xref: /openbmc/linux/arch/arm64/Kconfig (revision 827beb77)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_STATE
14	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
15	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
16	select ARCH_ENABLE_MEMORY_HOTPLUG
17	select ARCH_ENABLE_MEMORY_HOTREMOVE
18	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
19	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
20	select ARCH_HAS_CACHE_LINE_SIZE
21	select ARCH_HAS_DEBUG_VIRTUAL
22	select ARCH_HAS_DEBUG_VM_PGTABLE
23	select ARCH_HAS_DMA_PREP_COHERENT
24	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
25	select ARCH_HAS_FAST_MULTIPLIER
26	select ARCH_HAS_FORTIFY_SOURCE
27	select ARCH_HAS_GCOV_PROFILE_ALL
28	select ARCH_HAS_GIGANTIC_PAGE
29	select ARCH_HAS_KCOV
30	select ARCH_HAS_KEEPINITRD
31	select ARCH_HAS_MEMBARRIER_SYNC_CORE
32	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
33	select ARCH_HAS_PTE_DEVMAP
34	select ARCH_HAS_PTE_SPECIAL
35	select ARCH_HAS_SETUP_DMA_OPS
36	select ARCH_HAS_SET_DIRECT_MAP
37	select ARCH_HAS_SET_MEMORY
38	select ARCH_STACKWALK
39	select ARCH_HAS_STRICT_KERNEL_RWX
40	select ARCH_HAS_STRICT_MODULE_RWX
41	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
42	select ARCH_HAS_SYNC_DMA_FOR_CPU
43	select ARCH_HAS_SYSCALL_WRAPPER
44	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
45	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
46	select ARCH_HAS_ZONE_DMA_SET if EXPERT
47	select ARCH_HAVE_ELF_PROT
48	select ARCH_HAVE_NMI_SAFE_CMPXCHG
49	select ARCH_INLINE_READ_LOCK if !PREEMPTION
50	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
51	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
52	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
53	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
54	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
55	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
56	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
57	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
58	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
59	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
60	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
61	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
62	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
63	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
64	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
65	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
66	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
67	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
68	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
69	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
70	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
71	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
72	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
73	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
74	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
75	select ARCH_KEEP_MEMBLOCK
76	select ARCH_USE_CMPXCHG_LOCKREF
77	select ARCH_USE_GNU_PROPERTY
78	select ARCH_USE_MEMTEST
79	select ARCH_USE_QUEUED_RWLOCKS
80	select ARCH_USE_QUEUED_SPINLOCKS
81	select ARCH_USE_SYM_ANNOTATIONS
82	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
83	select ARCH_SUPPORTS_HUGETLBFS
84	select ARCH_SUPPORTS_MEMORY_FAILURE
85	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
86	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
87	select ARCH_SUPPORTS_LTO_CLANG_THIN
88	select ARCH_SUPPORTS_CFI_CLANG
89	select ARCH_SUPPORTS_ATOMIC_RMW
90	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
91	select ARCH_SUPPORTS_NUMA_BALANCING
92	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
93	select ARCH_WANT_DEFAULT_BPF_JIT
94	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
95	select ARCH_WANT_FRAME_POINTERS
96	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
97	select ARCH_WANT_LD_ORPHAN_WARN
98	select ARCH_WANTS_NO_INSTR
