WORKAROUND_SPECULATIVE_AT
588	help
589	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
590
591	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
592	  corrupted TLBs by speculating an AT instruction during a guest
593	  context switch.
594
595	  If unsure, say Y.
596
597config ARM64_WORKAROUND_REPEAT_TLBI
598	bool
599
600config ARM64_ERRATUM_1286807
601	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
602	default y
603	select ARM64_WORKAROUND_REPEAT_TLBI
604	help
605	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
606
607	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
608	  address for a cacheable mapping of a location is being
609	  accessed by a core while another core is remapping the virtual
610	  address to a new physical page using the recommended
611	  break-before-make sequence, then under very rare circumstances
612	  TLBI+DSB completes before a read using the translation being
613	  invalidated has been observed by other observers. The
614	  workaround repeats the TLBI+DSB operation.
615
616config ARM64_ERRATUM_1463225
617	bool "Cortex-A76: Software Step might prevent interrupt recognition"
618	default y
619	help
620	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
621
622	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
623	  of a system call instruction (SVC) can prevent recognition of
624	  subsequent interrupts when software stepping is disabled in the
625	  exception handler of the system call and either kernel debugging
626	  is enabled or VHE is in use.
627
628	  Work around the erratum by triggering a dummy step exception
629	  when handling a system call from a task that is being stepped
630	  in a VHE configuration of the kernel.
631
632	  If unsure, say Y.
633
634config ARM64_ERRATUM_1542419
635	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
636	default y
637	help
638	  This option adds a workaround for ARM Neoverse-N1 erratum
639	  1542419.
640
641	  Affected Neoverse-N1 cores could execute a stale instruction when
642	  modified by another CPU. The workaround depends on a firmware
643	  counterpart.
644
645	  Workaround the issue by hiding the DIC feature from EL0. This
646	  forces user-space to perform cache maintenance.
647
648	  If unsure, say Y.
649
650config ARM64_ERRATUM_1508412
651	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
652	default y
653	help
654	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
655
656	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
657	  of a store-exclusive or read of PAR_EL1 and a load with device or
658	  non-cacheable memory attributes. The workaround depends on a firmware
659	  counterpart.
660
661	  KVM guests must also have the workaround implemented or they can
662	  deadlock the system.
663
664	  Work around the issue by inserting DMB SY barriers around PAR_EL1
665	  register reads and warning KVM users. The DMB barrier is sufficient
666	  to prevent a speculative PAR_EL1 read.
667
668	  If unsure, say Y.
669
670config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
671	bool
672
673config ARM64_ERRATUM_2051678
674	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
675	help
676	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
677	  Affected Coretex-A510 might not respect the ordering rules for
678	  hardware update of the page table's dirty bit. The workaround
679	  is to not enable the feature on affected CPUs.
680
681	  If unsure, say Y.
682
683config ARM64_ERRATUM_2077057
684	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
685	help
686	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
687	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
688	  expected, but a Pointer Authentication trap is taken instead. The
689	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
690	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
691
692	  This can only happen when EL2 is stepping EL1.
693
694	  When these conditions occur, the SPSR_EL2 value is unchanged from the
695	  previous guest entry, and can be restored from the in-memory copy.
696
697	  If unsure, say Y.
698
699config ARM64_ERRATUM_2119858
700	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
701	default y
702	depends on CORESIGHT_TRBE
703	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
704	help
705	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
706
707	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
708	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
709	  the event of a WRAP event.
710
711	  Work around the issue by always making sure we move the TRBPTR_EL1 by
712	  256 bytes before enabling the buffer and filling the first 256 bytes of
713	  the buffer with ETM ignore packets upon disabling.
714
715	  If unsure, say Y.
716
717config ARM64_ERRATUM_2139208
718	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
719	default y
720	depends on CORESIGHT_TRBE
721	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
722	help
723	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
724
725	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
726	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
727	  the event of a WRAP event.
728
729	  Work around the issue by always making sure we move the TRBPTR_EL1 by
730	  256 bytes before enabling the buffer and filling the first 256 bytes of
731	  the buffer with ETM ignore packets upon disabling.
732
733	  If unsure, say Y.
734
735config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
736	bool
737
738config ARM64_ERRATUM_2054223
739	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
740	default y
741	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
742	help
743	  Enable workaround for ARM Cortex-A710 erratum 2054223
744
745	  Affected cores may fail to flush the trace data on a TSB instruction, when
746	  the PE is in trace prohibited state. This will cause losing a few bytes
747	  of the trace cached.
748
749	  Workaround is to issue two TSB consecutively on affected cores.
750
751	  If unsure, say Y.
752
753config ARM64_ERRATUM_2067961
754	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
755	default y
756	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
757	help
758	  Enable workaround for ARM Neoverse-N2 erratum 2067961
759
760	  Affected cores may fail to flush the trace data on a TSB instruction, when
761	  the PE is in trace prohibited state. This will cause losing a few bytes
762	  of the trace cached.
763
764	  Workaround is to issue two TSB consecutively on affected cores.
765
766	  If unsure, say Y.
767
768config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
769	bool
770
771config ARM64_ERRATUM_2253138
772	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
773	depends on CORESIGHT_TRBE
774	default y
775	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
776	help
777	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
778
779	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
780	  for TRBE. Under some conditions, the TRBE might generate a write to the next
781	  virtually addressed page following the last page of the TRBE address space
782	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
783
784	  Work around this in the driver by always making sure that there is a
785	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
786
787	  If unsure, say Y.
788
789config ARM64_ERRATUM_2224489
790	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
791	depends on CORESIGHT_TRBE
792	default y
793	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
794	help
795	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
796
797	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
798	  for TRBE. Under some conditions, the TRBE might generate a write to the next
799	  virtually addressed page following the last page of the TRBE address space
800	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
801
802	  Work around this in the driver by always making sure that there is a
803	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
804
805	  If unsure, say Y.
806
807config ARM64_ERRATUM_2064142
808	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
809	depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in
810	default y
811	help
812	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
813
814	  Affected Cortex-A510 core might fail to write into system registers after the
815	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
816	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
817	  and TRBTRG_EL1 will be ignored and will not be effected.
818
819	  Work around this in the driver by executing TSB CSYNC and DSB after collection
820	  is stopped and before performing a system register write to one of the affected
821	  registers.
