xref: /openbmc/linux/arch/arm64/Kconfig (revision aeb64ff3)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_CLOCKSOURCE_DATA
13	select ARCH_HAS_DEBUG_VIRTUAL
14	select ARCH_HAS_DEVMEM_IS_ALLOWED
15	select ARCH_HAS_DMA_PREP_COHERENT
16	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
17	select ARCH_HAS_FAST_MULTIPLIER
18	select ARCH_HAS_FORTIFY_SOURCE
19	select ARCH_HAS_GCOV_PROFILE_ALL
20	select ARCH_HAS_GIGANTIC_PAGE
21	select ARCH_HAS_KCOV
22	select ARCH_HAS_KEEPINITRD
23	select ARCH_HAS_MEMBARRIER_SYNC_CORE
24	select ARCH_HAS_PTE_DEVMAP
25	select ARCH_HAS_PTE_SPECIAL
26	select ARCH_HAS_SETUP_DMA_OPS
27	select ARCH_HAS_SET_DIRECT_MAP
28	select ARCH_HAS_SET_MEMORY
29	select ARCH_HAS_STRICT_KERNEL_RWX
30	select ARCH_HAS_STRICT_MODULE_RWX
31	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
32	select ARCH_HAS_SYNC_DMA_FOR_CPU
33	select ARCH_HAS_SYSCALL_WRAPPER
34	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
35	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
36	select ARCH_HAVE_NMI_SAFE_CMPXCHG
37	select ARCH_INLINE_READ_LOCK if !PREEMPT
38	select ARCH_INLINE_READ_LOCK_BH if !PREEMPT
39	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPT
40	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPT
41	select ARCH_INLINE_READ_UNLOCK if !PREEMPT
42	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPT
43	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPT
44	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPT
45	select ARCH_INLINE_WRITE_LOCK if !PREEMPT
46	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPT
47	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPT
48	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPT
49	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPT
50	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPT
51	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPT
52	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPT
53	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPT
54	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPT
55	select ARCH_INLINE_SPIN_LOCK if !PREEMPT
56	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPT
57	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPT
58	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPT
59	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPT
60	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPT
61	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPT
62	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPT
63	select ARCH_KEEP_MEMBLOCK
64	select ARCH_USE_CMPXCHG_LOCKREF
65	select ARCH_USE_QUEUED_RWLOCKS
66	select ARCH_USE_QUEUED_SPINLOCKS
67	select ARCH_SUPPORTS_MEMORY_FAILURE
68	select ARCH_SUPPORTS_ATOMIC_RMW
69	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG)
70	select ARCH_SUPPORTS_NUMA_BALANCING
71	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
72	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
73	select ARCH_WANT_FRAME_POINTERS
74	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
75	select ARCH_HAS_UBSAN_SANITIZE_ALL
76	select ARM_AMBA
77	select ARM_ARCH_TIMER
78	select ARM_GIC
79	select AUDIT_ARCH_COMPAT_GENERIC
80	select ARM_GIC_V2M if PCI
81	select ARM_GIC_V3
82	select ARM_GIC_V3_ITS if PCI
83	select ARM_PSCI_FW
84	select BUILDTIME_EXTABLE_SORT
85	select CLONE_BACKWARDS
86	select COMMON_CLK
87	select CPU_PM if (SUSPEND || CPU_IDLE)
88	select CRC32
89	select DCACHE_WORD_ACCESS
90	select DMA_DIRECT_REMAP
91	select EDAC_SUPPORT
92	select FRAME_POINTER
93	select GENERIC_ALLOCATOR
94	select GENERIC_ARCH_TOPOLOGY
95	select GENERIC_CLOCKEVENTS
96	select GENERIC_CLOCKEVENTS_BROADCAST
97	select GENERIC_CPU_AUTOPROBE
98	select GENERIC_CPU_VULNERABILITIES
99	select GENERIC_EARLY_IOREMAP
100	select GENERIC_IDLE_POLL_SETUP
101	select GENERIC_IRQ_MULTI_HANDLER
102	select GENERIC_IRQ_PROBE
103	select GENERIC_IRQ_SHOW
104	select GENERIC_IRQ_SHOW_LEVEL
105	select GENERIC_PCI_IOMAP
106	select GENERIC_SCHED_CLOCK
107	select GENERIC_SMP_IDLE_THREAD
108	select GENERIC_STRNCPY_FROM_USER
109	select GENERIC_STRNLEN_USER
110	select GENERIC_TIME_VSYSCALL
111	select GENERIC_GETTIMEOFDAY
112	select HANDLE_DOMAIN_IRQ
113	select HARDIRQS_SW_RESEND
114	select HAVE_PCI
115	select HAVE_ACPI_APEI if (ACPI && EFI)
116	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
117	select HAVE_ARCH_AUDITSYSCALL
118	select HAVE_ARCH_BITREVERSE
119	select HAVE_ARCH_HUGE_VMAP
120	select HAVE_ARCH_JUMP_LABEL
121	select HAVE_ARCH_JUMP_LABEL_RELATIVE
122	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
123	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
124	select HAVE_ARCH_KGDB
125	select HAVE_ARCH_MMAP_RND_BITS
126	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
127	select HAVE_ARCH_PREL32_RELOCATIONS
128	select HAVE_ARCH_SECCOMP_FILTER
129	select HAVE_ARCH_STACKLEAK
130	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
131	select HAVE_ARCH_TRACEHOOK
132	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
133	select HAVE_ARCH_VMAP_STACK
134	select HAVE_ARM_SMCCC
135	select HAVE_ASM_MODVERSIONS
136	select HAVE_EBPF_JIT
137	select HAVE_C_RECORDMCOUNT
138	select HAVE_CMPXCHG_DOUBLE
139	select HAVE_CMPXCHG_LOCAL
140	select HAVE_CONTEXT_TRACKING
141	select HAVE_DEBUG_BUGVERBOSE
142	select HAVE_DEBUG_KMEMLEAK
143	select HAVE_DMA_CONTIGUOUS
144	select HAVE_DYNAMIC_FTRACE
145	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
146		if $(cc-option,-fpatchable-function-entry=2)
147	select HAVE_EFFICIENT_UNALIGNED_ACCESS
148	select HAVE_FAST_GUP
149	select HAVE_FTRACE_MCOUNT_RECORD
150	select HAVE_FUNCTION_TRACER
151	select HAVE_FUNCTION_ERROR_INJECTION
152	select HAVE_FUNCTION_GRAPH_TRACER
153	select HAVE_GCC_PLUGINS
154	select HAVE_HW_BREAKPOINT if PERF_EVENTS
155	select HAVE_IRQ_TIME_ACCOUNTING
156	select HAVE_MEMBLOCK_NODE_MAP if NUMA
157	select HAVE_NMI
158	select HAVE_PATA_PLATFORM
159	select HAVE_PERF_EVENTS
160	select HAVE_PERF_REGS
161	select HAVE_PERF_USER_STACK_DUMP
162	select HAVE_REGS_AND_STACK_ACCESS_API
163	select HAVE_FUNCTION_ARG_ACCESS_API
164	select HAVE_RCU_TABLE_FREE
165	select HAVE_RSEQ
166	select HAVE_STACKPROTECTOR
167	select HAVE_SYSCALL_TRACEPOINTS
168	select HAVE_KPROBES
169	select HAVE_KRETPROBES
170	select HAVE_GENERIC_VDSO
171	select IOMMU_DMA if IOMMU_SUPPORT
172	select IRQ_DOMAIN
173	select IRQ_FORCED_THREADING
174	select MODULES_USE_ELF_RELA
175	select NEED_DMA_MAP_STATE
176	select NEED_SG_DMA_LENGTH
177	select OF
178	select OF_EARLY_FLATTREE
179	select PCI_DOMAINS_GENERIC if PCI
180	select PCI_ECAM if (ACPI && PCI)
