1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_WX 13 select ARCH_BINFMT_ELF_STATE 14 select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE 15 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 16 select ARCH_ENABLE_MEMORY_HOTPLUG 17 select ARCH_ENABLE_MEMORY_HOTREMOVE 18 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 19 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 20 select ARCH_HAS_CACHE_LINE_SIZE 21 select ARCH_HAS_DEBUG_VIRTUAL 22 select ARCH_HAS_DEBUG_VM_PGTABLE 23 select ARCH_HAS_DMA_PREP_COHERENT 24 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 25 select ARCH_HAS_FAST_MULTIPLIER 26 select ARCH_HAS_FORTIFY_SOURCE 27 select ARCH_HAS_GCOV_PROFILE_ALL 28 select ARCH_HAS_GIGANTIC_PAGE 29 select ARCH_HAS_KCOV 30 select ARCH_HAS_KEEPINITRD 31 select ARCH_HAS_MEMBARRIER_SYNC_CORE 32 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 33 select ARCH_HAS_PTE_DEVMAP 34 select ARCH_HAS_PTE_SPECIAL 35 select ARCH_HAS_SETUP_DMA_OPS 36 select ARCH_HAS_SET_DIRECT_MAP 37 select ARCH_HAS_SET_MEMORY 38 select ARCH_STACKWALK 39 select ARCH_HAS_STRICT_KERNEL_RWX 40 select ARCH_HAS_STRICT_MODULE_RWX 41 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 42 select ARCH_HAS_SYNC_DMA_FOR_CPU 43 select ARCH_HAS_SYSCALL_WRAPPER 44 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 45 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 46 select ARCH_HAS_ZONE_DMA_SET if EXPERT 47 select ARCH_HAVE_ELF_PROT 48 select ARCH_HAVE_NMI_SAFE_CMPXCHG 49 select ARCH_INLINE_READ_LOCK if !PREEMPTION 50 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 51 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 52 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 53 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 54 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 55 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 56 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 57 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 58 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 59 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 60 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 61 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 62 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 63 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 64 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 65 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 66 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 67 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 68 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 69 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 70 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 71 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 72 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 73 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 74 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 75 select ARCH_KEEP_MEMBLOCK 76 select ARCH_USE_CMPXCHG_LOCKREF 77 select ARCH_USE_GNU_PROPERTY 78 select ARCH_USE_MEMTEST 79 select ARCH_USE_QUEUED_RWLOCKS 80 select ARCH_USE_QUEUED_SPINLOCKS 81 select ARCH_USE_SYM_ANNOTATIONS 82 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 83 select ARCH_SUPPORTS_HUGETLBFS 84 select ARCH_SUPPORTS_MEMORY_FAILURE 85 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 86 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 87 select ARCH_SUPPORTS_LTO_CLANG_THIN 88 select ARCH_SUPPORTS_CFI_CLANG 89 select ARCH_SUPPORTS_ATOMIC_RMW 90 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 91 select ARCH_SUPPORTS_NUMA_BALANCING 92 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 93 select ARCH_WANT_DEFAULT_BPF_JIT 94 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 95 select ARCH_WANT_FRAME_POINTERS 96 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 97 select ARCH_WANT_LD_ORPHAN_WARN 98 select ARCH_WANTS_NO_INSTR 99 select ARCH_HAS_UBSAN_SANITIZE_ALL 100 select ARM_AMBA 101 select ARM_ARCH_TIMER 102 select ARM_GIC 103 select AUDIT_ARCH_COMPAT_GENERIC 104 select ARM_GIC_V2M if PCI 105 select ARM_GIC_V3 106 select ARM_GIC_V3_ITS if PCI 107 select ARM_PSCI_FW 108 select BUILDTIME_TABLE_SORT 109 select CLONE_BACKWARDS 110 select COMMON_CLK 111 select CPU_PM if (SUSPEND || CPU_IDLE) 112 select CRC32 113 select DCACHE_WORD_ACCESS 114 select DMA_DIRECT_REMAP 115 select EDAC_SUPPORT 116 select FRAME_POINTER 117 select GENERIC_ALLOCATOR 118 select GENERIC_ARCH_TOPOLOGY 119 select GENERIC_CLOCKEVENTS_BROADCAST 120 select GENERIC_CPU_AUTOPROBE 121 select GENERIC_CPU_VULNERABILITIES 122 select GENERIC_EARLY_IOREMAP 123 select GENERIC_IDLE_POLL_SETUP 124 select GENERIC_IRQ_IPI 125 select GENERIC_IRQ_PROBE 126 select GENERIC_IRQ_SHOW 127 select GENERIC_IRQ_SHOW_LEVEL 128 select GENERIC_LIB_DEVMEM_IS_ALLOWED 129 select GENERIC_PCI_IOMAP 130 select GENERIC_PTDUMP 131 select GENERIC_SCHED_CLOCK 132 select GENERIC_SMP_IDLE_THREAD 133 select GENERIC_TIME_VSYSCALL 134 select GENERIC_GETTIMEOFDAY 135 select GENERIC_VDSO_TIME_NS 136 select HARDIRQS_SW_RESEND 137 select HAVE_MOVE_PMD 138 select HAVE_MOVE_PUD 139 select HAVE_PCI 140 select HAVE_ACPI_APEI if (ACPI && EFI) 141 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 142 select HAVE_ARCH_AUDITSYSCALL 143 select HAVE_ARCH_BITREVERSE 144 select HAVE_ARCH_COMPILER_H 145 select HAVE_ARCH_HUGE_VMAP 146 select HAVE_ARCH_JUMP_LABEL 147 select HAVE_ARCH_JUMP_LABEL_RELATIVE 148 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 149 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN 150 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 151 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE) 152 # Some instrumentation may be unsound, hence EXPERT 153 select HAVE_ARCH_KCSAN if EXPERT 154 select HAVE_ARCH_KFENCE 155 select HAVE_ARCH_KGDB 156 select HAVE_ARCH_MMAP_RND_BITS 157 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 158 select HAVE_ARCH_PREL32_RELOCATIONS 159 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 160 select HAVE_ARCH_SECCOMP_FILTER 161 select HAVE_ARCH_STACKLEAK 162 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 163 select HAVE_ARCH_TRACEHOOK 164 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 165 select HAVE_ARCH_VMAP_STACK 166 select HAVE_ARM_SMCCC 167 select HAVE_ASM_MODVERSIONS 168 select HAVE_EBPF_JIT 169 select HAVE_C_RECORDMCOUNT 170 select HAVE_CMPXCHG_DOUBLE 171 select HAVE_CMPXCHG_LOCAL 172 select HAVE_CONTEXT_TRACKING 173 select HAVE_DEBUG_KMEMLEAK 174 select HAVE_DMA_CONTIGUOUS 175 select HAVE_DYNAMIC_FTRACE 176 select HAVE_DYNAMIC_FTRACE_WITH_REGS \ 177 if $(cc-option,-fpatchable-function-entry=2) 178 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 179 if DYNAMIC_FTRACE_WITH_REGS 180 select HAVE_EFFICIENT_UNALIGNED_ACCESS 181 select HAVE_FAST_GUP 182 select HAVE_FTRACE_MCOUNT_RECORD 183 select HAVE_FUNCTION_TRACER 184 select HAVE_FUNCTION_ERROR_INJECTION 185 select HAVE_FUNCTION_GRAPH_TRACER 186 select HAVE_GCC_PLUGINS 187 select HAVE_HW_BREAKPOINT if PERF_EVENTS 188 select HAVE_IRQ_TIME_ACCOUNTING 189 select HAVE_KVM 190 select HAVE_NMI 191 select HAVE_PATA_PLATFORM 192 select HAVE_PERF_EVENTS 193 select HAVE_PERF_REGS 194 select HAVE_PERF_USER_STACK_DUMP 195 select HAVE_REGS_AND_STACK_ACCESS_API 196 select HAVE_POSIX_CPU_TIMERS_TASK_WORK 197 select HAVE_FUNCTION_ARG_ACCESS_API 198 select MMU_GATHER_RCU_TABLE_FREE 199 select HAVE_RSEQ 200 select HAVE_STACKPROTECTOR 201 select HAVE_SYSCALL_TRACEPOINTS 202 select HAVE_KPROBES 203 select HAVE_KRETPROBES 204 select HAVE_GENERIC_VDSO 205 select IOMMU_DMA if IOMMU_SUPPORT 206 select IRQ_DOMAIN 207 select IRQ_FORCED_THREADING 208 select KASAN_VMALLOC if KASAN_GENERIC 209 select MODULES_USE_ELF_RELA 210 select NEED_DMA_MAP_STATE 211 select NEED_SG_DMA_LENGTH 212 select OF 213 select OF_EARLY_FLATTREE 214 select PCI_DOMAINS_GENERIC if PCI 215 select PCI_ECAM if (ACPI && PCI) 216 select PCI_SYSCALL if PCI 217 select POWER_RESET 218 select POWER_SUPPLY 219 select SPARSE_IRQ 220 select SWIOTLB 221 select SYSCTL_EXCEPTION_TRACE 222 select THREAD_INFO_IN_TASK 223 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 224 select TRACE_IRQFLAGS_SUPPORT 225 help 226 ARM 64-bit (AArch64) Linux support. 