99	select ARCH_HAS_UBSAN_SANITIZE_ALL
100	select ARM_AMBA
101	select ARM_ARCH_TIMER
102	select ARM_GIC
103	select AUDIT_ARCH_COMPAT_GENERIC
104	select ARM_GIC_V2M if PCI
105	select ARM_GIC_V3
106	select ARM_GIC_V3_ITS if PCI
107	select ARM_PSCI_FW
108	select BUILDTIME_TABLE_SORT
109	select CLONE_BACKWARDS
110	select COMMON_CLK
111	select CPU_PM if (SUSPEND || CPU_IDLE)
112	select CRC32
113	select DCACHE_WORD_ACCESS
114	select DMA_DIRECT_REMAP
115	select EDAC_SUPPORT
116	select FRAME_POINTER
117	select GENERIC_ALLOCATOR
118	select GENERIC_ARCH_TOPOLOGY
119	select GENERIC_CLOCKEVENTS_BROADCAST
120	select GENERIC_CPU_AUTOPROBE
121	select GENERIC_CPU_VULNERABILITIES
122	select GENERIC_EARLY_IOREMAP
123	select GENERIC_FIND_FIRST_BIT
124	select GENERIC_IDLE_POLL_SETUP
125	select GENERIC_IRQ_IPI
126	select GENERIC_IRQ_PROBE
127	select GENERIC_IRQ_SHOW
128	select GENERIC_IRQ_SHOW_LEVEL
129	select GENERIC_LIB_DEVMEM_IS_ALLOWED
130	select GENERIC_PCI_IOMAP
131	select GENERIC_PTDUMP
132	select GENERIC_SCHED_CLOCK
133	select GENERIC_SMP_IDLE_THREAD
134	select GENERIC_TIME_VSYSCALL
135	select GENERIC_GETTIMEOFDAY
136	select GENERIC_VDSO_TIME_NS
137	select HARDIRQS_SW_RESEND
138	select HAVE_MOVE_PMD
139	select HAVE_MOVE_PUD
140	select HAVE_PCI
141	select HAVE_ACPI_APEI if (ACPI && EFI)
142	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
143	select HAVE_ARCH_AUDITSYSCALL
144	select HAVE_ARCH_BITREVERSE
145	select HAVE_ARCH_COMPILER_H
146	select HAVE_ARCH_HUGE_VMAP
147	select HAVE_ARCH_JUMP_LABEL
148	select HAVE_ARCH_JUMP_LABEL_RELATIVE
149	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
150	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
151	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
152	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
153	select HAVE_ARCH_KFENCE
154	select HAVE_ARCH_KGDB
155	select HAVE_ARCH_MMAP_RND_BITS
156	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
157	select HAVE_ARCH_PREL32_RELOCATIONS
158	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
159	select HAVE_ARCH_SECCOMP_FILTER
160	select HAVE_ARCH_STACKLEAK
161	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
162	select HAVE_ARCH_TRACEHOOK
163	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
164	select HAVE_ARCH_VMAP_STACK
165	select HAVE_ARM_SMCCC
166	select HAVE_ASM_MODVERSIONS
167	select HAVE_EBPF_JIT
168	select HAVE_C_RECORDMCOUNT
169	select HAVE_CMPXCHG_DOUBLE
170	select HAVE_CMPXCHG_LOCAL
171	select HAVE_CONTEXT_TRACKING
172	select HAVE_DEBUG_KMEMLEAK
173	select HAVE_DMA_CONTIGUOUS
174	select HAVE_DYNAMIC_FTRACE
175	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
176		if $(cc-option,-fpatchable-function-entry=2)
177	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
178		if DYNAMIC_FTRACE_WITH_REGS
179	select HAVE_EFFICIENT_UNALIGNED_ACCESS
180	select HAVE_FAST_GUP
181	select HAVE_FTRACE_MCOUNT_RECORD
182	select HAVE_FUNCTION_TRACER
183	select HAVE_FUNCTION_ERROR_INJECTION
184	select HAVE_FUNCTION_GRAPH_TRACER
185	select HAVE_GCC_PLUGINS
186	select HAVE_HW_BREAKPOINT if PERF_EVENTS
187	select HAVE_IRQ_TIME_ACCOUNTING
188	select HAVE_NMI
189	select HAVE_PATA_PLATFORM
190	select HAVE_PERF_EVENTS
191	select HAVE_PERF_REGS
192	select HAVE_PERF_USER_STACK_DUMP
193	select HAVE_REGS_AND_STACK_ACCESS_API
194	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
195	select HAVE_FUNCTION_ARG_ACCESS_API
196	select HAVE_FUTEX_CMPXCHG if FUTEX
197	select MMU_GATHER_RCU_TABLE_FREE
198	select HAVE_RSEQ
199	select HAVE_STACKPROTECTOR
200	select HAVE_SYSCALL_TRACEPOINTS
201	select HAVE_KPROBES
202	select HAVE_KRETPROBES
203	select HAVE_GENERIC_VDSO
204	select IOMMU_DMA if IOMMU_SUPPORT
205	select IRQ_DOMAIN
206	select IRQ_FORCED_THREADING
207	select KASAN_VMALLOC if KASAN_GENERIC
208	select MODULES_USE_ELF_RELA
209	select NEED_DMA_MAP_STATE
210	select NEED_SG_DMA_LENGTH
211	select OF
212	select OF_EARLY_FLATTREE
213	select PCI_DOMAINS_GENERIC if PCI
214	select PCI_ECAM if (ACPI && PCI)