181	select PCI_SYSCALL if PCI
182	select POWER_RESET
183	select POWER_SUPPLY
184	select SPARSE_IRQ
185	select SWIOTLB
186	select SYSCTL_EXCEPTION_TRACE
187	select THREAD_INFO_IN_TASK
188	help
189	  ARM 64-bit (AArch64) Linux support.
190
191config 64BIT
192	def_bool y
193
194config MMU
195	def_bool y
196
197config ARM64_PAGE_SHIFT
198	int
199	default 16 if ARM64_64K_PAGES
200	default 14 if ARM64_16K_PAGES
201	default 12
202
203config ARM64_CONT_SHIFT
204	int
205	default 5 if ARM64_64K_PAGES
206	default 7 if ARM64_16K_PAGES
207	default 4
208
209config ARCH_MMAP_RND_BITS_MIN
210       default 14 if ARM64_64K_PAGES
211       default 16 if ARM64_16K_PAGES
212       default 18
213
214# max bits determined by the following formula:
215#  VA_BITS - PAGE_SHIFT - 3
216config ARCH_MMAP_RND_BITS_MAX
217       default 19 if ARM64_VA_BITS=36
218       default 24 if ARM64_VA_BITS=39
219       default 27 if ARM64_VA_BITS=42
220       default 30 if ARM64_VA_BITS=47
221       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
222       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
223       default 33 if ARM64_VA_BITS=48
224       default 14 if ARM64_64K_PAGES
225       default 16 if ARM64_16K_PAGES
226       default 18
227
228config ARCH_MMAP_RND_COMPAT_BITS_MIN
229       default 7 if ARM64_64K_PAGES
230       default 9 if ARM64_16K_PAGES
231       default 11
232
233config ARCH_MMAP_RND_COMPAT_BITS_MAX
234       default 16
235
236config NO_IOPORT_MAP
237	def_bool y if !PCI
238
239config STACKTRACE_SUPPORT
240	def_bool y
241
242config ILLEGAL_POINTER_VALUE
243	hex
244	default 0xdead000000000000
245
246config LOCKDEP_SUPPORT
247	def_bool y
248
249config TRACE_IRQFLAGS_SUPPORT
250	def_bool y
251
252config GENERIC_BUG
253	def_bool y
254	depends on BUG
255
256config GENERIC_BUG_RELATIVE_POINTERS
257	def_bool y
258	depends on GENERIC_BUG
259
260config GENERIC_HWEIGHT
261	def_bool y
262
263config GENERIC_CSUM
264        def_bool y
265
266config GENERIC_CALIBRATE_DELAY
267	def_bool y
268
269config ZONE_DMA
270	bool "Support DMA zone" if EXPERT
271	default y
272
273config ZONE_DMA32
274	bool "Support DMA32 zone" if EXPERT
275	default y
276
277config ARCH_ENABLE_MEMORY_HOTPLUG
278	def_bool y
279
280config SMP
281	def_bool y
282
283config KERNEL_MODE_NEON
284	def_bool y
285
286config FIX_EARLYCON_MEM
287	def_bool y
288
289config PGTABLE_LEVELS
290	int
291	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
292	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
293	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
294	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
295	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
296	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
297
298config ARCH_SUPPORTS_UPROBES
299	def_bool y
300
301config ARCH_PROC_KCORE_TEXT
302	def_bool y
303
304config KASAN_SHADOW_OFFSET
305	hex
306	depends on KASAN
307	default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
308	default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
309	default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
310	default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
311	default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
312	default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
313	default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
314	default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
315	default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
316	default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
317	default 0xffffffffffffffff
318
319source "arch/arm64/Kconfig.platforms"
320
321menu "Kernel Features"
322
323menu "ARM errata workarounds via the alternatives framework"
324
325config ARM64_WORKAROUND_CLEAN_CACHE
326	bool
327
328config ARM64_ERRATUM_826319
329	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
330	default y
331	select ARM64_WORKAROUND_CLEAN_CACHE
332	help
333	  This option adds an alternative code sequence to work around ARM
334	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
335	  AXI master interface and an L2 cache.
336
337	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
338	  and is unable to accept a certain write via this interface, it will
339	  not progress on read data presented on the read data channel and the
340	  system can deadlock.
341
342	  The workaround promotes data cache clean instructions to
343	  data cache clean-and-invalidate.
344	  Please note that this does not necessarily enable the workaround,
345	  as it depends on the alternative framework, which will only patch
346	  the kernel if an affected CPU is detected.
347
348	  If unsure, say Y.
349
350config ARM64_ERRATUM_827319
351	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
352	default y
353	select ARM64_WORKAROUND_CLEAN_CACHE
354	help
355	  This option adds an alternative code sequence to work around ARM
356	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
357	  master interface and an L2 cache.
358
359	  Under certain conditions this erratum can cause a clean line eviction
360	  to occur at the same time as another transaction to the same address
361	  on the AMBA 5 CHI interface, which can cause data corruption if the
362	  interconnect reorders the two transactions.
363
364	  The workaround promotes data cache clean instructions to
365	  data cache clean-and-invalidate.
366	  Please note that this does not necessarily enable the workaround,
367	  as it depends on the alternative framework, which will only patch
368	  the kernel if an affected CPU is detected.
369
370	  If unsure, say Y.
371
372config ARM64_ERRATUM_824069
373	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
374	default y
375	select ARM64_WORKAROUND_CLEAN_CACHE
376	help
377	  This option adds an alternative code sequence to work around ARM
378	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
379	  to a coherent interconnect.
380
381	  If a Cortex-A53 processor is executing a store or prefetch for
382	  write instruction at the same time as a processor in another
383	  cluster is executing a cache maintenance operation to the same
384	  address, then this erratum might cause a clean cache line to be
385	  incorrectly marked as dirty.
386
387	  The workaround promotes data cache clean instructions to
388	  data cache clean-and-invalidate.
389	  Please note that this option does not necessarily enable the
390	  workaround, as it depends on the alternative framework, which will
391	  only patch the kernel if an affected CPU is detected.
392
393	  If unsure, say Y.
394
395config ARM64_ERRATUM_819472
396	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
397	default y
398	select ARM64_WORKAROUND_CLEAN_CACHE
399	help
400	  This option adds an alternative code sequence to work around ARM
401	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
402	  present when it is connected to a coherent interconnect.
403
404	  If the processor is executing a load and store exclusive sequence at
405	  the same time as a processor in another cluster is executing a cache
406	  maintenance operation to the same address, then this erratum might
407	  cause data corruption.
408
409	  The workaround promotes data cache clean instructions to
410	  data cache clean-and-invalidate.
411	  Please note that this does not necessarily enable the workaround,
412	  as it depends on the alternative framework, which will only patch
413	  the kernel if an affected CPU is detected.
414
415	  If unsure, say Y.
416
417config ARM64_ERRATUM_832075
418	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
419	default y
420	help
421	  This option adds an alternative code sequence to work around ARM
422	  erratum 832075 on Cortex-A57 parts up to r1p2.