822
823	  If unsure, say Y.
824
825config ARM64_ERRATUM_2038923
826	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
827	depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in
828	default y
829	help
830	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
831
832	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
833	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
834	  might be corrupted. This happens after TRBE buffer has been enabled by setting
835	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
836	  execution changes from a context, in which trace is prohibited to one where it
837	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
838	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
839	  the trace buffer state might be corrupted.
840
841	  Work around this in the driver by preventing an inconsistent view of whether the
842	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
843	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
844	  two ISB instructions if no ERET is to take place.
845
846	  If unsure, say Y.
847
848config ARM64_ERRATUM_1902691
849	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
850	depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in
851	default y
852	help
853	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
854
855	  Affected Cortex-A510 core might cause trace data corruption, when being written
856	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
857	  trace data.
858
859	  Work around this problem in the driver by just preventing TRBE initialization on
860	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
861	  on such implementations. This will cover the kernel for any firmware that doesn't
862	  do this already.
863
864	  If unsure, say Y.
865
866config CAVIUM_ERRATUM_22375
867	bool "Cavium erratum 22375, 24313"
868	default y
869	help
870	  Enable workaround for errata 22375 and 24313.
871
872	  This implements two gicv3-its errata workarounds for ThunderX. Both
873	  with a small impact affecting only ITS table allocation.
874
875	    erratum 22375: only alloc 8MB table size
876	    erratum 24313: ignore memory access type
877
878	  The fixes are in ITS initialization and basically ignore memory access
879	  type and table size provided by the TYPER and BASER registers.
880
881	  If unsure, say Y.
882
883config CAVIUM_ERRATUM_23144
884	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
885	depends on NUMA
886	default y
887	help
888	  ITS SYNC command hang for cross node io and collections/cpu mapping.
889
890	  If unsure, say Y.
891
892config CAVIUM_ERRATUM_23154
893	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
894	default y
895	help
896	  The gicv3 of ThunderX requires a modified version for
897	  reading the IAR status to ensure data synchronization
898	  (access to icc_iar1_el1 is not sync'ed before and after).
899
900	  If unsure, say Y.
901
902config CAVIUM_ERRATUM_27456
903	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
904	default y
905	help
906	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
907	  instructions may cause the icache to become corrupted if it
908	  contains data for a non-current ASID.  The fix is to
909	  invalidate the icache when changing the mm context.
910
911	  If unsure, say Y.
912
913config CAVIUM_ERRATUM_30115
914	bool "Cavium erratum 30115: Guest may disable interrupts in host"
915	default y
916	help
917	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
918	  1.2, and T83 Pass 1.0, KVM guest execution may disable
919	  interrupts in host. Trapping both GICv3 group-0 and group-1
920	  accesses sidesteps the issue.
921
922	  If unsure, say Y.
923
924config CAVIUM_TX2_ERRATUM_219
925	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
926	default y
927	help
928	  On Cavium ThunderX2, a load, store or prefetch instruction between a
929	  TTBR update and the corresponding context synchronizing operation can
930	  cause a spurious Data Abort to be delivered to any hardware thread in
931	  the CPU core.
932
933	  Work around the issue by avoiding the problematic code sequence and
934	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
935	  trap handler performs the corresponding register access, skips the
936	  instruction and ensures context synchronization by virtue of the
937	  exception return.
938
939	  If unsure, say Y.
940
941config FUJITSU_ERRATUM_010001
942	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
943	default y
944	help
945	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
946	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
947	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
948	  This fault occurs under a specific hardware condition when a
949	  load/store instruction performs an address translation using:
950	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
951	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
952	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
953	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
954
955	  The workaround is to ensure these bits are clear in TCR_ELx.
956	  The workaround only affects the Fujitsu-A64FX.
957
958	  If unsure, say Y.
959
960config HISILICON_ERRATUM_161600802
961	bool "Hip07 161600802: Erroneous redistributor VLPI base"
962	default y
963	help
964	  The HiSilicon Hip07 SoC uses the wrong redistributor base
965	  when issued ITS commands such as VMOVP and VMAPP, and requires
966	  a 128kB offset to be applied to the target address in this commands.
967
968	  If unsure, say Y.
969
970config QCOM_FALKOR_ERRATUM_1003
971	bool "Falkor E1003: Incorrect translation due to ASID change"
972	default y
973	help
974	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
975	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
976	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
977	  then only for entries in the walk cache, since the leaf translation
978	  is unchanged. Work around the erratum by invalidating the walk cache
979	  entries for the trampoline before entering the kernel proper.
980
981config QCOM_FALKOR_ERRATUM_1009
982	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
983	default y
984	select ARM64_WORKAROUND_REPEAT_TLBI
985	help
986	  On Falkor v1, the CPU may prematurely complete a DSB following a
987	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
988	  one more time to fix the issue.
989
990	  If unsure, say Y.
991
992config QCOM_QDF2400_ERRATUM_0065
993	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
994	default y
995	help
996	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
997	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
998	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
999
1000	  If unsure, say Y.
1001
1002config QCOM_FALKOR_ERRATUM_E1041
1003	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1004	default y
1005	help
1006	  Falkor CPU may speculatively fetch instructions from an improper
1007	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1008	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1009
1010	  If unsure, say Y.
1011
1012config NVIDIA_CARMEL_CNP_ERRATUM
1013	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1014	default y
1015	help
1016	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1017	  invalidate shared TLB entries installed by a different core, as it would
1018	  on standard ARM cores.
1019
1020	  If unsure, say Y.
1021
1022config SOCIONEXT_SYNQUACER_PREITS
1023	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1024	default y
1025	help
1026	  Socionext Synquacer SoCs implement a separate h/w block to generate
1027	  MSI doorbell writes with non-zero values for the device ID.
1028
1029	  If unsure, say Y.
1030
1031endmenu
1032
1033
1034choice
1035	prompt "Page size"
1036	default ARM64_4K_PAGES
1037	help
1038	  Page size (translation granule) configuration.
1039
1040config ARM64_4K_PAGES
1041	bool "4KB"
1042	help
1043	  This feature enables 4KB pages support.
1044
1045config ARM64_16K_PAGES
1046	bool "16KB"
1047	help
1048	  The system will use 16KB pages support. AArch32 emulation
1049	  requires applications compiled with 16K (or a multiple of 16K)
1050	  aligned segments.
1051
1052config ARM64_64K_PAGES
1053	bool "64KB"
1054	help
1055	  This feature enables 64KB pages support (4KB by default)
1056	  allowing only two levels of page tables and faster TLB
1057	  look-up. AArch32 emulation requires applications compiled
1058	  with 64K aligned segments.