227 228config 64BIT 229 def_bool y 230 231config MMU 232 def_bool y 233 234config ARM64_PAGE_SHIFT 235 int 236 default 16 if ARM64_64K_PAGES 237 default 14 if ARM64_16K_PAGES 238 default 12 239 240config ARM64_CONT_PTE_SHIFT 241 int 242 default 5 if ARM64_64K_PAGES 243 default 7 if ARM64_16K_PAGES 244 default 4 245 246config ARM64_CONT_PMD_SHIFT 247 int 248 default 5 if ARM64_64K_PAGES 249 default 5 if ARM64_16K_PAGES 250 default 4 251 252config ARCH_MMAP_RND_BITS_MIN 253 default 14 if ARM64_64K_PAGES 254 default 16 if ARM64_16K_PAGES 255 default 18 256 257# max bits determined by the following formula: 258# VA_BITS - PAGE_SHIFT - 3 259config ARCH_MMAP_RND_BITS_MAX 260 default 19 if ARM64_VA_BITS=36 261 default 24 if ARM64_VA_BITS=39 262 default 27 if ARM64_VA_BITS=42 263 default 30 if ARM64_VA_BITS=47 264 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 265 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 266 default 33 if ARM64_VA_BITS=48 267 default 14 if ARM64_64K_PAGES 268 default 16 if ARM64_16K_PAGES 269 default 18 270 271config ARCH_MMAP_RND_COMPAT_BITS_MIN 272 default 7 if ARM64_64K_PAGES 273 default 9 if ARM64_16K_PAGES 274 default 11 275 276config ARCH_MMAP_RND_COMPAT_BITS_MAX 277 default 16 278 279config NO_IOPORT_MAP 280 def_bool y if !PCI 281 282config STACKTRACE_SUPPORT 283 def_bool y 284 285config ILLEGAL_POINTER_VALUE 286 hex 287 default 0xdead000000000000 288 289config LOCKDEP_SUPPORT 290 def_bool y 291 292config GENERIC_BUG 293 def_bool y 294 depends on BUG 295 296config GENERIC_BUG_RELATIVE_POINTERS 297 def_bool y 298 depends on GENERIC_BUG 299 300config GENERIC_HWEIGHT 301 def_bool y 302 303config GENERIC_CSUM 304 def_bool y 305 306config GENERIC_CALIBRATE_DELAY 307 def_bool y 308 309config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 310 def_bool y 311 312config SMP 313 def_bool y 314 315config KERNEL_MODE_NEON 316 def_bool y 317 318config FIX_EARLYCON_MEM 319 def_bool y 320 321config PGTABLE_LEVELS 322 int 323 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 324 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 325 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 326 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 327 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 328 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 329 330config ARCH_SUPPORTS_UPROBES 331 def_bool y 332 333config ARCH_PROC_KCORE_TEXT 334 def_bool y 335 336config BROKEN_GAS_INST 337 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 338 339config KASAN_SHADOW_OFFSET 340 hex 341 depends on KASAN_GENERIC || KASAN_SW_TAGS 342 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 343 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 344 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 345 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 346 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 347 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 348 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 349 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 350 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 351 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 352 default 0xffffffffffffffff 353 354source "arch/arm64/Kconfig.platforms" 355 356menu "Kernel Features" 357 358menu "ARM errata workarounds via the alternatives framework" 359 360config ARM64_WORKAROUND_CLEAN_CACHE 361 bool 362 363config ARM64_ERRATUM_826319 364 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 365 default y 366 select ARM64_WORKAROUND_CLEAN_CACHE 367 help 368 This option adds an alternative code sequence to work around ARM 369 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 370 AXI master interface and an L2 cache. 371 372 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 373 and is unable to accept a certain write via this interface, it will 374 not progress on read data presented on the read data channel and the 375 system can deadlock. 376 377 The workaround promotes data cache clean instructions to 378 data cache clean-and-invalidate. 379 Please note that this does not necessarily enable the workaround, 380 as it depends on the alternative framework, which will only patch 381 the kernel if an affected CPU is detected. 382 383 If unsure, say Y. 384 385config ARM64_ERRATUM_827319 386 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 387 default y 388 select ARM64_WORKAROUND_CLEAN_CACHE 389 help 390 This option adds an alternative code sequence to work around ARM 391 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 392 master interface and an L2 cache. 393 394 Under certain conditions this erratum can cause a clean line eviction 395 to occur at the same time as another transaction to the same address 396 on the AMBA 5 CHI interface, which can cause data corruption if the 397 interconnect reorders the two transactions. 398 399 The workaround promotes data cache clean instructions to 400 data cache clean-and-invalidate. 401 Please note that this does not necessarily enable the workaround, 402 as it depends on the alternative framework, which will only patch 403 the kernel if an affected CPU is detected. 404 405 If unsure, say Y. 406 407config ARM64_ERRATUM_824069 408 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 409 default y 410 select ARM64_WORKAROUND_CLEAN_CACHE 411 help 412 This option adds an alternative code sequence to work around ARM 413 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 414 to a coherent interconnect. 415 416 If a Cortex-A53 processor is executing a store or prefetch for 417 write instruction at the same time as a processor in another 418 cluster is executing a cache maintenance operation to the same 419 address, then this erratum might cause a clean cache line to be 420 incorrectly marked as dirty. 421 422 The workaround promotes data cache clean instructions to 423 data cache clean-and-invalidate. 424 Please note that this option does not necessarily enable the 425 workaround, as it depends on the alternative framework, which will 426 only patch the kernel if an affected CPU is detected. 427 428 If unsure, say Y. 429 430config ARM64_ERRATUM_819472 431 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 432 default y 433 select ARM64_WORKAROUND_CLEAN_CACHE 434 help 435 This option adds an alternative code sequence to work around ARM 436 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 437 present when it is connected to a coherent interconnect. 438 439 If the processor is executing a load and store exclusive sequence at 440 the same time as a processor in another cluster is executing a cache 441 maintenance operation to the same address, then this erratum might 442 cause data corruption. 443 444 The workaround promotes data cache clean instructions to 445 data cache clean-and-invalidate. 446 Please note that this does not necessarily enable the workaround, 447 as it depends on the alternative framework, which will only patch 448 the kernel if an affected CPU is detected. 449 450 If unsure, say Y. 451 452config ARM64_ERRATUM_832075 453 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 454 default y 455 help 456 This option adds an alternative code sequence to work around ARM 457 erratum 832075 on Cortex-A57 parts up to r1p2. 458 459 Affected Cortex-A57 parts might deadlock when exclusive load/store 460 instructions to Write-Back memory are mixed with Device loads. 461 462 The workaround is to promote device loads to use Load-Acquire 463 semantics. 464 Please note that this does not necessarily enable the workaround, 465 as it depends on the alternative framework, which will only patch 466 the kernel if an affected CPU is detected. 467 468 If unsure, say Y. 469 470config ARM64_ERRATUM_834220 471 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 472 depends on KVM 473 default y 474 help 475 This option adds an alternative code sequence to work around ARM 476 erratum 834220 on Cortex-A57 parts up to r1p2. 477 478 Affected Cortex-A57 parts might report a Stage 2 translation 479 fault as the result of a Stage 1 fault for load crossing a 480 page boundary when there is a permission or device memory 481 alignment fault at Stage 1 and a translation fault at Stage 2. 482 483 The workaround is to verify that the Stage 1 translation 484 doesn't generate a fault before handling the Stage 2 fault. 485 Please note that this does not necessarily enable the workaround, 486 as it depends on the alternative framework, which will only patch 487 the kernel if an affected CPU is detected. 488 489 If unsure, say Y. 490 491config ARM64_ERRATUM_845719 492 bool "Cortex-A53: 845719: a load might read incorrect data" 493 depends on COMPAT 494 default y 495 help 496 This option adds an alternative code sequence to work around ARM 497 erratum 845719 on Cortex-A53 parts up to r0p4. 498 499 When running a compat (AArch32) userspace on an affected Cortex-A53 500 part, a load at EL0 from a virtual address that matches the bottom 32 501 bits of the virtual address used by a recent load at (AArch64) EL1 502 might return incorrect data. 503 504 The workaround is to write the contextidr_el1 register on exception 505 return to a 32-bit task. 506 Please note that this does not necessarily enable the workaround, 507 as it depends on the alternative framework, which will only patch 508 the kernel if an affected CPU is detected. 509 510 If unsure, say Y. 511 512config ARM64_ERRATUM_843419 513 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 514 default y 515 select ARM64_MODULE_PLTS if MODULES 516 help 517 This option links the kernel with '--fix-cortex-a53-843419' and 518 enables PLT support to replace certain ADRP instructions, which can 519 cause subsequent memory accesses to use an incorrect address on 520 Cortex-A53 parts up to r0p4. 521 522 If unsure, say Y. 523 524config ARM64_LD_HAS_FIX_ERRATUM_843419 525 def_bool $(ld-option,--fix-cortex-a53-843419) 526 527config ARM64_ERRATUM_1024718 528 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 529 default y 530 help 531 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 532 533 Affected Cortex-A55 cores (all revisions) could cause incorrect 534 update of the hardware dirty bit when the DBM/AP bits are updated 535 without a break-before-make. The workaround is to disable the usage 536 of hardware DBM locally on the affected cores. CPUs not affected by 537 this erratum will continue to use the feature. 538 539 If unsure, say Y. 540 541config ARM64_ERRATUM_1418040 542 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 543 default y 544 depends on COMPAT 545 help 546 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 547 errata 1188873 and 1418040. 548 549 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 550 cause register corruption when accessing the timer registers 551 from AArch32 userspace. 