215	select PCI_SYSCALL if PCI
216	select POWER_RESET
217	select POWER_SUPPLY
218	select SPARSE_IRQ
219	select SWIOTLB
220	select SYSCTL_EXCEPTION_TRACE
221	select THREAD_INFO_IN_TASK
222	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
223	select TRACE_IRQFLAGS_SUPPORT
224	help
225	  ARM 64-bit (AArch64) Linux support.
226
227config 64BIT
228	def_bool y
229
230config MMU
231	def_bool y
232
233config ARM64_PAGE_SHIFT
234	int
235	default 16 if ARM64_64K_PAGES
236	default 14 if ARM64_16K_PAGES
237	default 12
238
239config ARM64_CONT_PTE_SHIFT
240	int
241	default 5 if ARM64_64K_PAGES
242	default 7 if ARM64_16K_PAGES
243	default 4
244
245config ARM64_CONT_PMD_SHIFT
246	int
247	default 5 if ARM64_64K_PAGES
248	default 5 if ARM64_16K_PAGES
249	default 4
250
251config ARCH_MMAP_RND_BITS_MIN
252       default 14 if ARM64_64K_PAGES
253       default 16 if ARM64_16K_PAGES
254       default 18
255
256# max bits determined by the following formula:
257#  VA_BITS - PAGE_SHIFT - 3
258config ARCH_MMAP_RND_BITS_MAX
259       default 19 if ARM64_VA_BITS=36
260       default 24 if ARM64_VA_BITS=39
261       default 27 if ARM64_VA_BITS=42
262       default 30 if ARM64_VA_BITS=47
263       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
264       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
265       default 33 if ARM64_VA_BITS=48
266       default 14 if ARM64_64K_PAGES
267       default 16 if ARM64_16K_PAGES
268       default 18
269
270config ARCH_MMAP_RND_COMPAT_BITS_MIN
271       default 7 if ARM64_64K_PAGES
272       default 9 if ARM64_16K_PAGES
273       default 11
274
275config ARCH_MMAP_RND_COMPAT_BITS_MAX
276       default 16
277
278config NO_IOPORT_MAP
279	def_bool y if !PCI
280
281config STACKTRACE_SUPPORT
282	def_bool y
283
284config ILLEGAL_POINTER_VALUE
285	hex
286	default 0xdead000000000000
287
288config LOCKDEP_SUPPORT
289	def_bool y
290
291config GENERIC_BUG
292	def_bool y
293	depends on BUG
294
295config GENERIC_BUG_RELATIVE_POINTERS
296	def_bool y
297	depends on GENERIC_BUG
298
299config GENERIC_HWEIGHT
300	def_bool y
301
302config GENERIC_CSUM
303        def_bool y
304
305config GENERIC_CALIBRATE_DELAY
306	def_bool y
307
308config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
309	def_bool y
310
311config SMP
312	def_bool y
313
314config KERNEL_MODE_NEON
315	def_bool y
316
317config FIX_EARLYCON_MEM
318	def_bool y
319
320config PGTABLE_LEVELS
321	int
322	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
323	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
324	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
325	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
326	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
327	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
328
329config ARCH_SUPPORTS_UPROBES
330	def_bool y
331
332config ARCH_PROC_KCORE_TEXT
333	def_bool y
334
335config BROKEN_GAS_INST
336	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
337
338config KASAN_SHADOW_OFFSET
339	hex
340	depends on KASAN_GENERIC || KASAN_SW_TAGS
341	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
342	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
343	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
344	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
345	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
346	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
347	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
348	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
349	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
350	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
351	default 0xffffffffffffffff
352
353source "arch/arm64/Kconfig.platforms"
354
355menu "Kernel Features"
356
357menu "ARM errata workarounds via the alternatives framework"
358
359config ARM64_WORKAROUND_CLEAN_CACHE
360	bool
361
362config ARM64_ERRATUM_826319
363	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
364	default y
365	select ARM64_WORKAROUND_CLEAN_CACHE
366	help
367	  This option adds an alternative code sequence to work around ARM
368	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
369	  AXI master interface and an L2 cache.
370
371	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
372	  and is unable to accept a certain write via this interface, it will
373	  not progress on read data presented on the read data channel and the
374	  system can deadlock.
375
376	  The workaround promotes data cache clean instructions to
377	  data cache clean-and-invalidate.
378	  Please note that this does not necessarily enable the workaround,
379	  as it depends on the alternative framework, which will only patch
380	  the kernel if an affected CPU is detected.
381
382	  If unsure, say Y.
383
384config ARM64_ERRATUM_827319
385	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
386	default y
387	select ARM64_WORKAROUND_CLEAN_CACHE
388	help
389	  This option adds an alternative code sequence to work around ARM
390	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
391	  master interface and an L2 cache.