1059
1060endchoice
1061
1062choice
1063	prompt "Virtual address space size"
1064	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1065	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1066	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1067	help
1068	  Allows choosing one of multiple possible virtual address
1069	  space sizes. The level of translation table is determined by
1070	  a combination of page size and virtual address space size.
1071
1072config ARM64_VA_BITS_36
1073	bool "36-bit" if EXPERT
1074	depends on ARM64_16K_PAGES
1075
1076config ARM64_VA_BITS_39
1077	bool "39-bit"
1078	depends on ARM64_4K_PAGES
1079
1080config ARM64_VA_BITS_42
1081	bool "42-bit"
1082	depends on ARM64_64K_PAGES
1083
1084config ARM64_VA_BITS_47
1085	bool "47-bit"
1086	depends on ARM64_16K_PAGES
1087
1088config ARM64_VA_BITS_48
1089	bool "48-bit"
1090
1091config ARM64_VA_BITS_52
1092	bool "52-bit"
1093	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1094	help
1095	  Enable 52-bit virtual addressing for userspace when explicitly
1096	  requested via a hint to mmap(). The kernel will also use 52-bit
1097	  virtual addresses for its own mappings (provided HW support for
1098	  this feature is available, otherwise it reverts to 48-bit).
1099
1100	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1101	  ARMv8.3 Pointer Authentication will result in the PAC being
1102	  reduced from 7 bits to 3 bits, which may have a significant
1103	  impact on its susceptibility to brute-force attacks.
1104
1105	  If unsure, select 48-bit virtual addressing instead.
1106
1107endchoice
1108
1109config ARM64_FORCE_52BIT
1110	bool "Force 52-bit virtual addresses for userspace"
1111	depends on ARM64_VA_BITS_52 && EXPERT
1112	help
1113	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1114	  to maintain compatibility with older software by providing 48-bit VAs
1115	  unless a hint is supplied to mmap.
1116
1117	  This configuration option disables the 48-bit compatibility logic, and
1118	  forces all userspace addresses to be 52-bit on HW that supports it. One
1119	  should only enable this configuration option for stress testing userspace
1120	  memory management code. If unsure say N here.
1121
1122config ARM64_VA_BITS
1123	int
1124	default 36 if ARM64_VA_BITS_36
1125	default 39 if ARM64_VA_BITS_39
1126	default 42 if ARM64_VA_BITS_42
1127	default 47 if ARM64_VA_BITS_47
1128	default 48 if ARM64_VA_BITS_48
1129	default 52 if ARM64_VA_BITS_52
1130
1131choice
1132	prompt "Physical address space size"
1133	default ARM64_PA_BITS_48
1134	help
1135	  Choose the maximum physical address range that the kernel will
1136	  support.
1137
1138config ARM64_PA_BITS_48
1139	bool "48-bit"
1140
1141config ARM64_PA_BITS_52
1142	bool "52-bit (ARMv8.2)"
1143	depends on ARM64_64K_PAGES
1144	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1145	help
1146	  Enable support for a 52-bit physical address space, introduced as
1147	  part of the ARMv8.2-LPA extension.
1148
1149	  With this enabled, the kernel will also continue to work on CPUs that
1150	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1151	  minor performance overhead).
1152
1153endchoice
1154
1155config ARM64_PA_BITS
1156	int
1157	default 48 if ARM64_PA_BITS_48
1158	default 52 if ARM64_PA_BITS_52
1159
1160choice
1161	prompt "Endianness"
1162	default CPU_LITTLE_ENDIAN
1163	help
1164	  Select the endianness of data accesses performed by the CPU. Userspace
1165	  applications will need to be compiled and linked for the endianness
1166	  that is selected here.
1167
1168config CPU_BIG_ENDIAN
1169	bool "Build big-endian kernel"
1170	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1171	help
1172	  Say Y if you plan on running a kernel with a big-endian userspace.
1173
1174config CPU_LITTLE_ENDIAN
1175	bool "Build little-endian kernel"
1176	help
1177	  Say Y if you plan on running a kernel with a little-endian userspace.
1178	  This is usually the case for distributions targeting arm64.
1179
1180endchoice
1181
1182config SCHED_MC
1183	bool "Multi-core scheduler support"
1184	help
1185	  Multi-core scheduler support improves the CPU scheduler's decision
1186	  making when dealing with multi-core CPU chips at a cost of slightly
1187	  increased overhead in some places. If unsure say N here.
1188
1189config SCHED_CLUSTER
1190	bool "Cluster scheduler support"
1191	help
1192	  Cluster scheduler support improves the CPU scheduler's decision
1193	  making when dealing with machines that have clusters of CPUs.
1194	  Cluster usually means a couple of CPUs which are placed closely
1195	  by sharing mid-level caches, last-level cache tags or internal
1196	  busses.
1197
1198config SCHED_SMT
1199	bool "SMT scheduler support"
1200	help
1201	  Improves the CPU scheduler's decision making when dealing with
1202	  MultiThreading at a cost of slightly increased overhead in some
1203	  places. If unsure say N here.
1204
1205config NR_CPUS
1206	int "Maximum number of CPUs (2-4096)"
1207	range 2 4096
1208	default "256"
1209
1210config HOTPLUG_CPU
1211	bool "Support for hot-pluggable CPUs"
1212	select GENERIC_IRQ_MIGRATION
1213	help
1214	  Say Y here to experiment with turning CPUs off and on.  CPUs
1215	  can be controlled through /sys/devices/system/cpu.
1216
1217# Common NUMA Features
1218config NUMA
1219	bool "NUMA Memory Allocation and Scheduler Support"
1220	select GENERIC_ARCH_NUMA
1221	select ACPI_NUMA if ACPI
1222	select OF_NUMA
1223	select HAVE_SETUP_PER_CPU_AREA
1224	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1225	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1226	select USE_PERCPU_NUMA_NODE_ID
1227	help
1228	  Enable NUMA (Non-Uniform Memory Access) support.
1229
1230	  The kernel will try to allocate memory used by a CPU on the
1231	  local memory of the CPU and add some more
1232	  NUMA awareness to the kernel.
1233
1234config NODES_SHIFT
1235	int "Maximum NUMA Nodes (as a power of 2)"
1236	range 1 10
1237	default "4"
1238	depends on NUMA
1239	help
1240	  Specify the maximum number of NUMA Nodes available on the target
1241	  system.  Increases memory reserved to accommodate various tables.