552 553 If unsure, say Y. 554 555config ARM64_WORKAROUND_SPECULATIVE_AT 556 bool 557 558config ARM64_ERRATUM_1165522 559 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 560 default y 561 select ARM64_WORKAROUND_SPECULATIVE_AT 562 help 563 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 564 565 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 566 corrupted TLBs by speculating an AT instruction during a guest 567 context switch. 568 569 If unsure, say Y. 570 571config ARM64_ERRATUM_1319367 572 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 573 default y 574 select ARM64_WORKAROUND_SPECULATIVE_AT 575 help 576 This option adds work arounds for ARM Cortex-A57 erratum 1319537 577 and A72 erratum 1319367 578 579 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 580 speculating an AT instruction during a guest context switch. 581 582 If unsure, say Y. 583 584config ARM64_ERRATUM_1530923 585 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 586 default y 587 select ARM64_WORKAROUND_SPECULATIVE_AT 588 help 589 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 590 591 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 592 corrupted TLBs by speculating an AT instruction during a guest 593 context switch. 594 595 If unsure, say Y. 596 597config ARM64_WORKAROUND_REPEAT_TLBI 598 bool 599 600config ARM64_ERRATUM_1286807 601 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 602 default y 603 select ARM64_WORKAROUND_REPEAT_TLBI 604 help 605 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 606 607 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 608 address for a cacheable mapping of a location is being 609 accessed by a core while another core is remapping the virtual 610 address to a new physical page using the recommended 611 break-before-make sequence, then under very rare circumstances 612 TLBI+DSB completes before a read using the translation being 613 invalidated has been observed by other observers. The 614 workaround repeats the TLBI+DSB operation. 615 616config ARM64_ERRATUM_1463225 617 bool "Cortex-A76: Software Step might prevent interrupt recognition" 618 default y 619 help 620 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 621 622 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 623 of a system call instruction (SVC) can prevent recognition of 624 subsequent interrupts when software stepping is disabled in the 625 exception handler of the system call and either kernel debugging 626 is enabled or VHE is in use. 627 628 Work around the erratum by triggering a dummy step exception 629 when handling a system call from a task that is being stepped 630 in a VHE configuration of the kernel. 631 632 If unsure, say Y. 633 634config ARM64_ERRATUM_1542419 635 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 636 default y 637 help 638 This option adds a workaround for ARM Neoverse-N1 erratum 639 1542419. 640 641 Affected Neoverse-N1 cores could execute a stale instruction when 642 modified by another CPU. The workaround depends on a firmware 643 counterpart. 644 645 Workaround the issue by hiding the DIC feature from EL0. This 646 forces user-space to perform cache maintenance. 647 648 If unsure, say Y. 649 650config ARM64_ERRATUM_1508412 651 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 652 default y 653 help 654 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 655 656 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 657 of a store-exclusive or read of PAR_EL1 and a load with device or 658 non-cacheable memory attributes. The workaround depends on a firmware 659 counterpart. 660 661 KVM guests must also have the workaround implemented or they can 662 deadlock the system. 663 664 Work around the issue by inserting DMB SY barriers around PAR_EL1 665 register reads and warning KVM users. The DMB barrier is sufficient 666 to prevent a speculative PAR_EL1 read. 667 668 If unsure, say Y. 669 670config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 671 bool 672 673config ARM64_ERRATUM_2051678 674 bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit" 675 help 676 This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678. 677 Affected Coretex-A510 might not respect the ordering rules for 678 hardware update of the page table's dirty bit. The workaround 679 is to not enable the feature on affected CPUs. 680 681 If unsure, say Y. 682 683config ARM64_ERRATUM_2077057 684 bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2" 685 help 686 This option adds the workaround for ARM Cortex-A510 erratum 2077057. 687 Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is 688 expected, but a Pointer Authentication trap is taken instead. The 689 erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow 690 EL1 to cause a return to EL2 with a guest controlled ELR_EL2. 691 692 This can only happen when EL2 is stepping EL1. 693 694 When these conditions occur, the SPSR_EL2 value is unchanged from the 695 previous guest entry, and can be restored from the in-memory copy. 696 697 If unsure, say Y. 698 699config ARM64_ERRATUM_2119858 700 bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode" 701 default y 702 depends on CORESIGHT_TRBE 703 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 704 help 705 This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858. 706 707 Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace 708 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 709 the event of a WRAP event. 710 711 Work around the issue by always making sure we move the TRBPTR_EL1 by 712 256 bytes before enabling the buffer and filling the first 256 bytes of 713 the buffer with ETM ignore packets upon disabling. 714 715 If unsure, say Y. 716 717config ARM64_ERRATUM_2139208 718 bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode" 719 default y 720 depends on CORESIGHT_TRBE 721 select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE 722 help 723 This option adds the workaround for ARM Neoverse-N2 erratum 2139208. 724 725 Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace 726 data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in 727 the event of a WRAP event. 728 729 Work around the issue by always making sure we move the TRBPTR_EL1 by 730 256 bytes before enabling the buffer and filling the first 256 bytes of 731 the buffer with ETM ignore packets upon disabling. 732 733 If unsure, say Y. 734 735config ARM64_WORKAROUND_TSB_FLUSH_FAILURE 736 bool 737 738config ARM64_ERRATUM_2054223 739 bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace" 740 default y 741 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 742 help 743 Enable workaround for ARM Cortex-A710 erratum 2054223 744 745 Affected cores may fail to flush the trace data on a TSB instruction, when 746 the PE is in trace prohibited state. This will cause losing a few bytes 747 of the trace cached. 748 749 Workaround is to issue two TSB consecutively on affected cores. 750 751 If unsure, say Y. 752 753config ARM64_ERRATUM_2067961 754 bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace" 755 default y 756 select ARM64_WORKAROUND_TSB_FLUSH_FAILURE 757 help 758 Enable workaround for ARM Neoverse-N2 erratum 2067961 759 760 Affected cores may fail to flush the trace data on a TSB instruction, when 761 the PE is in trace prohibited state. This will cause losing a few bytes 762 of the trace cached. 763 764 Workaround is to issue two TSB consecutively on affected cores. 765 766 If unsure, say Y. 767 768config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 769 bool 770 771config ARM64_ERRATUM_2253138 772 bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range" 773 depends on CORESIGHT_TRBE 774 default y 775 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 776 help 777 This option adds the workaround for ARM Neoverse-N2 erratum 2253138. 778 779 Affected Neoverse-N2 cores might write to an out-of-range address, not reserved 780 for TRBE. Under some conditions, the TRBE might generate a write to the next 781 virtually addressed page following the last page of the TRBE address space 782 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 783 784 Work around this in the driver by always making sure that there is a 785 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 786 787 If unsure, say Y. 788 789config ARM64_ERRATUM_2224489 790 bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range" 791 depends on CORESIGHT_TRBE 792 default y 793 select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE 794 help 795 This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489. 796 797 Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved 798 for TRBE. Under some conditions, the TRBE might generate a write to the next 799 virtually addressed page following the last page of the TRBE address space 800 (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base. 801 802 Work around this in the driver by always making sure that there is a 803 page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE. 804 805 If unsure, say Y. 806 807config ARM64_ERRATUM_2064142 808 bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled" 809 depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in 810 default y 811 help 812 This option adds the workaround for ARM Cortex-A510 erratum 2064142. 813 814 Affected Cortex-A510 core might fail to write into system registers after the 815 TRBE has been disabled. Under some conditions after the TRBE has been disabled 816 writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1, 817 and TRBTRG_EL1 will be ignored and will not be effected. 818 819 Work around this in the driver by executing TSB CSYNC and DSB after collection 820 is stopped and before performing a system register write to one of the affected 821 registers. 