423
424	  Affected Cortex-A57 parts might deadlock when exclusive load/store
425	  instructions to Write-Back memory are mixed with Device loads.
426
427	  The workaround is to promote device loads to use Load-Acquire
428	  semantics.
429	  Please note that this does not necessarily enable the workaround,
430	  as it depends on the alternative framework, which will only patch
431	  the kernel if an affected CPU is detected.
432
433	  If unsure, say Y.
434
435config ARM64_ERRATUM_834220
436	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
437	depends on KVM
438	default y
439	help
440	  This option adds an alternative code sequence to work around ARM
441	  erratum 834220 on Cortex-A57 parts up to r1p2.
442
443	  Affected Cortex-A57 parts might report a Stage 2 translation
444	  fault as the result of a Stage 1 fault for load crossing a
445	  page boundary when there is a permission or device memory
446	  alignment fault at Stage 1 and a translation fault at Stage 2.
447
448	  The workaround is to verify that the Stage 1 translation
449	  doesn't generate a fault before handling the Stage 2 fault.
450	  Please note that this does not necessarily enable the workaround,
451	  as it depends on the alternative framework, which will only patch
452	  the kernel if an affected CPU is detected.
453
454	  If unsure, say Y.
455
456config ARM64_ERRATUM_845719
457	bool "Cortex-A53: 845719: a load might read incorrect data"
458	depends on COMPAT
459	default y
460	help
461	  This option adds an alternative code sequence to work around ARM
462	  erratum 845719 on Cortex-A53 parts up to r0p4.
463
464	  When running a compat (AArch32) userspace on an affected Cortex-A53
465	  part, a load at EL0 from a virtual address that matches the bottom 32
466	  bits of the virtual address used by a recent load at (AArch64) EL1
467	  might return incorrect data.
468
469	  The workaround is to write the contextidr_el1 register on exception
470	  return to a 32-bit task.
471	  Please note that this does not necessarily enable the workaround,
472	  as it depends on the alternative framework, which will only patch
473	  the kernel if an affected CPU is detected.
474
475	  If unsure, say Y.
476
477config ARM64_ERRATUM_843419
478	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
479	default y
480	select ARM64_MODULE_PLTS if MODULES
481	help
482	  This option links the kernel with '--fix-cortex-a53-843419' and
483	  enables PLT support to replace certain ADRP instructions, which can
484	  cause subsequent memory accesses to use an incorrect address on
485	  Cortex-A53 parts up to r0p4.
486
487	  If unsure, say Y.
488
489config ARM64_ERRATUM_1024718
490	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
491	default y
492	help
493	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
494
495	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect
496	  update of the hardware dirty bit when the DBM/AP bits are updated
497	  without a break-before-make. The workaround is to disable the usage
498	  of hardware DBM locally on the affected cores. CPUs not affected by
499	  this erratum will continue to use the feature.
500
501	  If unsure, say Y.
502
503config ARM64_ERRATUM_1418040
504	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
505	default y
506	depends on COMPAT
507	help
508	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
509	  errata 1188873 and 1418040.
510
511	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
512	  cause register corruption when accessing the timer registers
513	  from AArch32 userspace.
514
515	  If unsure, say Y.
516
517config ARM64_ERRATUM_1165522
518	bool "Cortex-A76: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
519	default y
520	help
521	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
522
523	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
524	  corrupted TLBs by speculating an AT instruction during a guest
525	  context switch.
526
527	  If unsure, say Y.
528
529config ARM64_ERRATUM_1286807
530	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
531	default y
532	select ARM64_WORKAROUND_REPEAT_TLBI
533	help
534	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
535
536	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
537	  address for a cacheable mapping of a location is being
538	  accessed by a core while another core is remapping the virtual
539	  address to a new physical page using the recommended
540	  break-before-make sequence, then under very rare circumstances
541	  TLBI+DSB completes before a read using the translation being
542	  invalidated has been observed by other observers. The
543	  workaround repeats the TLBI+DSB operation.
544
545config ARM64_ERRATUM_1319367
546	bool "Cortex-A57/A72: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
547	default y
548	help
549	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
550	  and A72 erratum 1319367
551
552	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
553	  speculating an AT instruction during a guest context switch.
554
555	  If unsure, say Y.
556
557config ARM64_ERRATUM_1463225
558	bool "Cortex-A76: Software Step might prevent interrupt recognition"
559	default y
560	help
561	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
562
563	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
564	  of a system call instruction (SVC) can prevent recognition of
565	  subsequent interrupts when software stepping is disabled in the
566	  exception handler of the system call and either kernel debugging
567	  is enabled or VHE is in use.
568
569	  Work around the erratum by triggering a dummy step exception
570	  when handling a system call from a task that is being stepped
571	  in a VHE configuration of the kernel.
572
573	  If unsure, say Y.
574
575config ARM64_ERRATUM_1542419
576	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
577	default y
578	help
579	  This option adds a workaround for ARM Neoverse-N1 erratum
580	  1542419.
581
582	  Affected Neoverse-N1 cores could execute a stale instruction when
583	  modified by another CPU. The workaround depends on a firmware
584	  counterpart.
585
586	  Workaround the issue by hiding the DIC feature from EL0. This
587	  forces user-space to perform cache maintenance.
588
589	  If unsure, say Y.
590
591config CAVIUM_ERRATUM_22375
592	bool "Cavium erratum 22375, 24313"
593	default y
594	help
595	  Enable workaround for errata 22375 and 24313.
596
597	  This implements two gicv3-its errata workarounds for ThunderX. Both
598	  with a small impact affecting only ITS table allocation.
599
600	    erratum 22375: only alloc 8MB table size
601	    erratum 24313: ignore memory access type
602
603	  The fixes are in ITS initialization and basically ignore memory access
604	  type and table size provided by the TYPER and BASER registers.
605
606	  If unsure, say Y.
607
608config CAVIUM_ERRATUM_23144
609	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
610	depends on NUMA
611	default y
612	help
613	  ITS SYNC command hang for cross node io and collections/cpu mapping.
614
615	  If unsure, say Y.
616
617config CAVIUM_ERRATUM_23154
618	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
619	default y
620	help
621	  The gicv3 of ThunderX requires a modified version for
622	  reading the IAR status to ensure data synchronization
623	  (access to icc_iar1_el1 is not sync'ed before and after).
624
625	  If unsure, say Y.
626
627config CAVIUM_ERRATUM_27456
628	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
629	default y
630	help
631	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
632	  instructions may cause the icache to become corrupted if it
633	  contains data for a non-current ASID.  The fix is to
634	  invalidate the icache when changing the mm context.
635
636	  If unsure, say Y.
637
638config CAVIUM_ERRATUM_30115
639	bool "Cavium erratum 30115: Guest may disable interrupts in host"
640	default y
641	help
642	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
643	  1.2, and T83 Pass 1.0, KVM guest execution may disable
644	  interrupts in host. Trapping both GICv3 group-0 and group-1
645	  accesses sidesteps the issue.
646
647	  If unsure, say Y.
648
649config CAVIUM_TX2_ERRATUM_219
650	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
651	default y
652	help
653	  On Cavium ThunderX2, a load, store or prefetch instruction between a
654	  TTBR update and the corresponding context synchronizing operation can
655	  cause a spurious Data Abort to be delivered to any hardware thread in
656	  the CPU core.
657
658	  Work around the issue by avoiding the problematic code sequence and
659	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
660	  trap handler performs the corresponding register access, skips the
661	  instruction and ensures context synchronization by virtue of the
662	  exception return.