1242
1243source "kernel/Kconfig.hz"
1244
1245config ARCH_SPARSEMEM_ENABLE
1246	def_bool y
1247	select SPARSEMEM_VMEMMAP_ENABLE
1248	select SPARSEMEM_VMEMMAP
1249
1250config HW_PERF_EVENTS
1251	def_bool y
1252	depends on ARM_PMU
1253
1254config ARCH_HAS_FILTER_PGPROT
1255	def_bool y
1256
1257# Supported by clang >= 7.0
1258config CC_HAVE_SHADOW_CALL_STACK
1259	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1260
1261config PARAVIRT
1262	bool "Enable paravirtualization code"
1263	help
1264	  This changes the kernel so it can modify itself when it is run
1265	  under a hypervisor, potentially improving performance significantly
1266	  over full virtualization.
1267
1268config PARAVIRT_TIME_ACCOUNTING
1269	bool "Paravirtual steal time accounting"
1270	select PARAVIRT
1271	help
1272	  Select this option to enable fine granularity task steal time
1273	  accounting. Time spent executing other tasks in parallel with
1274	  the current vCPU is discounted from the vCPU power. To account for
1275	  that, there can be a small performance impact.
1276
1277	  If in doubt, say N here.
1278
1279config KEXEC
1280	depends on PM_SLEEP_SMP
1281	select KEXEC_CORE
1282	bool "kexec system call"
1283	help
1284	  kexec is a system call that implements the ability to shutdown your
1285	  current kernel, and to start another kernel.  It is like a reboot
1286	  but it is independent of the system firmware.   And like a reboot
1287	  you can start any kernel with it, not just Linux.
1288
1289config KEXEC_FILE
1290	bool "kexec file based system call"
1291	select KEXEC_CORE
1292	select HAVE_IMA_KEXEC if IMA
1293	help
1294	  This is new version of kexec system call. This system call is
1295	  file based and takes file descriptors as system call argument
1296	  for kernel and initramfs as opposed to list of segments as
1297	  accepted by previous system call.
1298
1299config KEXEC_SIG
1300	bool "Verify kernel signature during kexec_file_load() syscall"
1301	depends on KEXEC_FILE
1302	help
1303	  Select this option to verify a signature with loaded kernel
1304	  image. If configured, any attempt of loading a image without
1305	  valid signature will fail.
1306
1307	  In addition to that option, you need to enable signature
1308	  verification for the corresponding kernel image type being
1309	  loaded in order for this to work.
1310
1311config KEXEC_IMAGE_VERIFY_SIG
1312	bool "Enable Image signature verification support"
1313	default y
1314	depends on KEXEC_SIG
1315	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1316	help
1317	  Enable Image signature verification support.
1318
1319comment "Support for PE file signature verification disabled"
1320	depends on KEXEC_SIG
1321	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1322
1323config CRASH_DUMP
1324	bool "Build kdump crash kernel"
1325	help
1326	  Generate crash dump after being started by kexec. This should
1327	  be normally only set in special crash dump kernels which are
1328	  loaded in the main kernel with kexec-tools into a specially
1329	  reserved region and then later executed after a crash by
1330	  kdump/kexec.
1331
1332	  For more details see Documentation/admin-guide/kdump/kdump.rst
1333
1334config TRANS_TABLE
1335	def_bool y
1336	depends on HIBERNATION || KEXEC_CORE
1337
1338config XEN_DOM0
1339	def_bool y
1340	depends on XEN
1341
1342config XEN
1343	bool "Xen guest support on ARM64"
1344	depends on ARM64 && OF
1345	select SWIOTLB_XEN
1346	select PARAVIRT
1347	help
1348	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1349
1350config FORCE_MAX_ZONEORDER
1351	int
1352	default "14" if ARM64_64K_PAGES
1353	default "12" if ARM64_16K_PAGES
1354	default "11"
1355	help
1356	  The kernel memory allocator divides physically contiguous memory
1357	  blocks into "zones", where each zone is a power of two number of
1358	  pages.  This option selects the largest power of two that the kernel
1359	  keeps in the memory allocator.  If you need to allocate very large
1360	  blocks of physically contiguous memory, then you may need to
1361	  increase this value.
1362
1363	  This config option is actually maximum order plus one. For example,
1364	  a value of 11 means that the largest free memory block is 2^10 pages.
1365
1366	  We make sure that we can allocate upto a HugePage size for each configuration.
1367	  Hence we have :
1368		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1369
1370	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1371	  4M allocations matching the default size used by generic code.
1372
1373config UNMAP_KERNEL_AT_EL0
1374	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1375	default y
1376	help
1377	  Speculation attacks against some high-performance processors can
1378	  be used to bypass MMU permission checks and leak kernel data to
1379	  userspace. This can be defended against by unmapping the kernel
1380	  when running in userspace, mapping it back in on exception entry
1381	  via a trampoline page in the vector table.
1382
1383	  If unsure, say Y.
1384
1385config RODATA_FULL_DEFAULT_ENABLED
1386	bool "Apply r/o permissions of VM areas also to their linear aliases"
1387	default y
1388	help
1389	  Apply read-only attributes of VM areas to the linear alias of
1390	  the backing pages as well. This prevents code or read-only data
1391	  from being modified (inadvertently or intentionally) via another
1392	  mapping of the same memory page. This additional enhancement can
1393	  be turned off at runtime by passing rodata=[off|on] (and turned on
1394	  with rodata=full if this option is set to 'n')
1395
1396	  This requires the linear region to be mapped down to pages,
1397	  which may adversely affect performance in some cases.
1398
1399config ARM64_SW_TTBR0_PAN
1400	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1401	help
1402	  Enabling this option prevents the kernel from accessing
1403	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1404	  zeroed area and reserved ASID. The user access routines
1405	  restore the valid TTBR0_EL1 temporarily.
1406
1407config ARM64_TAGGED_ADDR_ABI
1408	bool "Enable the tagged user addresses syscall ABI"
1409	default y
1410	help
1411	  When this option is enabled, user applications can opt in to a
1412	  relaxed ABI via prctl() allowing tagged addresses to be passed
1413	  to system calls as pointer arguments. For details, see
1414	  Documentation/arm64/tagged-address-abi.rst.
1415
1416menuconfig COMPAT
1417	bool "Kernel support for 32-bit EL0"
1418	depends on ARM64_4K_PAGES || EXPERT
1419	select HAVE_UID16
1420	select OLD_SIGSUSPEND3
1421	select COMPAT_OLD_SIGACTION
1422	help
1423	  This option enables support for a 32-bit EL0 running under a 64-bit
1424	  kernel at EL1. AArch32-specific components such as system calls,
1425	  the user helper functions, VFP support and the ptrace interface are
1426	  handled appropriately by the kernel.