822 823 If unsure, say Y. 824 825config ARM64_ERRATUM_2038923 826 bool "Cortex-A510: 2038923: workaround TRBE corruption with enable" 827 depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in 828 default y 829 help 830 This option adds the workaround for ARM Cortex-A510 erratum 2038923. 831 832 Affected Cortex-A510 core might cause an inconsistent view on whether trace is 833 prohibited within the CPU. As a result, the trace buffer or trace buffer state 834 might be corrupted. This happens after TRBE buffer has been enabled by setting 835 TRBLIMITR_EL1.E, followed by just a single context synchronization event before 836 execution changes from a context, in which trace is prohibited to one where it 837 isn't, or vice versa. In these mentioned conditions, the view of whether trace 838 is prohibited is inconsistent between parts of the CPU, and the trace buffer or 839 the trace buffer state might be corrupted. 840 841 Work around this in the driver by preventing an inconsistent view of whether the 842 trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a 843 change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or 844 two ISB instructions if no ERET is to take place. 845 846 If unsure, say Y. 847 848config ARM64_ERRATUM_1902691 849 bool "Cortex-A510: 1902691: workaround TRBE trace corruption" 850 depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in 851 default y 852 help 853 This option adds the workaround for ARM Cortex-A510 erratum 1902691. 854 855 Affected Cortex-A510 core might cause trace data corruption, when being written 856 into the memory. Effectively TRBE is broken and hence cannot be used to capture 857 trace data. 858 859 Work around this problem in the driver by just preventing TRBE initialization on 860 affected cpus. The firmware must have disabled the access to TRBE for the kernel 861 on such implementations. This will cover the kernel for any firmware that doesn't 862 do this already. 863 864 If unsure, say Y. 865 866config CAVIUM_ERRATUM_22375 867 bool "Cavium erratum 22375, 24313" 868 default y 869 help 870 Enable workaround for errata 22375 and 24313. 871 872 This implements two gicv3-its errata workarounds for ThunderX. Both 873 with a small impact affecting only ITS table allocation. 874 875 erratum 22375: only alloc 8MB table size 876 erratum 24313: ignore memory access type 877 878 The fixes are in ITS initialization and basically ignore memory access 879 type and table size provided by the TYPER and BASER registers. 880 881 If unsure, say Y. 882 883config CAVIUM_ERRATUM_23144 884 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 885 depends on NUMA 886 default y 887 help 888 ITS SYNC command hang for cross node io and collections/cpu mapping. 889 890 If unsure, say Y. 891 892config CAVIUM_ERRATUM_23154 893 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" 894 default y 895 help 896 The gicv3 of ThunderX requires a modified version for 897 reading the IAR status to ensure data synchronization 898 (access to icc_iar1_el1 is not sync'ed before and after). 899 900 If unsure, say Y. 901 902config CAVIUM_ERRATUM_27456 903 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 904 default y 905 help 906 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 907 instructions may cause the icache to become corrupted if it 908 contains data for a non-current ASID. The fix is to 909 invalidate the icache when changing the mm context. 910 911 If unsure, say Y. 912 913config CAVIUM_ERRATUM_30115 914 bool "Cavium erratum 30115: Guest may disable interrupts in host" 915 default y 916 help 917 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 918 1.2, and T83 Pass 1.0, KVM guest execution may disable 919 interrupts in host. Trapping both GICv3 group-0 and group-1 920 accesses sidesteps the issue. 921 922 If unsure, say Y. 923 924config CAVIUM_TX2_ERRATUM_219 925 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 926 default y 927 help 928 On Cavium ThunderX2, a load, store or prefetch instruction between a 929 TTBR update and the corresponding context synchronizing operation can 930 cause a spurious Data Abort to be delivered to any hardware thread in 931 the CPU core. 932 933 Work around the issue by avoiding the problematic code sequence and 934 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 935 trap handler performs the corresponding register access, skips the 936 instruction and ensures context synchronization by virtue of the 937 exception return. 938 939 If unsure, say Y. 940 941config FUJITSU_ERRATUM_010001 942 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 943 default y 944 help 945 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 946 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 947 accesses may cause undefined fault (Data abort, DFSC=0b111111). 948 This fault occurs under a specific hardware condition when a 949 load/store instruction performs an address translation using: 950 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 951 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 952 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 953 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 954 955 The workaround is to ensure these bits are clear in TCR_ELx. 956 The workaround only affects the Fujitsu-A64FX. 957 958 If unsure, say Y. 959 960config HISILICON_ERRATUM_161600802 961 bool "Hip07 161600802: Erroneous redistributor VLPI base" 962 default y 963 help 964 The HiSilicon Hip07 SoC uses the wrong redistributor base 965 when issued ITS commands such as VMOVP and VMAPP, and requires 966 a 128kB offset to be applied to the target address in this commands. 967 968 If unsure, say Y. 969 970config QCOM_FALKOR_ERRATUM_1003 971 bool "Falkor E1003: Incorrect translation due to ASID change" 972 default y 973 help 974 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 975 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 976 in TTBR1_EL1, this situation only occurs in the entry trampoline and 977 then only for entries in the walk cache, since the leaf translation 978 is unchanged. Work around the erratum by invalidating the walk cache 979 entries for the trampoline before entering the kernel proper. 980 981config QCOM_FALKOR_ERRATUM_1009 982 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 983 default y 984 select ARM64_WORKAROUND_REPEAT_TLBI 985 help 986 On Falkor v1, the CPU may prematurely complete a DSB following a 987 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 988 one more time to fix the issue. 989 990 If unsure, say Y. 991 992config QCOM_QDF2400_ERRATUM_0065 993 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 994 default y 995 help 996 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 997 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 998 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 999 1000 If unsure, say Y. 1001 1002config QCOM_FALKOR_ERRATUM_E1041 1003 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 1004 default y 1005 help 1006 Falkor CPU may speculatively fetch instructions from an improper 1007 memory location when MMU translation is changed from SCTLR_ELn[M]=1 1008 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 1009 1010 If unsure, say Y. 1011 1012config NVIDIA_CARMEL_CNP_ERRATUM 1013 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 1014 default y 1015 help 1016 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 1017 invalidate shared TLB entries installed by a different core, as it would 1018 on standard ARM cores. 1019 1020 If unsure, say Y. 1021 1022config SOCIONEXT_SYNQUACER_PREITS 1023 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 1024 default y 1025 help 1026 Socionext Synquacer SoCs implement a separate h/w block to generate 1027 MSI doorbell writes with non-zero values for the device ID. 1028 1029 If unsure, say Y. 1030 1031endmenu 1032 1033 1034choice 1035 prompt "Page size" 1036 default ARM64_4K_PAGES 1037 help 1038 Page size (translation granule) configuration. 1039 1040config ARM64_4K_PAGES 1041 bool "4KB" 1042 help 1043 This feature enables 4KB pages support. 1044 1045config ARM64_16K_PAGES 1046 bool "16KB" 1047 help 1048 The system will use 16KB pages support. AArch32 emulation 1049 requires applications compiled with 16K (or a multiple of 16K) 1050 aligned segments. 1051 1052config ARM64_64K_PAGES 1053 bool "64KB" 1054 help 1055 This feature enables 64KB pages support (4KB by default) 1056 allowing only two levels of page tables and faster TLB 1057 look-up. AArch32 emulation requires applications compiled 1058 with 64K aligned segments. 1059 1060endchoice 1061 1062choice 1063 prompt "Virtual address space size" 1064 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 1065 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 1066 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 1067 help 1068 Allows choosing one of multiple possible virtual address 1069 space sizes. The level of translation table is determined by 1070 a combination of page size and virtual address space size. 1071 1072config ARM64_VA_BITS_36 1073 bool "36-bit" if EXPERT 1074 depends on ARM64_16K_PAGES 1075 1076config ARM64_VA_BITS_39 1077 bool "39-bit" 1078 depends on ARM64_4K_PAGES 1079 1080config ARM64_VA_BITS_42 1081 bool "42-bit" 1082 depends on ARM64_64K_PAGES 1083 1084config ARM64_VA_BITS_47 1085 bool "47-bit" 1086 depends on ARM64_16K_PAGES 1087 1088config ARM64_VA_BITS_48 1089 bool "48-bit" 1090 1091config ARM64_VA_BITS_52 1092 bool "52-bit" 1093 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 1094 help 1095 Enable 52-bit virtual addressing for userspace when explicitly 1096 requested via a hint to mmap(). The kernel will also use 52-bit 1097 virtual addresses for its own mappings (provided HW support for 1098 this feature is available, otherwise it reverts to 48-bit). 