392
393	  Under certain conditions this erratum can cause a clean line eviction
394	  to occur at the same time as another transaction to the same address
395	  on the AMBA 5 CHI interface, which can cause data corruption if the
396	  interconnect reorders the two transactions.
397
398	  The workaround promotes data cache clean instructions to
399	  data cache clean-and-invalidate.
400	  Please note that this does not necessarily enable the workaround,
401	  as it depends on the alternative framework, which will only patch
402	  the kernel if an affected CPU is detected.
403
404	  If unsure, say Y.
405
406config ARM64_ERRATUM_824069
407	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
408	default y
409	select ARM64_WORKAROUND_CLEAN_CACHE
410	help
411	  This option adds an alternative code sequence to work around ARM
412	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
413	  to a coherent interconnect.
414
415	  If a Cortex-A53 processor is executing a store or prefetch for
416	  write instruction at the same time as a processor in another
417	  cluster is executing a cache maintenance operation to the same
418	  address, then this erratum might cause a clean cache line to be
419	  incorrectly marked as dirty.
420
421	  The workaround promotes data cache clean instructions to
422	  data cache clean-and-invalidate.
423	  Please note that this option does not necessarily enable the
424	  workaround, as it depends on the alternative framework, which will
425	  only patch the kernel if an affected CPU is detected.
426
427	  If unsure, say Y.
428
429config ARM64_ERRATUM_819472
430	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
431	default y
432	select ARM64_WORKAROUND_CLEAN_CACHE
433	help
434	  This option adds an alternative code sequence to work around ARM
435	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
436	  present when it is connected to a coherent interconnect.
437
438	  If the processor is executing a load and store exclusive sequence at
439	  the same time as a processor in another cluster is executing a cache
440	  maintenance operation to the same address, then this erratum might
441	  cause data corruption.
442
443	  The workaround promotes data cache clean instructions to
444	  data cache clean-and-invalidate.
445	  Please note that this does not necessarily enable the workaround,
446	  as it depends on the alternative framework, which will only patch
447	  the kernel if an affected CPU is detected.
448
449	  If unsure, say Y.
450
451config ARM64_ERRATUM_832075
452	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
453	default y
454	help
455	  This option adds an alternative code sequence to work around ARM
456	  erratum 832075 on Cortex-A57 parts up to r1p2.
457
458	  Affected Cortex-A57 parts might deadlock when exclusive load/store
459	  instructions to Write-Back memory are mixed with Device loads.
460
461	  The workaround is to promote device loads to use Load-Acquire
462	  semantics.
463	  Please note that this does not necessarily enable the workaround,
464	  as it depends on the alternative framework, which will only patch
465	  the kernel if an affected CPU is detected.
466
467	  If unsure, say Y.
468
469config ARM64_ERRATUM_834220
470	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
471	depends on KVM
472	default y
473	help
474	  This option adds an alternative code sequence to work around ARM
475	  erratum 834220 on Cortex-A57 parts up to r1p2.
476
477	  Affected Cortex-A57 parts might report a Stage 2 translation
478	  fault as the result of a Stage 1 fault for load crossing a
479	  page boundary when there is a permission or device memory
480	  alignment fault at Stage 1 and a translation fault at Stage 2.
481
482	  The workaround is to verify that the Stage 1 translation
483	  doesn't generate a fault before handling the Stage 2 fault.
484	  Please note that this does not necessarily enable the workaround,
485	  as it depends on the alternative framework, which will only patch
486	  the kernel if an affected CPU is detected.
487
488	  If unsure, say Y.
489
490config ARM64_ERRATUM_845719
491	bool "Cortex-A53: 845719: a load might read incorrect data"
492	depends on COMPAT
493	default y
494	help
495	  This option adds an alternative code sequence to work around ARM
496	  erratum 845719 on Cortex-A53 parts up to r0p4.
497
498	  When running a compat (AArch32) userspace on an affected Cortex-A53
499	  part, a load at EL0 from a virtual address that matches the bottom 32
500	  bits of the virtual address used by a recent load at (AArch64) EL1
501	  might return incorrect data.
502
503	  The workaround is to write the contextidr_el1 register on exception
504	  return to a 32-bit task.
505	  Please note that this does not necessarily enable the workaround,
506	  as it depends on the alternative framework, which will only patch
507	  the kernel if an affected CPU is detected.