1427
1428	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1429	  that you will only be able to execute AArch32 binaries that were compiled
1430	  with page size aligned segments.
1431
1432	  If you want to execute 32-bit userspace applications, say Y.
1433
1434if COMPAT
1435
1436config KUSER_HELPERS
1437	bool "Enable kuser helpers page for 32-bit applications"
1438	default y
1439	help
1440	  Warning: disabling this option may break 32-bit user programs.
1441
1442	  Provide kuser helpers to compat tasks. The kernel provides
1443	  helper code to userspace in read only form at a fixed location
1444	  to allow userspace to be independent of the CPU type fitted to
1445	  the system. This permits binaries to be run on ARMv4 through
1446	  to ARMv8 without modification.
1447
1448	  See Documentation/arm/kernel_user_helpers.rst for details.
1449
1450	  However, the fixed address nature of these helpers can be used
1451	  by ROP (return orientated programming) authors when creating
1452	  exploits.
1453
1454	  If all of the binaries and libraries which run on your platform
1455	  are built specifically for your platform, and make no use of
1456	  these helpers, then you can turn this option off to hinder
1457	  such exploits. However, in that case, if a binary or library
1458	  relying on those helpers is run, it will not function correctly.
1459
1460	  Say N here only if you are absolutely certain that you do not
1461	  need these helpers; otherwise, the safe option is to say Y.
1462
1463config COMPAT_VDSO
1464	bool "Enable vDSO for 32-bit applications"
1465	depends on !CPU_BIG_ENDIAN
1466	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1467	select GENERIC_COMPAT_VDSO
1468	default y
1469	help
1470	  Place in the process address space of 32-bit applications an
1471	  ELF shared object providing fast implementations of gettimeofday
1472	  and clock_gettime.
1473
1474	  You must have a 32-bit build of glibc 2.22 or later for programs
1475	  to seamlessly take advantage of this.
1476
1477config THUMB2_COMPAT_VDSO
1478	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1479	depends on COMPAT_VDSO
1480	default y
1481	help
1482	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1483	  otherwise with '-marm'.
1484
1485menuconfig ARMV8_DEPRECATED
1486	bool "Emulate deprecated/obsolete ARMv8 instructions"
1487	depends on SYSCTL
1488	help
1489	  Legacy software support may require certain instructions
1490	  that have been deprecated or obsoleted in the architecture.
1491
1492	  Enable this config to enable selective emulation of these
1493	  features.
1494
1495	  If unsure, say Y
1496
1497if ARMV8_DEPRECATED
1498
1499config SWP_EMULATION
1500	bool "Emulate SWP/SWPB instructions"
1501	help
1502	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1503	  they are always undefined. Say Y here to enable software
1504	  emulation of these instructions for userspace using LDXR/STXR.
1505	  This feature can be controlled at runtime with the abi.swp
1506	  sysctl which is disabled by default.
1507
1508	  In some older versions of glibc [<=2.8] SWP is used during futex
1509	  trylock() operations with the assumption that the code will not
1510	  be preempted. This invalid assumption may be more likely to fail
1511	  with SWP emulation enabled, leading to deadlock of the user
1512	  application.
1513
1514	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1515	  on an external transaction monitoring block called a global
1516	  monitor to maintain update atomicity. If your system does not
1517	  implement a global monitor, this option can cause programs that
1518	  perform SWP operations to uncached memory to deadlock.
1519
1520	  If unsure, say Y
1521
1522config CP15_BARRIER_EMULATION
1523	bool "Emulate CP15 Barrier instructions"
1524	help
1525	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1526	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1527	  strongly recommended to use the ISB, DSB, and DMB
1528	  instructions instead.
1529
1530	  Say Y here to enable software emulation of these
1531	  instructions for AArch32 userspace code. When this option is
1532	  enabled, CP15 barrier usage is traced which can help
1533	  identify software that needs updating. This feature can be
1534	  controlled at runtime with the abi.cp15_barrier sysctl.
1535
1536	  If unsure, say Y
1537
1538config SETEND_EMULATION
1539	bool "Emulate SETEND instruction"
1540	help
1541	  The SETEND instruction alters the data-endianness of the
1542	  AArch32 EL0, and is deprecated in ARMv8.
1543
1544	  Say Y here to enable software emulation of the instruction
1545	  for AArch32 userspace code. This feature can be controlled
1546	  at runtime with the abi.setend sysctl.
1547
1548	  Note: All the cpus on the system must have mixed endian support at EL0
1549	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1550	  endian - is hotplugged in after this feature has been enabled, there could
1551	  be unexpected results in the applications.
1552
1553	  If unsure, say Y
1554endif
1555
1556endif
1557
1558menu "ARMv8.1 architectural features"
1559
1560config ARM64_HW_AFDBM
1561	bool "Support for hardware updates of the Access and Dirty page flags"
1562	default y
1563	help
1564	  The ARMv8.1 architecture extensions introduce support for
1565	  hardware updates of the access and dirty information in page
1566	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1567	  capable processors, accesses to pages with PTE_AF cleared will
1568	  set this bit instead of raising an access flag fault.
1569	  Similarly, writes to read-only pages with the DBM bit set will
1570	  clear the read-only bit (AP[2]) instead of raising a
1571	  permission fault.
1572
1573	  Kernels built with this configuration option enabled continue
1574	  to work on pre-ARMv8.1 hardware and the performance impact is
1575	  minimal. If unsure, say Y.
1576
1577config ARM64_PAN
1578	bool "Enable support for Privileged Access Never (PAN)"
1579	default y
1580	help
1581	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1582	 prevents the kernel or hypervisor from accessing user-space (EL0)
1583	 memory directly.
1584
1585	 Choosing this option will cause any unprotected (not using
1586	 copy_to_user et al) memory access to fail with a permission fault.
1587
1588	 The feature is detected at runtime, and will remain as a 'nop'
1589	 instruction if the cpu does not implement the feature.
1590
1591config AS_HAS_LDAPR
1592	def_bool $(as-instr,.arch_extension rcpc)
1593
1594config AS_HAS_LSE_ATOMICS
1595	def_bool $(as-instr,.arch_extension lse)
1596
1597config ARM64_LSE_ATOMICS
1598	bool
1599	default ARM64_USE_LSE_ATOMICS
1600	depends on AS_HAS_LSE_ATOMICS
1601
1602config ARM64_USE_LSE_ATOMICS
1603	bool "Atomic instructions"
1604	depends on JUMP_LABEL
1605	default y
1606	help
1607	  As part of the Large System Extensions, ARMv8.1 introduces new
1608	  atomic instructions that are designed specifically to scale in
1609	  very large systems.