663
664	  If unsure, say Y.
665
666config QCOM_FALKOR_ERRATUM_1003
667	bool "Falkor E1003: Incorrect translation due to ASID change"
668	default y
669	help
670	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
671	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
672	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
673	  then only for entries in the walk cache, since the leaf translation
674	  is unchanged. Work around the erratum by invalidating the walk cache
675	  entries for the trampoline before entering the kernel proper.
676
677config ARM64_WORKAROUND_REPEAT_TLBI
678	bool
679
680config QCOM_FALKOR_ERRATUM_1009
681	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
682	default y
683	select ARM64_WORKAROUND_REPEAT_TLBI
684	help
685	  On Falkor v1, the CPU may prematurely complete a DSB following a
686	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
687	  one more time to fix the issue.
688
689	  If unsure, say Y.
690
691config QCOM_QDF2400_ERRATUM_0065
692	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
693	default y
694	help
695	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
696	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
697	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
698
699	  If unsure, say Y.
700
701config SOCIONEXT_SYNQUACER_PREITS
702	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
703	default y
704	help
705	  Socionext Synquacer SoCs implement a separate h/w block to generate
706	  MSI doorbell writes with non-zero values for the device ID.
707
708	  If unsure, say Y.
709
710config HISILICON_ERRATUM_161600802
711	bool "Hip07 161600802: Erroneous redistributor VLPI base"
712	default y
713	help
714	  The HiSilicon Hip07 SoC uses the wrong redistributor base
715	  when issued ITS commands such as VMOVP and VMAPP, and requires
716	  a 128kB offset to be applied to the target address in this commands.
717
718	  If unsure, say Y.
719
720config QCOM_FALKOR_ERRATUM_E1041
721	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
722	default y
723	help
724	  Falkor CPU may speculatively fetch instructions from an improper
725	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
726	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
727
728	  If unsure, say Y.
729
730config FUJITSU_ERRATUM_010001
731	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
732	default y
733	help
734	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
735	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
736	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
737	  This fault occurs under a specific hardware condition when a
738	  load/store instruction performs an address translation using:
739	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
740	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
741	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
742	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
743
744	  The workaround is to ensure these bits are clear in TCR_ELx.
745	  The workaround only affects the Fujitsu-A64FX.
746
747	  If unsure, say Y.
748
749endmenu
750
751
752choice
753	prompt "Page size"
754	default ARM64_4K_PAGES
755	help
756	  Page size (translation granule) configuration.
757
758config ARM64_4K_PAGES
759	bool "4KB"
760	help
761	  This feature enables 4KB pages support.
762
763config ARM64_16K_PAGES
764	bool "16KB"
765	help
766	  The system will use 16KB pages support. AArch32 emulation
767	  requires applications compiled with 16K (or a multiple of 16K)
768	  aligned segments.
769
770config ARM64_64K_PAGES
771	bool "64KB"
772	help
773	  This feature enables 64KB pages support (4KB by default)
774	  allowing only two levels of page tables and faster TLB
775	  look-up. AArch32 emulation requires applications compiled
776	  with 64K aligned segments.
777
778endchoice
779
780choice
781	prompt "Virtual address space size"
782	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
783	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
784	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
785	help
786	  Allows choosing one of multiple possible virtual address
787	  space sizes. The level of translation table is determined by
788	  a combination of page size and virtual address space size.
789
790config ARM64_VA_BITS_36
791	bool "36-bit" if EXPERT
792	depends on ARM64_16K_PAGES
793
794config ARM64_VA_BITS_39
795	bool "39-bit"
796	depends on ARM64_4K_PAGES
797
798config ARM64_VA_BITS_42
799	bool "42-bit"
800	depends on ARM64_64K_PAGES
801
802config ARM64_VA_BITS_47
803	bool "47-bit"
804	depends on ARM64_16K_PAGES
805
806config ARM64_VA_BITS_48
807	bool "48-bit"
808
809config ARM64_VA_BITS_52
810	bool "52-bit"
811	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
812	help
813	  Enable 52-bit virtual addressing for userspace when explicitly
814	  requested via a hint to mmap(). The kernel will also use 52-bit
815	  virtual addresses for its own mappings (provided HW support for
816	  this feature is available, otherwise it reverts to 48-bit).
817
818	  NOTE: Enabling 52-bit virtual addressing in conjunction with
819	  ARMv8.3 Pointer Authentication will result in the PAC being
820	  reduced from 7 bits to 3 bits, which may have a significant
821	  impact on its susceptibility to brute-force attacks.
822
823	  If unsure, select 48-bit virtual addressing instead.
824
825endchoice
826
827config ARM64_FORCE_52BIT
828	bool "Force 52-bit virtual addresses for userspace"
829	depends on ARM64_VA_BITS_52 && EXPERT
830	help
831	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
832	  to maintain compatibility with older software by providing 48-bit VAs
833	  unless a hint is supplied to mmap.
834
835	  This configuration option disables the 48-bit compatibility logic, and
836	  forces all userspace addresses to be 52-bit on HW that supports it. One
837	  should only enable this configuration option for stress testing userspace
838	  memory management code. If unsure say N here.
839
840config ARM64_VA_BITS
841	int
842	default 36 if ARM64_VA_BITS_36
843	default 39 if ARM64_VA_BITS_39
844	default 42 if ARM64_VA_BITS_42
845	default 47 if ARM64_VA_BITS_47
846	default 48 if ARM64_VA_BITS_48
847	default 52 if ARM64_VA_BITS_52
848
849choice
850	prompt "Physical address space size"
851	default ARM64_PA_BITS_48
852	help
853	  Choose the maximum physical address range that the kernel will
854	  support.
855
856config ARM64_PA_BITS_48
857	bool "48-bit"
858
859config ARM64_PA_BITS_52
860	bool "52-bit (ARMv8.2)"
861	depends on ARM64_64K_PAGES
862	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
863	help
864	  Enable support for a 52-bit physical address space, introduced as
865	  part of the ARMv8.2-LPA extension.
866
867	  With this enabled, the kernel will also continue to work on CPUs that
868	  do not support ARMv8.2-LPA, but with some added memory overhead (and
869	  minor performance overhead).
870
871endchoice
872
873config ARM64_PA_BITS
874	int
875	default 48 if ARM64_PA_BITS_48
876	default 52 if ARM64_PA_BITS_52
877
878choice
879	prompt "Endianness"
880	default CPU_LITTLE_ENDIAN
881	help
882	  Select the endianness of data accesses performed by the CPU. Userspace
883	  applications will need to be compiled and linked for the endianness
884	  that is selected here.
885
886config CPU_BIG_ENDIAN
887       bool "Build big-endian kernel"
888       help
889	  Say Y if you plan on running a kernel with a big-endian userspace.
890
891config CPU_LITTLE_ENDIAN
892	bool "Build little-endian kernel"
893	help
894	  Say Y if you plan on running a kernel with a little-endian userspace.
895	  This is usually the case for distributions targeting arm64.
896
897endchoice
898
899config SCHED_MC
900	bool "Multi-core scheduler support"
901	help
902	  Multi-core scheduler support improves the CPU scheduler's decision
903	  making when dealing with multi-core CPU chips at a cost of slightly
904	  increased overhead in some places. If unsure say N here.