1099 1100 NOTE: Enabling 52-bit virtual addressing in conjunction with 1101 ARMv8.3 Pointer Authentication will result in the PAC being 1102 reduced from 7 bits to 3 bits, which may have a significant 1103 impact on its susceptibility to brute-force attacks. 1104 1105 If unsure, select 48-bit virtual addressing instead. 1106 1107endchoice 1108 1109config ARM64_FORCE_52BIT 1110 bool "Force 52-bit virtual addresses for userspace" 1111 depends on ARM64_VA_BITS_52 && EXPERT 1112 help 1113 For systems with 52-bit userspace VAs enabled, the kernel will attempt 1114 to maintain compatibility with older software by providing 48-bit VAs 1115 unless a hint is supplied to mmap. 1116 1117 This configuration option disables the 48-bit compatibility logic, and 1118 forces all userspace addresses to be 52-bit on HW that supports it. One 1119 should only enable this configuration option for stress testing userspace 1120 memory management code. If unsure say N here. 1121 1122config ARM64_VA_BITS 1123 int 1124 default 36 if ARM64_VA_BITS_36 1125 default 39 if ARM64_VA_BITS_39 1126 default 42 if ARM64_VA_BITS_42 1127 default 47 if ARM64_VA_BITS_47 1128 default 48 if ARM64_VA_BITS_48 1129 default 52 if ARM64_VA_BITS_52 1130 1131choice 1132 prompt "Physical address space size" 1133 default ARM64_PA_BITS_48 1134 help 1135 Choose the maximum physical address range that the kernel will 1136 support. 1137 1138config ARM64_PA_BITS_48 1139 bool "48-bit" 1140 1141config ARM64_PA_BITS_52 1142 bool "52-bit (ARMv8.2)" 1143 depends on ARM64_64K_PAGES 1144 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1145 help 1146 Enable support for a 52-bit physical address space, introduced as 1147 part of the ARMv8.2-LPA extension. 1148 1149 With this enabled, the kernel will also continue to work on CPUs that 1150 do not support ARMv8.2-LPA, but with some added memory overhead (and 1151 minor performance overhead). 1152 1153endchoice 1154 1155config ARM64_PA_BITS 1156 int 1157 default 48 if ARM64_PA_BITS_48 1158 default 52 if ARM64_PA_BITS_52 1159 1160choice 1161 prompt "Endianness" 1162 default CPU_LITTLE_ENDIAN 1163 help 1164 Select the endianness of data accesses performed by the CPU. Userspace 1165 applications will need to be compiled and linked for the endianness 1166 that is selected here. 1167 1168config CPU_BIG_ENDIAN 1169 bool "Build big-endian kernel" 1170 depends on !LD_IS_LLD || LLD_VERSION >= 130000 1171 help 1172 Say Y if you plan on running a kernel with a big-endian userspace. 1173 1174config CPU_LITTLE_ENDIAN 1175 bool "Build little-endian kernel" 1176 help 1177 Say Y if you plan on running a kernel with a little-endian userspace. 1178 This is usually the case for distributions targeting arm64. 1179 1180endchoice 1181 1182config SCHED_MC 1183 bool "Multi-core scheduler support" 1184 help 1185 Multi-core scheduler support improves the CPU scheduler's decision 1186 making when dealing with multi-core CPU chips at a cost of slightly 1187 increased overhead in some places. If unsure say N here. 1188 1189config SCHED_CLUSTER 1190 bool "Cluster scheduler support" 1191 help 1192 Cluster scheduler support improves the CPU scheduler's decision 1193 making when dealing with machines that have clusters of CPUs. 1194 Cluster usually means a couple of CPUs which are placed closely 1195 by sharing mid-level caches, last-level cache tags or internal 1196 busses. 1197 1198config SCHED_SMT 1199 bool "SMT scheduler support" 1200 help 1201 Improves the CPU scheduler's decision making when dealing with 1202 MultiThreading at a cost of slightly increased overhead in some 1203 places. If unsure say N here. 1204 1205config NR_CPUS 1206 int "Maximum number of CPUs (2-4096)" 1207 range 2 4096 1208 default "256" 1209 1210config HOTPLUG_CPU 1211 bool "Support for hot-pluggable CPUs" 1212 select GENERIC_IRQ_MIGRATION 1213 help 1214 Say Y here to experiment with turning CPUs off and on. CPUs 1215 can be controlled through /sys/devices/system/cpu. 1216 1217# Common NUMA Features 1218config NUMA 1219 bool "NUMA Memory Allocation and Scheduler Support" 1220 select GENERIC_ARCH_NUMA 1221 select ACPI_NUMA if ACPI 1222 select OF_NUMA 1223 select HAVE_SETUP_PER_CPU_AREA 1224 select NEED_PER_CPU_EMBED_FIRST_CHUNK 1225 select NEED_PER_CPU_PAGE_FIRST_CHUNK 1226 select USE_PERCPU_NUMA_NODE_ID 1227 help 1228 Enable NUMA (Non-Uniform Memory Access) support. 1229 1230 The kernel will try to allocate memory used by a CPU on the 1231 local memory of the CPU and add some more 1232 NUMA awareness to the kernel. 1233 1234config NODES_SHIFT 1235 int "Maximum NUMA Nodes (as a power of 2)" 1236 range 1 10 1237 default "4" 1238 depends on NUMA 1239 help 1240 Specify the maximum number of NUMA Nodes available on the target 1241 system. Increases memory reserved to accommodate various tables. 1242 1243source "kernel/Kconfig.hz" 1244 1245config ARCH_SPARSEMEM_ENABLE 1246 def_bool y 1247 select SPARSEMEM_VMEMMAP_ENABLE 1248 select SPARSEMEM_VMEMMAP 1249 1250config HW_PERF_EVENTS 1251 def_bool y 1252 depends on ARM_PMU 1253 1254config ARCH_HAS_FILTER_PGPROT 1255 def_bool y 1256 1257# Supported by clang >= 7.0 1258config CC_HAVE_SHADOW_CALL_STACK 1259 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1260 1261config PARAVIRT 1262 bool "Enable paravirtualization code" 1263 help 1264 This changes the kernel so it can modify itself when it is run 1265 under a hypervisor, potentially improving performance significantly 1266 over full virtualization. 1267 1268config PARAVIRT_TIME_ACCOUNTING 1269 bool "Paravirtual steal time accounting" 1270 select PARAVIRT 1271 help 1272 Select this option to enable fine granularity task steal time 1273 accounting. Time spent executing other tasks in parallel with 1274 the current vCPU is discounted from the vCPU power. To account for 1275 that, there can be a small performance impact. 1276 1277 If in doubt, say N here. 1278 1279config KEXEC 1280 depends on PM_SLEEP_SMP 1281 select KEXEC_CORE 1282 bool "kexec system call" 1283 help 1284 kexec is a system call that implements the ability to shutdown your 1285 current kernel, and to start another kernel. It is like a reboot 1286 but it is independent of the system firmware. And like a reboot 1287 you can start any kernel with it, not just Linux. 1288 1289config KEXEC_FILE 1290 bool "kexec file based system call" 1291 select KEXEC_CORE 1292 select HAVE_IMA_KEXEC if IMA 1293 help 1294 This is new version of kexec system call. This system call is 1295 file based and takes file descriptors as system call argument 1296 for kernel and initramfs as opposed to list of segments as 1297 accepted by previous system call. 1298 1299config KEXEC_SIG 1300 bool "Verify kernel signature during kexec_file_load() syscall" 1301 depends on KEXEC_FILE 1302 help 1303 Select this option to verify a signature with loaded kernel 1304 image. If configured, any attempt of loading a image without 1305 valid signature will fail. 1306 1307 In addition to that option, you need to enable signature 1308 verification for the corresponding kernel image type being 1309 loaded in order for this to work. 1310 1311config KEXEC_IMAGE_VERIFY_SIG 1312 bool "Enable Image signature verification support" 1313 default y 1314 depends on KEXEC_SIG 1315 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1316 help 1317 Enable Image signature verification support. 1318 1319comment "Support for PE file signature verification disabled" 1320 depends on KEXEC_SIG 1321 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1322 1323config CRASH_DUMP 1324 bool "Build kdump crash kernel" 1325 help 1326 Generate crash dump after being started by kexec. This should 1327 be normally only set in special crash dump kernels which are 1328 loaded in the main kernel with kexec-tools into a specially 1329 reserved region and then later executed after a crash by 1330 kdump/kexec. 1331 1332 For more details see Documentation/admin-guide/kdump/kdump.rst 1333 1334config TRANS_TABLE 1335 def_bool y 1336 depends on HIBERNATION || KEXEC_CORE 1337 1338config XEN_DOM0 1339 def_bool y 1340 depends on XEN 1341 1342config XEN 1343 bool "Xen guest support on ARM64" 1344 depends on ARM64 && OF 1345 select SWIOTLB_XEN 1346 select PARAVIRT 1347 help 1348 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1349 1350config FORCE_MAX_ZONEORDER 1351 int 1352 default "14" if ARM64_64K_PAGES 1353 default "12" if ARM64_16K_PAGES 1354 default "11" 1355 help 1356 The kernel memory allocator divides physically contiguous memory 1357 blocks into "zones", where each zone is a power of two number of 1358 pages. This option selects the largest power of two that the kernel 1359 keeps in the memory allocator. If you need to allocate very large 1360 blocks of physically contiguous memory, then you may need to 1361 increase this value. 1362 1363 This config option is actually maximum order plus one. For example, 1364 a value of 11 means that the largest free memory block is 2^10 pages. 1365 1366 We make sure that we can allocate upto a HugePage size for each configuration. 1367 Hence we have : 1368 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1369 1370 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1371 4M allocations matching the default size used by generic code. 1372 1373config UNMAP_KERNEL_AT_EL0 1374 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1375 default y 1376 help 1377 Speculation attacks against some high-performance processors can 1378 be used to bypass MMU permission checks and leak kernel data to 1379 userspace. This can be defended against by unmapping the kernel 1380 when running in userspace, mapping it back in on exception entry 1381 via a trampoline page in the vector table. 