1610
1611	  Say Y here to make use of these instructions for the in-kernel
1612	  atomic routines. This incurs a small overhead on CPUs that do
1613	  not support these instructions and requires the kernel to be
1614	  built with binutils >= 2.25 in order for the new instructions
1615	  to be used.
1616
1617endmenu
1618
1619menu "ARMv8.2 architectural features"
1620
1621config AS_HAS_ARMV8_2
1622       def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1623
1624config AS_HAS_SHA3
1625       def_bool $(as-instr,.arch armv8.2-a+sha3)
1626
1627config ARM64_PMEM
1628	bool "Enable support for persistent memory"
1629	select ARCH_HAS_PMEM_API
1630	select ARCH_HAS_UACCESS_FLUSHCACHE
1631	help
1632	  Say Y to enable support for the persistent memory API based on the
1633	  ARMv8.2 DCPoP feature.
1634
1635	  The feature is detected at runtime, and the kernel will use DC CVAC
1636	  operations if DC CVAP is not supported (following the behaviour of
1637	  DC CVAP itself if the system does not define a point of persistence).
1638
1639config ARM64_RAS_EXTN
1640	bool "Enable support for RAS CPU Extensions"
1641	default y
1642	help
1643	  CPUs that support the Reliability, Availability and Serviceability
1644	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1645	  errors, classify them and report them to software.
1646
1647	  On CPUs with these extensions system software can use additional
1648	  barriers to determine if faults are pending and read the
1649	  classification from a new set of registers.
1650
1651	  Selecting this feature will allow the kernel to use these barriers
1652	  and access the new registers if the system supports the extension.
1653	  Platform RAS features may additionally depend on firmware support.
1654
1655config ARM64_CNP
1656	bool "Enable support for Common Not Private (CNP) translations"
1657	default y
1658	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1659	help
1660	  Common Not Private (CNP) allows translation table entries to
1661	  be shared between different PEs in the same inner shareable
1662	  domain, so the hardware can use this fact to optimise the
1663	  caching of such entries in the TLB.
1664
1665	  Selecting this option allows the CNP feature to be detected
1666	  at runtime, and does not affect PEs that do not implement
1667	  this feature.
1668
1669endmenu
1670
1671menu "ARMv8.3 architectural features"
1672
1673config ARM64_PTR_AUTH
1674	bool "Enable support for pointer authentication"
1675	default y
1676	help
1677	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1678	  instructions for signing and authenticating pointers against secret
1679	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1680	  and other attacks.
1681
1682	  This option enables these instructions at EL0 (i.e. for userspace).
1683	  Choosing this option will cause the kernel to initialise secret keys
1684	  for each process at exec() time, with these keys being
1685	  context-switched along with the process.
1686
1687	  The feature is detected at runtime. If the feature is not present in
1688	  hardware it will not be advertised to userspace/KVM guest nor will it
1689	  be enabled.
1690
1691	  If the feature is present on the boot CPU but not on a late CPU, then
1692	  the late CPU will be parked. Also, if the boot CPU does not have
1693	  address auth and the late CPU has then the late CPU will still boot
1694	  but with the feature disabled. On such a system, this option should
1695	  not be selected.
1696
1697config ARM64_PTR_AUTH_KERNEL
1698	bool "Use pointer authentication for kernel"
1699	default y
1700	depends on ARM64_PTR_AUTH
1701	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1702	# Modern compilers insert a .note.gnu.property section note for PAC
1703	# which is only understood by binutils starting with version 2.33.1.
1704	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1705	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1706	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1707	help
1708	  If the compiler supports the -mbranch-protection or
1709	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1710	  will cause the kernel itself to be compiled with return address
1711	  protection. In this case, and if the target hardware is known to
1712	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1713	  disabled with minimal loss of protection.
1714
1715	  This feature works with FUNCTION_GRAPH_TRACER option only if
1716	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1717
1718config CC_HAS_BRANCH_PROT_PAC_RET
1719	# GCC 9 or later, clang 8 or later
1720	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1721
1722config CC_HAS_SIGN_RETURN_ADDRESS
1723	# GCC 7, 8
1724	def_bool $(cc-option,-msign-return-address=all)
1725
1726config AS_HAS_PAC
1727	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1728
1729config AS_HAS_CFI_NEGATE_RA_STATE
1730	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1731
1732endmenu
1733
1734menu "ARMv8.4 architectural features"
1735
1736config ARM64_AMU_EXTN
1737	bool "Enable support for the Activity Monitors Unit CPU extension"
1738	default y
1739	help
1740	  The activity monitors extension is an optional extension introduced
1741	  by the ARMv8.4 CPU architecture. This enables support for version 1
1742	  of the activity monitors architecture, AMUv1.
1743
1744	  To enable the use of this extension on CPUs that implement it, say Y.
1745
1746	  Note that for architectural reasons, firmware _must_ implement AMU
1747	  support when running on CPUs that present the activity monitors
1748	  extension. The required support is present in:
1749	    * Version 1.5 and later of the ARM Trusted Firmware
1750
1751	  For kernels that have this configuration enabled but boot with broken
1752	  firmware, you may need to say N here until the firmware is fixed.
1753	  Otherwise you may experience firmware panics or lockups when
1754	  accessing the counter registers. Even if you are not observing these
1755	  symptoms, the values returned by the register reads might not
1756	  correctly reflect reality. Most commonly, the value read will be 0,
1757	  indicating that the counter is not enabled.
1758
1759config AS_HAS_ARMV8_4
1760	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1761
1762config ARM64_TLB_RANGE
1763	bool "Enable support for tlbi range feature"
1764	default y
1765	depends on AS_HAS_ARMV8_4
1766	help
1767	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1768	  range of input addresses.
1769
1770	  The feature introduces new assembly instructions, and they were
1771	  support when binutils >= 2.30.
1772
1773endmenu
1774
1775menu "ARMv8.5 architectural features"
1776
1777config AS_HAS_ARMV8_5
1778	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1779
1780config ARM64_BTI
1781	bool "Branch Target Identification support"
1782	default y
1783	help
1784	  Branch Target Identification (part of the ARMv8.5 Extensions)
1785	  provides a mechanism to limit the set of locations to which computed
1786	  branch instructions such as BR or BLR can jump.