508
509	  If unsure, say Y.
510
511config ARM64_ERRATUM_843419
512	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
513	default y
514	select ARM64_MODULE_PLTS if MODULES
515	help
516	  This option links the kernel with '--fix-cortex-a53-843419' and
517	  enables PLT support to replace certain ADRP instructions, which can
518	  cause subsequent memory accesses to use an incorrect address on
519	  Cortex-A53 parts up to r0p4.
520
521	  If unsure, say Y.
522
523config ARM64_LD_HAS_FIX_ERRATUM_843419
524	def_bool $(ld-option,--fix-cortex-a53-843419)
525
526config ARM64_ERRATUM_1024718
527	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
528	default y
529	help
530	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
531
532	  Affected Cortex-A55 cores (all revisions) could cause incorrect
533	  update of the hardware dirty bit when the DBM/AP bits are updated
534	  without a break-before-make. The workaround is to disable the usage
535	  of hardware DBM locally on the affected cores. CPUs not affected by
536	  this erratum will continue to use the feature.
537
538	  If unsure, say Y.
539
540config ARM64_ERRATUM_1418040
541	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
542	default y
543	depends on COMPAT
544	help
545	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
546	  errata 1188873 and 1418040.
547
548	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
549	  cause register corruption when accessing the timer registers
550	  from AArch32 userspace.
551
552	  If unsure, say Y.
553
554config ARM64_WORKAROUND_SPECULATIVE_AT
555	bool
556
557config ARM64_ERRATUM_1165522
558	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
559	default y
560	select ARM64_WORKAROUND_SPECULATIVE_AT
561	help
562	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
563
564	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
565	  corrupted TLBs by speculating an AT instruction during a guest
566	  context switch.
567
568	  If unsure, say Y.
569
570config ARM64_ERRATUM_1319367
571	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
572	default y
573	select ARM64_WORKAROUND_SPECULATIVE_AT
574	help
575	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
576	  and A72 erratum 1319367
577
578	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
579	  speculating an AT instruction during a guest context switch.
580
581	  If unsure, say Y.
582
583config ARM64_ERRATUM_1530923
584	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
585	default y
586	select ARM64_WORKAROUND_SPECULATIVE_AT
587	help
588	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
589
590	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
591	  corrupted TLBs by speculating an AT instruction during a guest
592	  context switch.
593
594	  If unsure, say Y.
595
596config ARM64_WORKAROUND_REPEAT_TLBI
597	bool
598
599config ARM64_ERRATUM_1286807
600	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
601	default y
602	select ARM64_WORKAROUND_REPEAT_TLBI
603	help
604	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
605
606	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
607	  address for a cacheable mapping of a location is being
608	  accessed by a core while another core is remapping the virtual
609	  address to a new physical page using the recommended
610	  break-before-make sequence, then under very rare circumstances
611	  TLBI+DSB completes before a read using the translation being
612	  invalidated has been observed by other observers. The
613	  workaround repeats the TLBI+DSB operation.
614
615config ARM64_ERRATUM_1463225
616	bool "Cortex-A76: Software Step might prevent interrupt recognition"
617	default y
618	help
619	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
620
621	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
622	  of a system call instruction (SVC) can prevent recognition of
623	  subsequent interrupts when software stepping is disabled in the
624	  exception handler of the system call and either kernel debugging
625	  is enabled or VHE is in use.
626
627	  Work around the erratum by triggering a dummy step exception
628	  when handling a system call from a task that is being stepped
629	  in a VHE configuration of the kernel.
630
631	  If unsure, say Y.
632
633config ARM64_ERRATUM_1542419
634	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
635	default y
636	help
637	  This option adds a workaround for ARM Neoverse-N1 erratum
638	  1542419.
639
640	  Affected Neoverse-N1 cores could execute a stale instruction when
641	  modified by another CPU. The workaround depends on a firmware
642	  counterpart.
643
644	  Workaround the issue by hiding the DIC feature from EL0. This
645	  forces user-space to perform cache maintenance.
646
647	  If unsure, say Y.
648
649config ARM64_ERRATUM_1508412
650	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
651	default y
652	help
653	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
654
655	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
656	  of a store-exclusive or read of PAR_EL1 and a load with device or
657	  non-cacheable memory attributes. The workaround depends on a firmware
658	  counterpart.
659
660	  KVM guests must also have the workaround implemented or they can
661	  deadlock the system.
662
663	  Work around the issue by inserting DMB SY barriers around PAR_EL1
664	  register reads and warning KVM users. The DMB barrier is sufficient
665	  to prevent a speculative PAR_EL1 read.