905
906config SCHED_SMT
907	bool "SMT scheduler support"
908	help
909	  Improves the CPU scheduler's decision making when dealing with
910	  MultiThreading at a cost of slightly increased overhead in some
911	  places. If unsure say N here.
912
913config NR_CPUS
914	int "Maximum number of CPUs (2-4096)"
915	range 2 4096
916	default "256"
917
918config HOTPLUG_CPU
919	bool "Support for hot-pluggable CPUs"
920	select GENERIC_IRQ_MIGRATION
921	help
922	  Say Y here to experiment with turning CPUs off and on.  CPUs
923	  can be controlled through /sys/devices/system/cpu.
924
925# Common NUMA Features
926config NUMA
927	bool "Numa Memory Allocation and Scheduler Support"
928	select ACPI_NUMA if ACPI
929	select OF_NUMA
930	help
931	  Enable NUMA (Non Uniform Memory Access) support.
932
933	  The kernel will try to allocate memory used by a CPU on the
934	  local memory of the CPU and add some more
935	  NUMA awareness to the kernel.
936
937config NODES_SHIFT
938	int "Maximum NUMA Nodes (as a power of 2)"
939	range 1 10
940	default "2"
941	depends on NEED_MULTIPLE_NODES
942	help
943	  Specify the maximum number of NUMA Nodes available on the target
944	  system.  Increases memory reserved to accommodate various tables.
945
946config USE_PERCPU_NUMA_NODE_ID
947	def_bool y
948	depends on NUMA
949
950config HAVE_SETUP_PER_CPU_AREA
951	def_bool y
952	depends on NUMA
953
954config NEED_PER_CPU_EMBED_FIRST_CHUNK
955	def_bool y
956	depends on NUMA
957
958config HOLES_IN_ZONE
959	def_bool y
960
961source "kernel/Kconfig.hz"
962
963config ARCH_SUPPORTS_DEBUG_PAGEALLOC
964	def_bool y
965
966config ARCH_SPARSEMEM_ENABLE
967	def_bool y
968	select SPARSEMEM_VMEMMAP_ENABLE
969
970config ARCH_SPARSEMEM_DEFAULT
971	def_bool ARCH_SPARSEMEM_ENABLE
972
973config ARCH_SELECT_MEMORY_MODEL
974	def_bool ARCH_SPARSEMEM_ENABLE
975
976config ARCH_FLATMEM_ENABLE
977	def_bool !NUMA
978
979config HAVE_ARCH_PFN_VALID
980	def_bool y
981
982config HW_PERF_EVENTS
983	def_bool y
984	depends on ARM_PMU
985
986config SYS_SUPPORTS_HUGETLBFS
987	def_bool y
988
989config ARCH_WANT_HUGE_PMD_SHARE
990
991config ARCH_HAS_CACHE_LINE_SIZE
992	def_bool y
993
994config ARCH_ENABLE_SPLIT_PMD_PTLOCK
995	def_bool y if PGTABLE_LEVELS > 2
996
997config SECCOMP
998	bool "Enable seccomp to safely compute untrusted bytecode"
999	---help---
1000	  This kernel feature is useful for number crunching applications
1001	  that may need to compute untrusted bytecode during their
1002	  execution. By using pipes or other transports made available to
1003	  the process as file descriptors supporting the read/write
1004	  syscalls, it's possible to isolate those applications in
1005	  their own address space using seccomp. Once seccomp is
1006	  enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1007	  and the task is only allowed to execute a few safe syscalls
1008	  defined by each seccomp mode.
1009
1010config PARAVIRT
1011	bool "Enable paravirtualization code"
1012	help
1013	  This changes the kernel so it can modify itself when it is run
1014	  under a hypervisor, potentially improving performance significantly
1015	  over full virtualization.
1016
1017config PARAVIRT_TIME_ACCOUNTING
1018	bool "Paravirtual steal time accounting"
1019	select PARAVIRT
1020	help
1021	  Select this option to enable fine granularity task steal time
1022	  accounting. Time spent executing other tasks in parallel with
1023	  the current vCPU is discounted from the vCPU power. To account for
1024	  that, there can be a small performance impact.
1025
1026	  If in doubt, say N here.
1027
1028config KEXEC
1029	depends on PM_SLEEP_SMP
1030	select KEXEC_CORE
1031	bool "kexec system call"
1032	---help---
1033	  kexec is a system call that implements the ability to shutdown your
1034	  current kernel, and to start another kernel.  It is like a reboot
1035	  but it is independent of the system firmware.   And like a reboot
1036	  you can start any kernel with it, not just Linux.
1037
1038config KEXEC_FILE
1039	bool "kexec file based system call"
1040	select KEXEC_CORE
1041	help
1042	  This is new version of kexec system call. This system call is
1043	  file based and takes file descriptors as system call argument
1044	  for kernel and initramfs as opposed to list of segments as
1045	  accepted by previous system call.
1046
1047config KEXEC_SIG
1048	bool "Verify kernel signature during kexec_file_load() syscall"
1049	depends on KEXEC_FILE
1050	help
1051	  Select this option to verify a signature with loaded kernel
1052	  image. If configured, any attempt of loading a image without
1053	  valid signature will fail.
1054
1055	  In addition to that option, you need to enable signature
1056	  verification for the corresponding kernel image type being
1057	  loaded in order for this to work.
1058
1059config KEXEC_IMAGE_VERIFY_SIG
1060	bool "Enable Image signature verification support"
1061	default y
1062	depends on KEXEC_SIG
1063	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1064	help
1065	  Enable Image signature verification support.
1066
1067comment "Support for PE file signature verification disabled"
1068	depends on KEXEC_SIG
1069	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1070
1071config CRASH_DUMP
1072	bool "Build kdump crash kernel"
1073	help
1074	  Generate crash dump after being started by kexec. This should
1075	  be normally only set in special crash dump kernels which are
1076	  loaded in the main kernel with kexec-tools into a specially
1077	  reserved region and then later executed after a crash by
1078	  kdump/kexec.
1079
1080	  For more details see Documentation/admin-guide/kdump/kdump.rst
1081
1082config XEN_DOM0
1083	def_bool y
1084	depends on XEN
1085
1086config XEN
1087	bool "Xen guest support on ARM64"
1088	depends on ARM64 && OF
1089	select SWIOTLB_XEN
1090	select PARAVIRT
1091	help
1092	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1093
1094config FORCE_MAX_ZONEORDER
1095	int
1096	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
1097	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
1098	default "11"
1099	help
1100	  The kernel memory allocator divides physically contiguous memory
1101	  blocks into "zones", where each zone is a power of two number of
1102	  pages.  This option selects the largest power of two that the kernel
1103	  keeps in the memory allocator.  If you need to allocate very large
1104	  blocks of physically contiguous memory, then you may need to
1105	  increase this value.
1106
1107	  This config option is actually maximum order plus one. For example,
1108	  a value of 11 means that the largest free memory block is 2^10 pages.
1109
1110	  We make sure that we can allocate upto a HugePage size for each configuration.
1111	  Hence we have :
1112		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1113
1114	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1115	  4M allocations matching the default size used by generic code.
1116
1117config UNMAP_KERNEL_AT_EL0
1118	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1119	default y
1120	help
1121	  Speculation attacks against some high-performance processors can
1122	  be used to bypass MMU permission checks and leak kernel data to
1123	  userspace. This can be defended against by unmapping the kernel
1124	  when running in userspace, mapping it back in on exception entry
1125	  via a trampoline page in the vector table.