1787
1788	  To make use of BTI on CPUs that support it, say Y.
1789
1790	  BTI is intended to provide complementary protection to other control
1791	  flow integrity protection mechanisms, such as the Pointer
1792	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1793	  For this reason, it does not make sense to enable this option without
1794	  also enabling support for pointer authentication.  Thus, when
1795	  enabling this option you should also select ARM64_PTR_AUTH=y.
1796
1797	  Userspace binaries must also be specifically compiled to make use of
1798	  this mechanism.  If you say N here or the hardware does not support
1799	  BTI, such binaries can still run, but you get no additional
1800	  enforcement of branch destinations.
1801
1802config ARM64_BTI_KERNEL
1803	bool "Use Branch Target Identification for kernel"
1804	default y
1805	depends on ARM64_BTI
1806	depends on ARM64_PTR_AUTH_KERNEL
1807	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1808	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1809	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1810	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1811	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1812	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1813	help
1814	  Build the kernel with Branch Target Identification annotations
1815	  and enable enforcement of this for kernel code. When this option
1816	  is enabled and the system supports BTI all kernel code including
1817	  modular code must have BTI enabled.
1818
1819config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1820	# GCC 9 or later, clang 8 or later
1821	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1822
1823config ARM64_E0PD
1824	bool "Enable support for E0PD"
1825	default y
1826	help
1827	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1828	  that EL0 accesses made via TTBR1 always fault in constant time,
1829	  providing similar benefits to KASLR as those provided by KPTI, but
1830	  with lower overhead and without disrupting legitimate access to
1831	  kernel memory such as SPE.
1832
1833	  This option enables E0PD for TTBR1 where available.
1834
1835config ARCH_RANDOM
1836	bool "Enable support for random number generation"
1837	default y
1838	help
1839	  Random number generation (part of the ARMv8.5 Extensions)
1840	  provides a high bandwidth, cryptographically secure
1841	  hardware random number generator.
1842
1843config ARM64_AS_HAS_MTE
1844	# Initial support for MTE went in binutils 2.32.0, checked with
1845	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1846	# as a late addition to the final architecture spec (LDGM/STGM)
1847	# is only supported in the newer 2.32.x and 2.33 binutils
1848	# versions, hence the extra "stgm" instruction check below.
1849	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1850
1851config ARM64_MTE
1852	bool "Memory Tagging Extension support"
1853	default y
1854	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1855	depends on AS_HAS_ARMV8_5
1856	depends on AS_HAS_LSE_ATOMICS
1857	# Required for tag checking in the uaccess routines
1858	depends on ARM64_PAN
1859	select ARCH_USES_HIGH_VMA_FLAGS
1860	help
1861	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1862	  architectural support for run-time, always-on detection of
1863	  various classes of memory error to aid with software debugging
1864	  to eliminate vulnerabilities arising from memory-unsafe
1865	  languages.
1866
1867	  This option enables the support for the Memory Tagging
1868	  Extension at EL0 (i.e. for userspace).
1869
1870	  Selecting this option allows the feature to be detected at
1871	  runtime. Any secondary CPU not implementing this feature will
1872	  not be allowed a late bring-up.
1873
1874	  Userspace binaries that want to use this feature must
1875	  explicitly opt in. The mechanism for the userspace is
1876	  described in:
1877
1878	  Documentation/arm64/memory-tagging-extension.rst.
1879
1880endmenu
1881
1882menu "ARMv8.7 architectural features"
1883
1884config ARM64_EPAN
1885	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1886	default y
1887	depends on ARM64_PAN
1888	help
1889	 Enhanced Privileged Access Never (EPAN) allows Privileged
1890	 Access Never to be used with Execute-only mappings.
1891
1892	 The feature is detected at runtime, and will remain disabled
1893	 if the cpu does not implement the feature.
1894endmenu
1895
1896config ARM64_SVE
1897	bool "ARM Scalable Vector Extension support"
1898	default y
1899	help
1900	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1901	  execution state which complements and extends the SIMD functionality
1902	  of the base architecture to support much larger vectors and to enable
1903	  additional vectorisation opportunities.
1904
1905	  To enable use of this extension on CPUs that implement it, say Y.
1906
1907	  On CPUs that support the SVE2 extensions, this option will enable
1908	  those too.
1909
1910	  Note that for architectural reasons, firmware _must_ implement SVE
1911	  support when running on SVE capable hardware.  The required support
1912	  is present in:
1913
1914	    * version 1.5 and later of the ARM Trusted Firmware
1915	    * the AArch64 boot wrapper since commit 5e1261e08abf
1916	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1917
1918	  For other firmware implementations, consult the firmware documentation
1919	  or vendor.
1920
1921	  If you need the kernel to boot on SVE-capable hardware with broken
1922	  firmware, you may need to say N here until you get your firmware
1923	  fixed.  Otherwise, you may experience firmware panics or lockups when
1924	  booting the kernel.  If unsure and you are not observing these
1925	  symptoms, you should assume that it is safe to say Y.
1926
1927config ARM64_MODULE_PLTS
1928	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1929	depends on MODULES
1930	select HAVE_MOD_ARCH_SPECIFIC
1931	help
1932	  Allocate PLTs when loading modules so that jumps and calls whose
1933	  targets are too far away for their relative offsets to be encoded
1934	  in the instructions themselves can be bounced via veneers in the
1935	  module's PLT. This allows modules to be allocated in the generic
1936	  vmalloc area after the dedicated module memory area has been
1937	  exhausted.
1938
1939	  When running with address space randomization (KASLR), the module
1940	  region itself may be too far away for ordinary relative jumps and
1941	  calls, and so in that case, module PLTs are required and cannot be
1942	  disabled.
1943
1944	  Specific errata workaround(s) might also force module PLTs to be
1945	  enabled (ARM64_ERRATUM_843419).
1946
1947config ARM64_PSEUDO_NMI
1948	bool "Support for NMI-like interrupts"
1949	select ARM_GIC_V3
1950	help
1951	  Adds support for mimicking Non-Maskable Interrupts through the use of
1952	  GIC interrupt priority. This support requires version 3 or later of
1953	  ARM GIC.
1954
1955	  This high priority configuration for interrupts needs to be
1956	  explicitly enabled by setting the kernel parameter
1957	  "irqchip.gicv3_pseudo_nmi" to 1.