666
667	  If unsure, say Y.
668
669config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
670	bool
671
672config ARM64_ERRATUM_2119858
673	bool "Cortex-A710: 2119858: workaround TRBE overwriting trace data in FILL mode"
674	default y
675	depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in
676	depends on CORESIGHT_TRBE
677	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
678	help
679	  This option adds the workaround for ARM Cortex-A710 erratum 2119858.
680
681	  Affected Cortex-A710 cores could overwrite up to 3 cache lines of trace
682	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
683	  the event of a WRAP event.
684
685	  Work around the issue by always making sure we move the TRBPTR_EL1 by
686	  256 bytes before enabling the buffer and filling the first 256 bytes of
687	  the buffer with ETM ignore packets upon disabling.
688
689	  If unsure, say Y.
690
691config ARM64_ERRATUM_2139208
692	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
693	default y
694	depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in
695	depends on CORESIGHT_TRBE
696	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
697	help
698	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
699
700	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
701	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
702	  the event of a WRAP event.
703
704	  Work around the issue by always making sure we move the TRBPTR_EL1 by
705	  256 bytes before enabling the buffer and filling the first 256 bytes of
706	  the buffer with ETM ignore packets upon disabling.
707
708	  If unsure, say Y.
709
710config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
711	bool
712
713config ARM64_ERRATUM_2054223
714	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
715	default y
716	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
717	help
718	  Enable workaround for ARM Cortex-A710 erratum 2054223
719
720	  Affected cores may fail to flush the trace data on a TSB instruction, when
721	  the PE is in trace prohibited state. This will cause losing a few bytes
722	  of the trace cached.
723
724	  Workaround is to issue two TSB consecutively on affected cores.
725
726	  If unsure, say Y.
727
728config ARM64_ERRATUM_2067961
729	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
730	default y
731	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
732	help
733	  Enable workaround for ARM Neoverse-N2 erratum 2067961
734
735	  Affected cores may fail to flush the trace data on a TSB instruction, when
736	  the PE is in trace prohibited state. This will cause losing a few bytes
737	  of the trace cached.
738
739	  Workaround is to issue two TSB consecutively on affected cores.
740
741	  If unsure, say Y.
742
743config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
744	bool
745
746config ARM64_ERRATUM_2253138
747	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
748	depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in
749	depends on CORESIGHT_TRBE
750	default y
751	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
752	help
753	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
754
755	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
756	  for TRBE. Under some conditions, the TRBE might generate a write to the next
757	  virtually addressed page following the last page of the TRBE address space
758	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
759
760	  Work around this in the driver by always making sure that there is a
761	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
762
763	  If unsure, say Y.
764
765config ARM64_ERRATUM_2224489
766	bool "Cortex-A710: 2224489: workaround TRBE writing to address out-of-range"
767	depends on COMPILE_TEST # Until the CoreSight TRBE driver changes are in
768	depends on CORESIGHT_TRBE
769	default y
770	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
771	help
772	  This option adds the workaround for ARM Cortex-A710 erratum 2224489.
773
774	  Affected Cortex-A710 cores might write to an out-of-range address, not reserved
775	  for TRBE. Under some conditions, the TRBE might generate a write to the next
776	  virtually addressed page following the last page of the TRBE address space
777	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
778
779	  Work around this in the driver by always making sure that there is a
780	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
781
782	  If unsure, say Y.
783
784config CAVIUM_ERRATUM_22375
785	bool "Cavium erratum 22375, 24313"
786	default y
787	help
788	  Enable workaround for errata 22375 and 24313.
789
790	  This implements two gicv3-its errata workarounds for ThunderX. Both
791	  with a small impact affecting only ITS table allocation.
792
793	    erratum 22375: only alloc 8MB table size
794	    erratum 24313: ignore memory access type
795
796	  The fixes are in ITS initialization and basically ignore memory access
797	  type and table size provided by the TYPER and BASER registers.
798
799	  If unsure, say Y.
800
801config CAVIUM_ERRATUM_23144
802	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
803	depends on NUMA
804	default y
805	help
806	  ITS SYNC command hang for cross node io and collections/cpu mapping.
807
808	  If unsure, say Y.
809
810config CAVIUM_ERRATUM_23154
811	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
812	default y
813	help
814	  The gicv3 of ThunderX requires a modified version for
815	  reading the IAR status to ensure data synchronization
816	  (access to icc_iar1_el1 is not sync'ed before and after).