1126
1127	  If unsure, say Y.
1128
1129config HARDEN_BRANCH_PREDICTOR
1130	bool "Harden the branch predictor against aliasing attacks" if EXPERT
1131	default y
1132	help
1133	  Speculation attacks against some high-performance processors rely on
1134	  being able to manipulate the branch predictor for a victim context by
1135	  executing aliasing branches in the attacker context.  Such attacks
1136	  can be partially mitigated against by clearing internal branch
1137	  predictor state and limiting the prediction logic in some situations.
1138
1139	  This config option will take CPU-specific actions to harden the
1140	  branch predictor against aliasing attacks and may rely on specific
1141	  instruction sequences or control bits being set by the system
1142	  firmware.
1143
1144	  If unsure, say Y.
1145
1146config HARDEN_EL2_VECTORS
1147	bool "Harden EL2 vector mapping against system register leak" if EXPERT
1148	default y
1149	help
1150	  Speculation attacks against some high-performance processors can
1151	  be used to leak privileged information such as the vector base
1152	  register, resulting in a potential defeat of the EL2 layout
1153	  randomization.
1154
1155	  This config option will map the vectors to a fixed location,
1156	  independent of the EL2 code mapping, so that revealing VBAR_EL2
1157	  to an attacker does not give away any extra information. This
1158	  only gets enabled on affected CPUs.
1159
1160	  If unsure, say Y.
1161
1162config ARM64_SSBD
1163	bool "Speculative Store Bypass Disable" if EXPERT
1164	default y
1165	help
1166	  This enables mitigation of the bypassing of previous stores
1167	  by speculative loads.
1168
1169	  If unsure, say Y.
1170
1171config RODATA_FULL_DEFAULT_ENABLED
1172	bool "Apply r/o permissions of VM areas also to their linear aliases"
1173	default y
1174	help
1175	  Apply read-only attributes of VM areas to the linear alias of
1176	  the backing pages as well. This prevents code or read-only data
1177	  from being modified (inadvertently or intentionally) via another
1178	  mapping of the same memory page. This additional enhancement can
1179	  be turned off at runtime by passing rodata=[off|on] (and turned on
1180	  with rodata=full if this option is set to 'n')
1181
1182	  This requires the linear region to be mapped down to pages,
1183	  which may adversely affect performance in some cases.
1184
1185config ARM64_SW_TTBR0_PAN
1186	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1187	help
1188	  Enabling this option prevents the kernel from accessing
1189	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1190	  zeroed area and reserved ASID. The user access routines
1191	  restore the valid TTBR0_EL1 temporarily.
1192
1193config ARM64_TAGGED_ADDR_ABI
1194	bool "Enable the tagged user addresses syscall ABI"
1195	default y
1196	help
1197	  When this option is enabled, user applications can opt in to a
1198	  relaxed ABI via prctl() allowing tagged addresses to be passed
1199	  to system calls as pointer arguments. For details, see
1200	  Documentation/arm64/tagged-address-abi.rst.
1201
1202menuconfig COMPAT
1203	bool "Kernel support for 32-bit EL0"
1204	depends on ARM64_4K_PAGES || EXPERT
1205	select COMPAT_BINFMT_ELF if BINFMT_ELF
1206	select HAVE_UID16
1207	select OLD_SIGSUSPEND3
1208	select COMPAT_OLD_SIGACTION
1209	help
1210	  This option enables support for a 32-bit EL0 running under a 64-bit
1211	  kernel at EL1. AArch32-specific components such as system calls,
1212	  the user helper functions, VFP support and the ptrace interface are
1213	  handled appropriately by the kernel.
1214
1215	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1216	  that you will only be able to execute AArch32 binaries that were compiled
1217	  with page size aligned segments.
1218
1219	  If you want to execute 32-bit userspace applications, say Y.
1220
1221if COMPAT
1222
1223config KUSER_HELPERS
1224	bool "Enable kuser helpers page for 32-bit applications"
1225	default y
1226	help
1227	  Warning: disabling this option may break 32-bit user programs.
1228
1229	  Provide kuser helpers to compat tasks. The kernel provides
1230	  helper code to userspace in read only form at a fixed location
1231	  to allow userspace to be independent of the CPU type fitted to
1232	  the system. This permits binaries to be run on ARMv4 through
1233	  to ARMv8 without modification.
1234
1235	  See Documentation/arm/kernel_user_helpers.rst for details.
1236
1237	  However, the fixed address nature of these helpers can be used
1238	  by ROP (return orientated programming) authors when creating
1239	  exploits.
1240
1241	  If all of the binaries and libraries which run on your platform
1242	  are built specifically for your platform, and make no use of
1243	  these helpers, then you can turn this option off to hinder
1244	  such exploits. However, in that case, if a binary or library
1245	  relying on those helpers is run, it will not function correctly.
1246
1247	  Say N here only if you are absolutely certain that you do not
1248	  need these helpers; otherwise, the safe option is to say Y.
1249
1250config COMPAT_VDSO
1251	bool "Enable vDSO for 32-bit applications"
1252	depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
1253	select GENERIC_COMPAT_VDSO
1254	default y
1255	help
1256	  Place in the process address space of 32-bit applications an
1257	  ELF shared object providing fast implementations of gettimeofday
1258	  and clock_gettime.
1259
1260	  You must have a 32-bit build of glibc 2.22 or later for programs
1261	  to seamlessly take advantage of this.
1262
1263menuconfig ARMV8_DEPRECATED
1264	bool "Emulate deprecated/obsolete ARMv8 instructions"
1265	depends on SYSCTL
1266	help
1267	  Legacy software support may require certain instructions
1268	  that have been deprecated or obsoleted in the architecture.
1269
1270	  Enable this config to enable selective emulation of these
1271	  features.
1272
1273	  If unsure, say Y
1274
1275if ARMV8_DEPRECATED
1276
1277config SWP_EMULATION
1278	bool "Emulate SWP/SWPB instructions"
1279	help
1280	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1281	  they are always undefined. Say Y here to enable software
1282	  emulation of these instructions for userspace using LDXR/STXR.
1283
1284	  In some older versions of glibc [<=2.8] SWP is used during futex
1285	  trylock() operations with the assumption that the code will not
1286	  be preempted. This invalid assumption may be more likely to fail
1287	  with SWP emulation enabled, leading to deadlock of the user
1288	  application.
1289
1290	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1291	  on an external transaction monitoring block called a global
1292	  monitor to maintain update atomicity. If your system does not
1293	  implement a global monitor, this option can cause programs that
1294	  perform SWP operations to uncached memory to deadlock.
1295
1296	  If unsure, say Y
1297
1298config CP15_BARRIER_EMULATION
1299	bool "Emulate CP15 Barrier instructions"
1300	help
1301	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1302	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1303	  strongly recommended to use the ISB, DSB, and DMB
1304	  instructions instead.
1305
1306	  Say Y here to enable software emulation of these
1307	  instructions for AArch32 userspace code. When this option is
1308	  enabled, CP15 barrier usage is traced which can help
1309	  identify software that needs updating.
1310
1311	  If unsure, say Y
1312
1313config SETEND_EMULATION
1314	bool "Emulate SETEND instruction"
1315	help
1316	  The SETEND instruction alters the data-endianness of the
1317	  AArch32 EL0, and is deprecated in ARMv8.
1318
1319	  Say Y here to enable software emulation of the instruction
1320	  for AArch32 userspace code.