1958
1959	  If unsure, say N
1960
1961if ARM64_PSEUDO_NMI
1962config ARM64_DEBUG_PRIORITY_MASKING
1963	bool "Debug interrupt priority masking"
1964	help
1965	  This adds runtime checks to functions enabling/disabling
1966	  interrupts when using priority masking. The additional checks verify
1967	  the validity of ICC_PMR_EL1 when calling concerned functions.
1968
1969	  If unsure, say N
1970endif
1971
1972config RELOCATABLE
1973	bool "Build a relocatable kernel image" if EXPERT
1974	select ARCH_HAS_RELR
1975	default y
1976	help
1977	  This builds the kernel as a Position Independent Executable (PIE),
1978	  which retains all relocation metadata required to relocate the
1979	  kernel binary at runtime to a different virtual address than the
1980	  address it was linked at.
1981	  Since AArch64 uses the RELA relocation format, this requires a
1982	  relocation pass at runtime even if the kernel is loaded at the
1983	  same address it was linked at.
1984
1985config RANDOMIZE_BASE
1986	bool "Randomize the address of the kernel image"
1987	select ARM64_MODULE_PLTS if MODULES
1988	select RELOCATABLE
1989	help
1990	  Randomizes the virtual address at which the kernel image is
1991	  loaded, as a security feature that deters exploit attempts
1992	  relying on knowledge of the location of kernel internals.
1993
1994	  It is the bootloader's job to provide entropy, by passing a
1995	  random u64 value in /chosen/kaslr-seed at kernel entry.
1996
1997	  When booting via the UEFI stub, it will invoke the firmware's
1998	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1999	  to the kernel proper. In addition, it will randomise the physical
2000	  location of the kernel Image as well.
2001
2002	  If unsure, say N.
2003
2004config RANDOMIZE_MODULE_REGION_FULL
2005	bool "Randomize the module region over a 2 GB range"
2006	depends on RANDOMIZE_BASE
2007	default y
2008	help
2009	  Randomizes the location of the module region inside a 2 GB window
2010	  covering the core kernel. This way, it is less likely for modules
2011	  to leak information about the location of core kernel data structures
2012	  but it does imply that function calls between modules and the core
2013	  kernel will need to be resolved via veneers in the module PLT.
2014
2015	  When this option is not set, the module region will be randomized over
2016	  a limited range that contains the [_stext, _etext] interval of the
2017	  core kernel, so branch relocations are almost always in range unless
2018	  ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
2019	  particular case of region exhaustion, modules might be able to fall
2020	  back to a larger 2GB area.
2021
2022config CC_HAVE_STACKPROTECTOR_SYSREG
2023	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2024
2025config STACKPROTECTOR_PER_TASK
2026	def_bool y
2027	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2028
2029endmenu
2030
2031menu "Boot options"
2032
2033config ARM64_ACPI_PARKING_PROTOCOL
2034	bool "Enable support for the ARM64 ACPI parking protocol"
2035	depends on ACPI
2036	help
2037	  Enable support for the ARM64 ACPI parking protocol. If disabled
2038	  the kernel will not allow booting through the ARM64 ACPI parking
2039	  protocol even if the corresponding data is present in the ACPI
2040	  MADT table.
2041
2042config CMDLINE
2043	string "Default kernel command string"
2044	default ""
2045	help
2046	  Provide a set of default command-line options at build time by
2047	  entering them here. As a minimum, you should specify the the
2048	  root device (e.g. root=/dev/nfs).
2049
2050choice
2051	prompt "Kernel command line type" if CMDLINE != ""
2052	default CMDLINE_FROM_BOOTLOADER
2053	help
2054	  Choose how the kernel will handle the provided default kernel
2055	  command line string.
2056
2057config CMDLINE_FROM_BOOTLOADER
2058	bool "Use bootloader kernel arguments if available"
2059	help
2060	  Uses the command-line options passed by the boot loader. If
2061	  the boot loader doesn't provide any, the default kernel command
2062	  string provided in CMDLINE will be used.
2063
2064config CMDLINE_FORCE
2065	bool "Always use the default kernel command string"
2066	help
2067	  Always use the default kernel command string, even if the boot
2068	  loader passes other arguments to the kernel.
2069	  This is useful if you cannot or don't want to change the
2070	  command-line options your boot loader passes to the kernel.
2071
2072endchoice
2073
2074config EFI_STUB
2075	bool
2076
2077config EFI
2078	bool "UEFI runtime support"
2079	depends on OF && !CPU_BIG_ENDIAN
2080	depends on KERNEL_MODE_NEON
2081	select ARCH_SUPPORTS_ACPI
2082	select LIBFDT
2083	select UCS2_STRING
2084	select EFI_PARAMS_FROM_FDT
2085	select EFI_RUNTIME_WRAPPERS
2086	select EFI_STUB
2087	select EFI_GENERIC_STUB
2088	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2089	default y
2090	help
2091	  This option provides support for runtime services provided
2092	  by UEFI firmware (such as non-volatile variables, realtime
2093          clock, and platform reset). A UEFI stub is also provided to
2094	  allow the kernel to be booted as an EFI application. This
2095	  is only useful on systems that have UEFI firmware.
2096
2097config DMI
2098	bool "Enable support for SMBIOS (DMI) tables"
2099	depends on EFI
2100	default y
2101	help
2102	  This enables SMBIOS/DMI feature for systems.
2103
2104	  This option is only useful on systems that have UEFI firmware.
2105	  However, even with this option, the resultant kernel should
2106	  continue to boot on existing non-UEFI platforms.
2107
2108endmenu
2109
2110config SYSVIPC_COMPAT
2111	def_bool y
2112	depends on COMPAT && SYSVIPC
2113
2114menu "Power management options"
2115
2116source "kernel/power/Kconfig"
2117
2118config ARCH_HIBERNATION_POSSIBLE
2119	def_bool y
2120	depends on CPU_PM
2121
2122config ARCH_HIBERNATION_HEADER
2123	def_bool y
2124	depends on HIBERNATION
2125
2126config ARCH_SUSPEND_POSSIBLE
2127	def_bool y
2128
2129endmenu
2130
2131menu "CPU Power Management"
2132
2133source "drivers/cpuidle/Kconfig"
2134
2135source "drivers/cpufreq/Kconfig"
2136
2137endmenu
2138
2139source "drivers/acpi/Kconfig"
2140
2141source "arch/arm64/kvm/Kconfig"
2142
2143if CRYPTO
2144source "arch/arm64/crypto/Kconfig"
2145endif
2146