1382 1383 If unsure, say Y. 1384 1385config RODATA_FULL_DEFAULT_ENABLED 1386 bool "Apply r/o permissions of VM areas also to their linear aliases" 1387 default y 1388 help 1389 Apply read-only attributes of VM areas to the linear alias of 1390 the backing pages as well. This prevents code or read-only data 1391 from being modified (inadvertently or intentionally) via another 1392 mapping of the same memory page. This additional enhancement can 1393 be turned off at runtime by passing rodata=[off|on] (and turned on 1394 with rodata=full if this option is set to 'n') 1395 1396 This requires the linear region to be mapped down to pages, 1397 which may adversely affect performance in some cases. 1398 1399config ARM64_SW_TTBR0_PAN 1400 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1401 help 1402 Enabling this option prevents the kernel from accessing 1403 user-space memory directly by pointing TTBR0_EL1 to a reserved 1404 zeroed area and reserved ASID. The user access routines 1405 restore the valid TTBR0_EL1 temporarily. 1406 1407config ARM64_TAGGED_ADDR_ABI 1408 bool "Enable the tagged user addresses syscall ABI" 1409 default y 1410 help 1411 When this option is enabled, user applications can opt in to a 1412 relaxed ABI via prctl() allowing tagged addresses to be passed 1413 to system calls as pointer arguments. For details, see 1414 Documentation/arm64/tagged-address-abi.rst. 1415 1416menuconfig COMPAT 1417 bool "Kernel support for 32-bit EL0" 1418 depends on ARM64_4K_PAGES || EXPERT 1419 select HAVE_UID16 1420 select OLD_SIGSUSPEND3 1421 select COMPAT_OLD_SIGACTION 1422 help 1423 This option enables support for a 32-bit EL0 running under a 64-bit 1424 kernel at EL1. AArch32-specific components such as system calls, 1425 the user helper functions, VFP support and the ptrace interface are 1426 handled appropriately by the kernel. 1427 1428 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1429 that you will only be able to execute AArch32 binaries that were compiled 1430 with page size aligned segments. 1431 1432 If you want to execute 32-bit userspace applications, say Y. 1433 1434if COMPAT 1435 1436config KUSER_HELPERS 1437 bool "Enable kuser helpers page for 32-bit applications" 1438 default y 1439 help 1440 Warning: disabling this option may break 32-bit user programs. 1441 1442 Provide kuser helpers to compat tasks. The kernel provides 1443 helper code to userspace in read only form at a fixed location 1444 to allow userspace to be independent of the CPU type fitted to 1445 the system. This permits binaries to be run on ARMv4 through 1446 to ARMv8 without modification. 1447 1448 See Documentation/arm/kernel_user_helpers.rst for details. 1449 1450 However, the fixed address nature of these helpers can be used 1451 by ROP (return orientated programming) authors when creating 1452 exploits. 1453 1454 If all of the binaries and libraries which run on your platform 1455 are built specifically for your platform, and make no use of 1456 these helpers, then you can turn this option off to hinder 1457 such exploits. However, in that case, if a binary or library 1458 relying on those helpers is run, it will not function correctly. 1459 1460 Say N here only if you are absolutely certain that you do not 1461 need these helpers; otherwise, the safe option is to say Y. 1462 1463config COMPAT_VDSO 1464 bool "Enable vDSO for 32-bit applications" 1465 depends on !CPU_BIG_ENDIAN 1466 depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != "" 1467 select GENERIC_COMPAT_VDSO 1468 default y 1469 help 1470 Place in the process address space of 32-bit applications an 1471 ELF shared object providing fast implementations of gettimeofday 1472 and clock_gettime. 1473 1474 You must have a 32-bit build of glibc 2.22 or later for programs 1475 to seamlessly take advantage of this. 1476 1477config THUMB2_COMPAT_VDSO 1478 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1479 depends on COMPAT_VDSO 1480 default y 1481 help 1482 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1483 otherwise with '-marm'. 1484 1485menuconfig ARMV8_DEPRECATED 1486 bool "Emulate deprecated/obsolete ARMv8 instructions" 1487 depends on SYSCTL 1488 help 1489 Legacy software support may require certain instructions 1490 that have been deprecated or obsoleted in the architecture. 1491 1492 Enable this config to enable selective emulation of these 1493 features. 1494 1495 If unsure, say Y 1496 1497if ARMV8_DEPRECATED 1498 1499config SWP_EMULATION 1500 bool "Emulate SWP/SWPB instructions" 1501 help 1502 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1503 they are always undefined. Say Y here to enable software 1504 emulation of these instructions for userspace using LDXR/STXR. 1505 This feature can be controlled at runtime with the abi.swp 1506 sysctl which is disabled by default. 1507 1508 In some older versions of glibc [<=2.8] SWP is used during futex 1509 trylock() operations with the assumption that the code will not 1510 be preempted. This invalid assumption may be more likely to fail 1511 with SWP emulation enabled, leading to deadlock of the user 1512 application. 1513 1514 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1515 on an external transaction monitoring block called a global 1516 monitor to maintain update atomicity. If your system does not 1517 implement a global monitor, this option can cause programs that 1518 perform SWP operations to uncached memory to deadlock. 1519 1520 If unsure, say Y 1521 1522config CP15_BARRIER_EMULATION 1523 bool "Emulate CP15 Barrier instructions" 1524 help 1525 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1526 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1527 strongly recommended to use the ISB, DSB, and DMB 1528 instructions instead. 1529 1530 Say Y here to enable software emulation of these 1531 instructions for AArch32 userspace code. When this option is 1532 enabled, CP15 barrier usage is traced which can help 1533 identify software that needs updating. This feature can be 1534 controlled at runtime with the abi.cp15_barrier sysctl. 1535 1536 If unsure, say Y 1537 1538config SETEND_EMULATION 1539 bool "Emulate SETEND instruction" 1540 help 1541 The SETEND instruction alters the data-endianness of the 1542 AArch32 EL0, and is deprecated in ARMv8. 1543 1544 Say Y here to enable software emulation of the instruction 1545 for AArch32 userspace code. This feature can be controlled 1546 at runtime with the abi.setend sysctl. 1547 1548 Note: All the cpus on the system must have mixed endian support at EL0 1549 for this feature to be enabled. If a new CPU - which doesn't support mixed 1550 endian - is hotplugged in after this feature has been enabled, there could 1551 be unexpected results in the applications. 1552 1553 If unsure, say Y 1554endif 1555 1556endif 1557 1558menu "ARMv8.1 architectural features" 1559 1560config ARM64_HW_AFDBM 1561 bool "Support for hardware updates of the Access and Dirty page flags" 1562 default y 1563 help 1564 The ARMv8.1 architecture extensions introduce support for 1565 hardware updates of the access and dirty information in page 1566 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1567 capable processors, accesses to pages with PTE_AF cleared will 1568 set this bit instead of raising an access flag fault. 1569 Similarly, writes to read-only pages with the DBM bit set will 1570 clear the read-only bit (AP[2]) instead of raising a 1571 permission fault. 1572 1573 Kernels built with this configuration option enabled continue 1574 to work on pre-ARMv8.1 hardware and the performance impact is 1575 minimal. If unsure, say Y. 1576 1577config ARM64_PAN 1578 bool "Enable support for Privileged Access Never (PAN)" 1579 default y 1580 help 1581 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1582 prevents the kernel or hypervisor from accessing user-space (EL0) 1583 memory directly. 1584 1585 Choosing this option will cause any unprotected (not using 1586 copy_to_user et al) memory access to fail with a permission fault. 1587 1588 The feature is detected at runtime, and will remain as a 'nop' 1589 instruction if the cpu does not implement the feature. 1590 1591config AS_HAS_LDAPR 1592 def_bool $(as-instr,.arch_extension rcpc) 1593 1594config AS_HAS_LSE_ATOMICS 1595 def_bool $(as-instr,.arch_extension lse) 1596 1597config ARM64_LSE_ATOMICS 1598 bool 1599 default ARM64_USE_LSE_ATOMICS 1600 depends on AS_HAS_LSE_ATOMICS 1601 1602config ARM64_USE_LSE_ATOMICS 1603 bool "Atomic instructions" 1604 depends on JUMP_LABEL 1605 default y 1606 help 1607 As part of the Large System Extensions, ARMv8.1 introduces new 1608 atomic instructions that are designed specifically to scale in 1609 very large systems. 1610 1611 Say Y here to make use of these instructions for the in-kernel 1612 atomic routines. This incurs a small overhead on CPUs that do 1613 not support these instructions and requires the kernel to be 1614 built with binutils >= 2.25 in order for the new instructions 1615 to be used. 1616 1617endmenu 1618 1619menu "ARMv8.2 architectural features" 1620 1621config AS_HAS_ARMV8_2 1622 def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a) 1623 1624config AS_HAS_SHA3 1625 def_bool $(as-instr,.arch armv8.2-a+sha3) 1626 1627config ARM64_PMEM 1628 bool "Enable support for persistent memory" 1629 select ARCH_HAS_PMEM_API 1630 select ARCH_HAS_UACCESS_FLUSHCACHE 1631 help 1632 Say Y to enable support for the persistent memory API based on the 1633 ARMv8.2 DCPoP feature. 