817
818	  If unsure, say Y.
819
820config CAVIUM_ERRATUM_27456
821	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
822	default y
823	help
824	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
825	  instructions may cause the icache to become corrupted if it
826	  contains data for a non-current ASID.  The fix is to
827	  invalidate the icache when changing the mm context.
828
829	  If unsure, say Y.
830
831config CAVIUM_ERRATUM_30115
832	bool "Cavium erratum 30115: Guest may disable interrupts in host"
833	default y
834	help
835	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
836	  1.2, and T83 Pass 1.0, KVM guest execution may disable
837	  interrupts in host. Trapping both GICv3 group-0 and group-1
838	  accesses sidesteps the issue.
839
840	  If unsure, say Y.
841
842config CAVIUM_TX2_ERRATUM_219
843	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
844	default y
845	help
846	  On Cavium ThunderX2, a load, store or prefetch instruction between a
847	  TTBR update and the corresponding context synchronizing operation can
848	  cause a spurious Data Abort to be delivered to any hardware thread in
849	  the CPU core.
850
851	  Work around the issue by avoiding the problematic code sequence and
852	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
853	  trap handler performs the corresponding register access, skips the
854	  instruction and ensures context synchronization by virtue of the
855	  exception return.
856
857	  If unsure, say Y.
858
859config FUJITSU_ERRATUM_010001
860	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
861	default y
862	help
863	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
864	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
865	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
866	  This fault occurs under a specific hardware condition when a
867	  load/store instruction performs an address translation using:
868	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
869	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
870	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
871	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
872
873	  The workaround is to ensure these bits are clear in TCR_ELx.
874	  The workaround only affects the Fujitsu-A64FX.
875
876	  If unsure, say Y.
877
878config HISILICON_ERRATUM_161600802
879	bool "Hip07 161600802: Erroneous redistributor VLPI base"
880	default y
881	help
882	  The HiSilicon Hip07 SoC uses the wrong redistributor base
883	  when issued ITS commands such as VMOVP and VMAPP, and requires
884	  a 128kB offset to be applied to the target address in this commands.
885
886	  If unsure, say Y.
887
888config QCOM_FALKOR_ERRATUM_1003
889	bool "Falkor E1003: Incorrect translation due to ASID change"
890	default y
891	help
892	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
893	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
894	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
895	  then only for entries in the walk cache, since the leaf translation
896	  is unchanged. Work around the erratum by invalidating the walk cache
897	  entries for the trampoline before entering the kernel proper.
898
899config QCOM_FALKOR_ERRATUM_1009
900	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
901	default y
902	select ARM64_WORKAROUND_REPEAT_TLBI
903	help
904	  On Falkor v1, the CPU may prematurely complete a DSB following a
905	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
906	  one more time to fix the issue.
907
908	  If unsure, say Y.
909
910config QCOM_QDF2400_ERRATUM_0065
911	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
912	default y
913	help
914	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
915	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
916	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
917
918	  If unsure, say Y.
919
920config QCOM_FALKOR_ERRATUM_E1041
921	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
922	default y
923	help
924	  Falkor CPU may speculatively fetch instructions from an improper
925	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
926	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
927
928	  If unsure, say Y.
929
930config NVIDIA_CARMEL_CNP_ERRATUM
931	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
932	default y
933	help
934	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
935	  invalidate shared TLB entries installed by a different core, as it would
936	  on standard ARM cores.
937
938	  If unsure, say Y.
939
940config SOCIONEXT_SYNQUACER_PREITS
941	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
942	default y
943	help
944	  Socionext Synquacer SoCs implement a separate h/w block to generate
945	  MSI doorbell writes with non-zero values for the device ID.
946
947	  If unsure, say Y.
948
949endmenu
950
951
952choice
953	prompt "Page size"
954	default ARM64_4K_PAGES
955	help
956	  Page size (translation granule) configuration.
957
958config ARM64_4K_PAGES
959	bool "4KB"
960	help
961	  This feature enables 4KB pages support.
962
963config ARM64_16K_PAGES
964	bool "16KB"
965	help
966	  The system will use 16KB pages support. AArch32 emulation
967	  requires applications compiled with 16K (or a multiple of 16K)
968	  aligned segments.
969
970config ARM64_64K_PAGES
971	bool "64KB"
972	help
973	  This feature enables 64KB pages support (4KB by default)
974	  allowing only two levels of page tables and faster TLB
975	  look-up. AArch32 emulation requires applications compiled
976	  with 64K aligned segments.