1321
1322	  Note: All the cpus on the system must have mixed endian support at EL0
1323	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1324	  endian - is hotplugged in after this feature has been enabled, there could
1325	  be unexpected results in the applications.
1326
1327	  If unsure, say Y
1328endif
1329
1330endif
1331
1332menu "ARMv8.1 architectural features"
1333
1334config ARM64_HW_AFDBM
1335	bool "Support for hardware updates of the Access and Dirty page flags"
1336	default y
1337	help
1338	  The ARMv8.1 architecture extensions introduce support for
1339	  hardware updates of the access and dirty information in page
1340	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1341	  capable processors, accesses to pages with PTE_AF cleared will
1342	  set this bit instead of raising an access flag fault.
1343	  Similarly, writes to read-only pages with the DBM bit set will
1344	  clear the read-only bit (AP[2]) instead of raising a
1345	  permission fault.
1346
1347	  Kernels built with this configuration option enabled continue
1348	  to work on pre-ARMv8.1 hardware and the performance impact is
1349	  minimal. If unsure, say Y.
1350
1351config ARM64_PAN
1352	bool "Enable support for Privileged Access Never (PAN)"
1353	default y
1354	help
1355	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1356	 prevents the kernel or hypervisor from accessing user-space (EL0)
1357	 memory directly.
1358
1359	 Choosing this option will cause any unprotected (not using
1360	 copy_to_user et al) memory access to fail with a permission fault.
1361
1362	 The feature is detected at runtime, and will remain as a 'nop'
1363	 instruction if the cpu does not implement the feature.
1364
1365config ARM64_LSE_ATOMICS
1366	bool "Atomic instructions"
1367	depends on JUMP_LABEL
1368	default y
1369	help
1370	  As part of the Large System Extensions, ARMv8.1 introduces new
1371	  atomic instructions that are designed specifically to scale in
1372	  very large systems.
1373
1374	  Say Y here to make use of these instructions for the in-kernel
1375	  atomic routines. This incurs a small overhead on CPUs that do
1376	  not support these instructions and requires the kernel to be
1377	  built with binutils >= 2.25 in order for the new instructions
1378	  to be used.
1379
1380config ARM64_VHE
1381	bool "Enable support for Virtualization Host Extensions (VHE)"
1382	default y
1383	help
1384	  Virtualization Host Extensions (VHE) allow the kernel to run
1385	  directly at EL2 (instead of EL1) on processors that support
1386	  it. This leads to better performance for KVM, as they reduce
1387	  the cost of the world switch.
1388
1389	  Selecting this option allows the VHE feature to be detected
1390	  at runtime, and does not affect processors that do not
1391	  implement this feature.
1392
1393endmenu
1394
1395menu "ARMv8.2 architectural features"
1396
1397config ARM64_UAO
1398	bool "Enable support for User Access Override (UAO)"
1399	default y
1400	help
1401	  User Access Override (UAO; part of the ARMv8.2 Extensions)
1402	  causes the 'unprivileged' variant of the load/store instructions to
1403	  be overridden to be privileged.
1404
1405	  This option changes get_user() and friends to use the 'unprivileged'
1406	  variant of the load/store instructions. This ensures that user-space
1407	  really did have access to the supplied memory. When addr_limit is
1408	  set to kernel memory the UAO bit will be set, allowing privileged
1409	  access to kernel memory.
1410
1411	  Choosing this option will cause copy_to_user() et al to use user-space
1412	  memory permissions.
1413
1414	  The feature is detected at runtime, the kernel will use the
1415	  regular load/store instructions if the cpu does not implement the
1416	  feature.
1417
1418config ARM64_PMEM
1419	bool "Enable support for persistent memory"
1420	select ARCH_HAS_PMEM_API
1421	select ARCH_HAS_UACCESS_FLUSHCACHE
1422	help
1423	  Say Y to enable support for the persistent memory API based on the
1424	  ARMv8.2 DCPoP feature.
1425
1426	  The feature is detected at runtime, and the kernel will use DC CVAC
1427	  operations if DC CVAP is not supported (following the behaviour of
1428	  DC CVAP itself if the system does not define a point of persistence).
1429
1430config ARM64_RAS_EXTN
1431	bool "Enable support for RAS CPU Extensions"
1432	default y
1433	help
1434	  CPUs that support the Reliability, Availability and Serviceability
1435	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1436	  errors, classify them and report them to software.
1437
1438	  On CPUs with these extensions system software can use additional
1439	  barriers to determine if faults are pending and read the
1440	  classification from a new set of registers.
1441
1442	  Selecting this feature will allow the kernel to use these barriers
1443	  and access the new registers if the system supports the extension.
1444	  Platform RAS features may additionally depend on firmware support.
1445
1446config ARM64_CNP
1447	bool "Enable support for Common Not Private (CNP) translations"
1448	default y
1449	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1450	help
1451	  Common Not Private (CNP) allows translation table entries to
1452	  be shared between different PEs in the same inner shareable
1453	  domain, so the hardware can use this fact to optimise the
1454	  caching of such entries in the TLB.
1455
1456	  Selecting this option allows the CNP feature to be detected
1457	  at runtime, and does not affect PEs that do not implement
1458	  this feature.
1459
1460endmenu
1461
1462menu "ARMv8.3 architectural features"
1463
1464config ARM64_PTR_AUTH
1465	bool "Enable support for pointer authentication"
1466	default y
1467	depends on !KVM || ARM64_VHE
1468	help
1469	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1470	  instructions for signing and authenticating pointers against secret
1471	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1472	  and other attacks.
1473
1474	  This option enables these instructions at EL0 (i.e. for userspace).
1475
1476	  Choosing this option will cause the kernel to initialise secret keys
1477	  for each process at exec() time, with these keys being
1478	  context-switched along with the process.
1479
1480	  The feature is detected at runtime. If the feature is not present in
1481	  hardware it will not be advertised to userspace/KVM guest nor will it
1482	  be enabled. However, KVM guest also require VHE mode and hence
1483	  CONFIG_ARM64_VHE=y option to use this feature.
1484
1485endmenu
1486
1487config ARM64_SVE
1488	bool "ARM Scalable Vector Extension support"
1489	default y
1490	depends on !KVM || ARM64_VHE
1491	help
1492	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1493	  execution state which complements and extends the SIMD functionality
1494	  of the base architecture to support much larger vectors and to enable
1495	  additional vectorisation opportunities.
1496
1497	  To enable use of this extension on CPUs that implement it, say Y.
1498
1499	  On CPUs that support the SVE2 extensions, this option will enable
1500	  those too.
1501
1502	  Note that for architectural reasons, firmware _must_ implement SVE
1503	  support when running on SVE capable hardware.  The required support
1504	  is present in:
1505
1506	    * version 1.5 and later of the ARM Trusted Firmware
1507	    * the AArch64 boot wrapper since commit 5e1261e08abf
1508	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1509
1510	  For other firmware implementations, consult the firmware documentation
1511	  or vendor.
1512
1513	  If you need the kernel to boot on SVE-capable hardware with broken
1514	  firmware, you may need to say N here until you get your firmware
1515	  fixed.  Otherwise, you may experience firmware panics or lockups when
1516	  booting the kernel.  If unsure and you are not observing these
1517	  symptoms, you should assume that it is safe to say Y.
1518
1519	  CPUs that support SVE are architecturally required to support the
1520	  Virtualization Host Extensions (VHE), so the kernel makes no
1521	  provision for supporting SVE alongside KVM without VHE enabled.