1634 1635 The feature is detected at runtime, and the kernel will use DC CVAC 1636 operations if DC CVAP is not supported (following the behaviour of 1637 DC CVAP itself if the system does not define a point of persistence). 1638 1639config ARM64_RAS_EXTN 1640 bool "Enable support for RAS CPU Extensions" 1641 default y 1642 help 1643 CPUs that support the Reliability, Availability and Serviceability 1644 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1645 errors, classify them and report them to software. 1646 1647 On CPUs with these extensions system software can use additional 1648 barriers to determine if faults are pending and read the 1649 classification from a new set of registers. 1650 1651 Selecting this feature will allow the kernel to use these barriers 1652 and access the new registers if the system supports the extension. 1653 Platform RAS features may additionally depend on firmware support. 1654 1655config ARM64_CNP 1656 bool "Enable support for Common Not Private (CNP) translations" 1657 default y 1658 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1659 help 1660 Common Not Private (CNP) allows translation table entries to 1661 be shared between different PEs in the same inner shareable 1662 domain, so the hardware can use this fact to optimise the 1663 caching of such entries in the TLB. 1664 1665 Selecting this option allows the CNP feature to be detected 1666 at runtime, and does not affect PEs that do not implement 1667 this feature. 1668 1669endmenu 1670 1671menu "ARMv8.3 architectural features" 1672 1673config ARM64_PTR_AUTH 1674 bool "Enable support for pointer authentication" 1675 default y 1676 help 1677 Pointer authentication (part of the ARMv8.3 Extensions) provides 1678 instructions for signing and authenticating pointers against secret 1679 keys, which can be used to mitigate Return Oriented Programming (ROP) 1680 and other attacks. 1681 1682 This option enables these instructions at EL0 (i.e. for userspace). 1683 Choosing this option will cause the kernel to initialise secret keys 1684 for each process at exec() time, with these keys being 1685 context-switched along with the process. 1686 1687 The feature is detected at runtime. If the feature is not present in 1688 hardware it will not be advertised to userspace/KVM guest nor will it 1689 be enabled. 1690 1691 If the feature is present on the boot CPU but not on a late CPU, then 1692 the late CPU will be parked. Also, if the boot CPU does not have 1693 address auth and the late CPU has then the late CPU will still boot 1694 but with the feature disabled. On such a system, this option should 1695 not be selected. 1696 1697config ARM64_PTR_AUTH_KERNEL 1698 bool "Use pointer authentication for kernel" 1699 default y 1700 depends on ARM64_PTR_AUTH 1701 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1702 # Modern compilers insert a .note.gnu.property section note for PAC 1703 # which is only understood by binutils starting with version 2.33.1. 1704 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1705 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1706 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1707 help 1708 If the compiler supports the -mbranch-protection or 1709 -msign-return-address flag (e.g. GCC 7 or later), then this option 1710 will cause the kernel itself to be compiled with return address 1711 protection. In this case, and if the target hardware is known to 1712 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1713 disabled with minimal loss of protection. 1714 1715 This feature works with FUNCTION_GRAPH_TRACER option only if 1716 DYNAMIC_FTRACE_WITH_REGS is enabled. 1717 1718config CC_HAS_BRANCH_PROT_PAC_RET 1719 # GCC 9 or later, clang 8 or later 1720 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1721 1722config CC_HAS_SIGN_RETURN_ADDRESS 1723 # GCC 7, 8 1724 def_bool $(cc-option,-msign-return-address=all) 1725 1726config AS_HAS_PAC 1727 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1728 1729config AS_HAS_CFI_NEGATE_RA_STATE 1730 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1731 1732endmenu 1733 1734menu "ARMv8.4 architectural features" 1735 1736config ARM64_AMU_EXTN 1737 bool "Enable support for the Activity Monitors Unit CPU extension" 1738 default y 1739 help 1740 The activity monitors extension is an optional extension introduced 1741 by the ARMv8.4 CPU architecture. This enables support for version 1 1742 of the activity monitors architecture, AMUv1. 1743 1744 To enable the use of this extension on CPUs that implement it, say Y. 1745 1746 Note that for architectural reasons, firmware _must_ implement AMU 1747 support when running on CPUs that present the activity monitors 1748 extension. The required support is present in: 1749 * Version 1.5 and later of the ARM Trusted Firmware 1750 1751 For kernels that have this configuration enabled but boot with broken 1752 firmware, you may need to say N here until the firmware is fixed. 1753 Otherwise you may experience firmware panics or lockups when 1754 accessing the counter registers. Even if you are not observing these 1755 symptoms, the values returned by the register reads might not 1756 correctly reflect reality. Most commonly, the value read will be 0, 1757 indicating that the counter is not enabled. 1758 1759config AS_HAS_ARMV8_4 1760 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1761 1762config ARM64_TLB_RANGE 1763 bool "Enable support for tlbi range feature" 1764 default y 1765 depends on AS_HAS_ARMV8_4 1766 help 1767 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1768 range of input addresses. 1769 1770 The feature introduces new assembly instructions, and they were 1771 support when binutils >= 2.30. 1772 1773endmenu 1774 1775menu "ARMv8.5 architectural features" 1776 1777config AS_HAS_ARMV8_5 1778 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 1779 1780config ARM64_BTI 1781 bool "Branch Target Identification support" 1782 default y 1783 help 1784 Branch Target Identification (part of the ARMv8.5 Extensions) 1785 provides a mechanism to limit the set of locations to which computed 1786 branch instructions such as BR or BLR can jump. 1787 1788 To make use of BTI on CPUs that support it, say Y. 1789 1790 BTI is intended to provide complementary protection to other control 1791 flow integrity protection mechanisms, such as the Pointer 1792 authentication mechanism provided as part of the ARMv8.3 Extensions. 1793 For this reason, it does not make sense to enable this option without 1794 also enabling support for pointer authentication. Thus, when 1795 enabling this option you should also select ARM64_PTR_AUTH=y. 1796 1797 Userspace binaries must also be specifically compiled to make use of 1798 this mechanism. If you say N here or the hardware does not support 1799 BTI, such binaries can still run, but you get no additional 1800 enforcement of branch destinations. 1801 1802config ARM64_BTI_KERNEL 1803 bool "Use Branch Target Identification for kernel" 1804 default y 1805 depends on ARM64_BTI 1806 depends on ARM64_PTR_AUTH_KERNEL 1807 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 1808 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 1809 depends on !CC_IS_GCC || GCC_VERSION >= 100100 1810 # https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9 1811 depends on !CC_IS_CLANG || CLANG_VERSION >= 120000 1812 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1813 help 1814 Build the kernel with Branch Target Identification annotations 1815 and enable enforcement of this for kernel code. When this option 1816 is enabled and the system supports BTI all kernel code including 1817 modular code must have BTI enabled. 1818 1819config CC_HAS_BRANCH_PROT_PAC_RET_BTI 1820 # GCC 9 or later, clang 8 or later 1821 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 1822 1823config ARM64_E0PD 1824 bool "Enable support for E0PD" 1825 default y 1826 help 1827 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1828 that EL0 accesses made via TTBR1 always fault in constant time, 1829 providing similar benefits to KASLR as those provided by KPTI, but 1830 with lower overhead and without disrupting legitimate access to 1831 kernel memory such as SPE. 1832 1833 This option enables E0PD for TTBR1 where available. 1834 1835config ARCH_RANDOM 1836 bool "Enable support for random number generation" 1837 default y 1838 help 1839 Random number generation (part of the ARMv8.5 Extensions) 1840 provides a high bandwidth, cryptographically secure 1841 hardware random number generator. 1842 1843config ARM64_AS_HAS_MTE 1844 # Initial support for MTE went in binutils 2.32.0, checked with 1845 # ".arch armv8.5-a+memtag" below. However, this was incomplete 1846 # as a late addition to the final architecture spec (LDGM/STGM) 1847 # is only supported in the newer 2.32.x and 2.33 binutils 1848 # versions, hence the extra "stgm" instruction check below. 1849 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 1850 1851config ARM64_MTE 1852 bool "Memory Tagging Extension support" 1853 default y 1854 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 1855 depends on AS_HAS_ARMV8_5 1856 depends on AS_HAS_LSE_ATOMICS 1857 # Required for tag checking in the uaccess routines 1858 depends on ARM64_PAN 1859 select ARCH_USES_HIGH_VMA_FLAGS 1860 help 1861 Memory Tagging (part of the ARMv8.5 Extensions) provides 1862 architectural support for run-time, always-on detection of 1863 various classes of memory error to aid with software debugging 1864 to eliminate vulnerabilities arising from memory-unsafe 1865 languages. 1866 1867 This option enables the support for the Memory Tagging 1868 Extension at EL0 (i.e. for userspace). 1869 1870 Selecting this option allows the feature to be detected at 1871 runtime. Any secondary CPU not implementing this feature will 1872 not be allowed a late bring-up. 1873 1874 Userspace binaries that want to use this feature must 1875 explicitly opt in. The mechanism for the userspace is 1876 described in: 1877 1878 Documentation/arm64/memory-tagging-extension.rst. 1879 1880endmenu 1881 1882menu "ARMv8.7 architectural features" 1883 1884config ARM64_EPAN 1885 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 1886 default y 1887 depends on ARM64_PAN 1888 help 1889 Enhanced Privileged Access Never (EPAN) allows Privileged 1890 Access Never to be used with Execute-only mappings. 1891 1892 The feature is detected at runtime, and will remain disabled 1893 if the cpu does not implement the feature. 1894endmenu 1895 1896config ARM64_SVE 1897 bool "ARM Scalable Vector Extension support" 1898 default y 1899 help 1900 The Scalable Vector Extension (SVE) is an extension to the AArch64 1901 execution state which complements and extends the SIMD functionality 1902 of the base architecture to support much larger vectors and to enable 1903 additional vectorisation opportunities. 1904 1905 To enable use of this extension on CPUs that implement it, say Y. 1906 1907 On CPUs that support the SVE2 extensions, this option will enable 1908 those too. 1909 1910 Note that for architectural reasons, firmware _must_ implement SVE 1911 support when running on SVE capable hardware. The required support 1912 is present in: 1913 1914 * version 1.5 and later of the ARM Trusted Firmware 1915 * the AArch64 boot wrapper since commit 5e1261e08abf 1916 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1917 1918 For other firmware implementations, consult the firmware documentation 1919 or vendor. 1920 1921 If you need the kernel to boot on SVE-capable hardware with broken 1922 firmware, you may need to say N here until you get your firmware 1923 fixed. Otherwise, you may experience firmware panics or lockups when 1924 booting the kernel. If unsure and you are not observing these 1925 symptoms, you should assume that it is safe to say Y. 1926 1927config ARM64_MODULE_PLTS 1928 bool "Use PLTs to allow module memory to spill over into vmalloc area" 1929 depends on MODULES 1930 select HAVE_MOD_ARCH_SPECIFIC 1931 help 1932 Allocate PLTs when loading modules so that jumps and calls whose 1933 targets are too far away for their relative offsets to be encoded 1934 in the instructions themselves can be bounced via veneers in the 1935 module's PLT. This allows modules to be allocated in the generic 1936 vmalloc area after the dedicated module memory area has been 1937 exhausted. 1938 1939 When running with address space randomization (KASLR), the module 1940 region itself may be too far away for ordinary relative jumps and 1941 calls, and so in that case, module PLTs are required and cannot be 1942 disabled. 1943 1944 Specific errata workaround(s) might also force module PLTs to be 1945 enabled (ARM64_ERRATUM_843419). 1946 1947config ARM64_PSEUDO_NMI 1948 bool "Support for NMI-like interrupts" 1949 select ARM_GIC_V3 1950 help 1951 Adds support for mimicking Non-Maskable Interrupts through the use of 1952 GIC interrupt priority. This support requires version 3 or later of 1953 ARM GIC. 1954 1955 This high priority configuration for interrupts needs to be 1956 explicitly enabled by setting the kernel parameter 1957 "irqchip.gicv3_pseudo_nmi" to 1. 1958 1959 If unsure, say N 1960 1961if ARM64_PSEUDO_NMI 1962config ARM64_DEBUG_PRIORITY_MASKING 1963 bool "Debug interrupt priority masking" 1964 help 1965 This adds runtime checks to functions enabling/disabling 1966 interrupts when using priority masking. The additional checks verify 1967 the validity of ICC_PMR_EL1 when calling concerned functions. 1968 1969 If unsure, say N 1970endif 1971 1972config RELOCATABLE 1973 bool "Build a relocatable kernel image" if EXPERT 1974 select ARCH_HAS_RELR 1975 default y 1976 help 1977 This builds the kernel as a Position Independent Executable (PIE), 1978 which retains all relocation metadata required to relocate the 1979 kernel binary at runtime to a different virtual address than the 1980 address it was linked at. 1981 Since AArch64 uses the RELA relocation format, this requires a 1982 relocation pass at runtime even if the kernel is loaded at the 1983 same address it was linked at. 1984 1985config RANDOMIZE_BASE 1986 bool "Randomize the address of the kernel image" 1987 select ARM64_MODULE_PLTS if MODULES 1988 select RELOCATABLE 1989 help 1990 Randomizes the virtual address at which the kernel image is 1991 loaded, as a security feature that deters exploit attempts 1992 relying on knowledge of the location of kernel internals. 1993 1994 It is the bootloader's job to provide entropy, by passing a 1995 random u64 value in /chosen/kaslr-seed at kernel entry. 1996 1997 When booting via the UEFI stub, it will invoke the firmware's 1998 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 1999 to the kernel proper. In addition, it will randomise the physical 2000 location of the kernel Image as well. 2001 2002 If unsure, say N. 2003 2004config RANDOMIZE_MODULE_REGION_FULL 2005 bool "Randomize the module region over a 2 GB range" 2006 depends on RANDOMIZE_BASE 2007 default y 2008 help 2009 Randomizes the location of the module region inside a 2 GB window 2010 covering the core kernel. This way, it is less likely for modules 2011 to leak information about the location of core kernel data structures 2012 but it does imply that function calls between modules and the core 2013 kernel will need to be resolved via veneers in the module PLT. 2014 2015 When this option is not set, the module region will be randomized over 2016 a limited range that contains the [_stext, _etext] interval of the 2017 core kernel, so branch relocations are almost always in range unless 2018 ARM64_MODULE_PLTS is enabled and the region is exhausted. In this 2019 particular case of region exhaustion, modules might be able to fall 2020 back to a larger 2GB area. 2021 2022config CC_HAVE_STACKPROTECTOR_SYSREG 2023 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 2024 2025config STACKPROTECTOR_PER_TASK 2026 def_bool y 2027 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 2028 2029endmenu 2030 2031menu "Boot options" 2032 2033config ARM64_ACPI_PARKING_PROTOCOL 2034 bool "Enable support for the ARM64 ACPI parking protocol" 2035 depends on ACPI 2036 help 2037 Enable support for the ARM64 ACPI parking protocol. If disabled 2038 the kernel will not allow booting through the ARM64 ACPI parking 2039 protocol even if the corresponding data is present in the ACPI 2040 MADT table. 2041 2042config CMDLINE 2043 string "Default kernel command string" 2044 default "" 2045 help 2046 Provide a set of default command-line options at build time by 2047 entering them here. As a minimum, you should specify the the 2048 root device (e.g. root=/dev/nfs). 2049 2050choice 2051 prompt "Kernel command line type" if CMDLINE != "" 2052 default CMDLINE_FROM_BOOTLOADER 2053 help 2054 Choose how the kernel will handle the provided default kernel 2055 command line string. 2056 2057config CMDLINE_FROM_BOOTLOADER 2058 bool "Use bootloader kernel arguments if available" 2059 help 2060 Uses the command-line options passed by the boot loader. If 2061 the boot loader doesn't provide any, the default kernel command 2062 string provided in CMDLINE will be used. 2063 2064config CMDLINE_FORCE 2065 bool "Always use the default kernel command string" 2066 help 2067 Always use the default kernel command string, even if the boot 2068 loader passes other arguments to the kernel. 2069 This is useful if you cannot or don't want to change the 2070 command-line options your boot loader passes to the kernel. 2071 2072endchoice 2073 2074config EFI_STUB 2075 bool 2076 2077config EFI 2078 bool "UEFI runtime support" 2079 depends on OF && !CPU_BIG_ENDIAN 2080 depends on KERNEL_MODE_NEON 2081 select ARCH_SUPPORTS_ACPI 2082 select LIBFDT 2083 select UCS2_STRING 2084 select EFI_PARAMS_FROM_FDT 2085 select EFI_RUNTIME_WRAPPERS 2086 select EFI_STUB 2087 select EFI_GENERIC_STUB 2088 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 2089 default y 2090 help 2091 This option provides support for runtime services provided 2092 by UEFI firmware (such as non-volatile variables, realtime 2093 clock, and platform reset). A UEFI stub is also provided to 2094 allow the kernel to be booted as an EFI application. This 2095 is only useful on systems that have UEFI firmware. 2096 2097config DMI 2098 bool "Enable support for SMBIOS (DMI) tables" 2099 depends on EFI 2100 default y 2101 help 2102 This enables SMBIOS/DMI feature for systems. 2103 2104 This option is only useful on systems that have UEFI firmware. 2105 However, even with this option, the resultant kernel should 2106 continue to boot on existing non-UEFI platforms. 2107 2108endmenu 2109 2110config SYSVIPC_COMPAT 2111 def_bool y 2112 depends on COMPAT && SYSVIPC 2113 2114menu "Power management options" 2115 2116source "kernel/power/Kconfig" 2117 2118config ARCH_HIBERNATION_POSSIBLE 2119 def_bool y 2120 depends on CPU_PM 2121 2122config ARCH_HIBERNATION_HEADER 2123 def_bool y 2124 depends on HIBERNATION 2125 2126config ARCH_SUSPEND_POSSIBLE 2127 def_bool y 2128 2129endmenu 2130 2131menu "CPU Power Management" 2132 2133source "drivers/cpuidle/Kconfig" 2134 2135source "drivers/cpufreq/Kconfig" 2136 2137endmenu 2138 2139source "drivers/acpi/Kconfig" 2140 2141source "arch/arm64/kvm/Kconfig" 2142 2143if CRYPTO 2144source "arch/arm64/crypto/Kconfig" 2145endif 2146