1522	  Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
1523	  KVM in the same kernel image.
1524
1525config ARM64_MODULE_PLTS
1526	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1527	depends on MODULES
1528	select HAVE_MOD_ARCH_SPECIFIC
1529	help
1530	  Allocate PLTs when loading modules so that jumps and calls whose
1531	  targets are too far away for their relative offsets to be encoded
1532	  in the instructions themselves can be bounced via veneers in the
1533	  module's PLT. This allows modules to be allocated in the generic
1534	  vmalloc area after the dedicated module memory area has been
1535	  exhausted.
1536
1537	  When running with address space randomization (KASLR), the module
1538	  region itself may be too far away for ordinary relative jumps and
1539	  calls, and so in that case, module PLTs are required and cannot be
1540	  disabled.
1541
1542	  Specific errata workaround(s) might also force module PLTs to be
1543	  enabled (ARM64_ERRATUM_843419).
1544
1545config ARM64_PSEUDO_NMI
1546	bool "Support for NMI-like interrupts"
1547	select CONFIG_ARM_GIC_V3
1548	help
1549	  Adds support for mimicking Non-Maskable Interrupts through the use of
1550	  GIC interrupt priority. This support requires version 3 or later of
1551	  ARM GIC.
1552
1553	  This high priority configuration for interrupts needs to be
1554	  explicitly enabled by setting the kernel parameter
1555	  "irqchip.gicv3_pseudo_nmi" to 1.
1556
1557	  If unsure, say N
1558
1559if ARM64_PSEUDO_NMI
1560config ARM64_DEBUG_PRIORITY_MASKING
1561	bool "Debug interrupt priority masking"
1562	help
1563	  This adds runtime checks to functions enabling/disabling
1564	  interrupts when using priority masking. The additional checks verify
1565	  the validity of ICC_PMR_EL1 when calling concerned functions.
1566
1567	  If unsure, say N
1568endif
1569
1570config RELOCATABLE
1571	bool
1572	select ARCH_HAS_RELR
1573	help
1574	  This builds the kernel as a Position Independent Executable (PIE),
1575	  which retains all relocation metadata required to relocate the
1576	  kernel binary at runtime to a different virtual address than the
1577	  address it was linked at.
1578	  Since AArch64 uses the RELA relocation format, this requires a
1579	  relocation pass at runtime even if the kernel is loaded at the
1580	  same address it was linked at.
1581
1582config RANDOMIZE_BASE
1583	bool "Randomize the address of the kernel image"
1584	select ARM64_MODULE_PLTS if MODULES
1585	select RELOCATABLE
1586	help
1587	  Randomizes the virtual address at which the kernel image is
1588	  loaded, as a security feature that deters exploit attempts
1589	  relying on knowledge of the location of kernel internals.
1590
1591	  It is the bootloader's job to provide entropy, by passing a
1592	  random u64 value in /chosen/kaslr-seed at kernel entry.
1593
1594	  When booting via the UEFI stub, it will invoke the firmware's
1595	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1596	  to the kernel proper. In addition, it will randomise the physical
1597	  location of the kernel Image as well.
1598
1599	  If unsure, say N.
1600
1601config RANDOMIZE_MODULE_REGION_FULL
1602	bool "Randomize the module region over a 4 GB range"
1603	depends on RANDOMIZE_BASE
1604	default y
1605	help
1606	  Randomizes the location of the module region inside a 4 GB window
1607	  covering the core kernel. This way, it is less likely for modules
1608	  to leak information about the location of core kernel data structures
1609	  but it does imply that function calls between modules and the core
1610	  kernel will need to be resolved via veneers in the module PLT.
1611
1612	  When this option is not set, the module region will be randomized over
1613	  a limited range that contains the [_stext, _etext] interval of the
1614	  core kernel, so branch relocations are always in range.
1615
1616config CC_HAVE_STACKPROTECTOR_SYSREG
1617	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1618
1619config STACKPROTECTOR_PER_TASK
1620	def_bool y
1621	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1622
1623endmenu
1624
1625menu "Boot options"
1626
1627config ARM64_ACPI_PARKING_PROTOCOL
1628	bool "Enable support for the ARM64 ACPI parking protocol"
1629	depends on ACPI
1630	help
1631	  Enable support for the ARM64 ACPI parking protocol. If disabled
1632	  the kernel will not allow booting through the ARM64 ACPI parking
1633	  protocol even if the corresponding data is present in the ACPI
1634	  MADT table.
1635
1636config CMDLINE
1637	string "Default kernel command string"
1638	default ""
1639	help
1640	  Provide a set of default command-line options at build time by
1641	  entering them here. As a minimum, you should specify the the
1642	  root device (e.g. root=/dev/nfs).
1643
1644config CMDLINE_FORCE
1645	bool "Always use the default kernel command string"
1646	depends on CMDLINE != ""
1647	help
1648	  Always use the default kernel command string, even if the boot
1649	  loader passes other arguments to the kernel.
1650	  This is useful if you cannot or don't want to change the
1651	  command-line options your boot loader passes to the kernel.
1652
1653config EFI_STUB
1654	bool
1655
1656config EFI
1657	bool "UEFI runtime support"
1658	depends on OF && !CPU_BIG_ENDIAN
1659	depends on KERNEL_MODE_NEON
1660	select ARCH_SUPPORTS_ACPI
1661	select LIBFDT
1662	select UCS2_STRING
1663	select EFI_PARAMS_FROM_FDT
1664	select EFI_RUNTIME_WRAPPERS
1665	select EFI_STUB
1666	select EFI_ARMSTUB
1667	default y
1668	help
1669	  This option provides support for runtime services provided
1670	  by UEFI firmware (such as non-volatile variables, realtime
1671          clock, and platform reset). A UEFI stub is also provided to
1672	  allow the kernel to be booted as an EFI application. This
1673	  is only useful on systems that have UEFI firmware.
1674
1675config DMI
1676	bool "Enable support for SMBIOS (DMI) tables"
1677	depends on EFI
1678	default y
1679	help
1680	  This enables SMBIOS/DMI feature for systems.
1681
1682	  This option is only useful on systems that have UEFI firmware.
1683	  However, even with this option, the resultant kernel should
1684	  continue to boot on existing non-UEFI platforms.
1685
1686endmenu
1687
1688config SYSVIPC_COMPAT
1689	def_bool y
1690	depends on COMPAT && SYSVIPC
1691
1692config ARCH_ENABLE_HUGEPAGE_MIGRATION
1693	def_bool y
1694	depends on HUGETLB_PAGE && MIGRATION
1695
1696menu "Power management options"
1697
1698source "kernel/power/Kconfig"
1699
1700config ARCH_HIBERNATION_POSSIBLE
1701	def_bool y
1702	depends on CPU_PM
1703
1704config ARCH_HIBERNATION_HEADER
1705	def_bool y
1706	depends on HIBERNATION
1707
1708config ARCH_SUSPEND_POSSIBLE
1709	def_bool y
1710
1711endmenu
1712
1713menu "CPU Power Management"
1714
1715source "drivers/cpuidle/Kconfig"
1716
1717source "drivers/cpufreq/Kconfig"
1718
1719endmenu
1720
1721source "drivers/firmware/Kconfig"
1722
1723source "drivers/acpi/Kconfig"
1724
1725source "arch/arm64/kvm/Kconfig"
1726
1727if CRYPTO
1728source "arch/arm64/crypto/Kconfig"
1729endif
1730