977
978endchoice
979
980choice
981	prompt "Virtual address space size"
982	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
983	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
984	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
985	help
986	  Allows choosing one of multiple possible virtual address
987	  space sizes. The level of translation table is determined by
988	  a combination of page size and virtual address space size.
989
990config ARM64_VA_BITS_36
991	bool "36-bit" if EXPERT
992	depends on ARM64_16K_PAGES
993
994config ARM64_VA_BITS_39
995	bool "39-bit"
996	depends on ARM64_4K_PAGES
997
998config ARM64_VA_BITS_42
999	bool "42-bit"
1000	depends on ARM64_64K_PAGES
1001
1002config ARM64_VA_BITS_47
1003	bool "47-bit"
1004	depends on ARM64_16K_PAGES
1005
1006config ARM64_VA_BITS_48
1007	bool "48-bit"
1008
1009config ARM64_VA_BITS_52
1010	bool "52-bit"
1011	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1012	help
1013	  Enable 52-bit virtual addressing for userspace when explicitly
1014	  requested via a hint to mmap(). The kernel will also use 52-bit
1015	  virtual addresses for its own mappings (provided HW support for
1016	  this feature is available, otherwise it reverts to 48-bit).
1017
1018	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1019	  ARMv8.3 Pointer Authentication will result in the PAC being
1020	  reduced from 7 bits to 3 bits, which may have a significant
1021	  impact on its susceptibility to brute-force attacks.
1022
1023	  If unsure, select 48-bit virtual addressing instead.
1024
1025endchoice
1026
1027config ARM64_FORCE_52BIT
1028	bool "Force 52-bit virtual addresses for userspace"
1029	depends on ARM64_VA_BITS_52 && EXPERT
1030	help
1031	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1032	  to maintain compatibility with older software by providing 48-bit VAs
1033	  unless a hint is supplied to mmap.
1034
1035	  This configuration option disables the 48-bit compatibility logic, and
1036	  forces all userspace addresses to be 52-bit on HW that supports it. One
1037	  should only enable this configuration option for stress testing userspace
1038	  memory management code. If unsure say N here.
1039
1040config ARM64_VA_BITS
1041	int
1042	default 36 if ARM64_VA_BITS_36
1043	default 39 if ARM64_VA_BITS_39
1044	default 42 if ARM64_VA_BITS_42
1045	default 47 if ARM64_VA_BITS_47
1046	default 48 if ARM64_VA_BITS_48
1047	default 52 if ARM64_VA_BITS_52
1048
1049choice
1050	prompt "Physical address space size"
1051	default ARM64_PA_BITS_48
1052	help
1053	  Choose the maximum physical address range that the kernel will
1054	  support.
1055
1056config ARM64_PA_BITS_48
1057	bool "48-bit"
1058
1059config ARM64_PA_BITS_52
1060	bool "52-bit (ARMv8.2)"
1061	depends on ARM64_64K_PAGES
1062	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1063	help
1064	  Enable support for a 52-bit physical address space, introduced as
1065	  part of the ARMv8.2-LPA extension.
1066
1067	  With this enabled, the kernel will also continue to work on CPUs that
1068	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1069	  minor performance overhead).
1070
1071endchoice
1072
1073config ARM64_PA_BITS
1074	int
1075	default 48 if ARM64_PA_BITS_48
1076	default 52 if ARM64_PA_BITS_52
1077
1078choice
1079	prompt "Endianness"
1080	default CPU_LITTLE_ENDIAN
1081	help
1082	  Select the endianness of data accesses performed by the CPU. Userspace
1083	  applications will need to be compiled and linked for the endianness
1084	  that is selected here.
1085
1086config CPU_BIG_ENDIAN
1087	bool "Build big-endian kernel"
1088	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1089	help
1090	  Say Y if you plan on running a kernel with a big-endian userspace.
1091
1092config CPU_LITTLE_ENDIAN
1093	bool "Build little-endian kernel"
1094	help
1095	  Say Y if you plan on running a kernel with a little-endian userspace.
1096	  This is usually the case for distributions targeting arm64.
1097
1098endchoice
1099
1100config SCHED_MC
1101	bool "Multi-core scheduler support"
1102	help
1103	  Multi-core scheduler support improves the CPU scheduler's decision
1104	  making when dealing with multi-core CPU chips at a cost of slightly
1105	  increased overhead in some places. If unsure say N here.
1106
1107config SCHED_CLUSTER
1108	bool "Cluster scheduler support"
1109	help
1110	  Cluster scheduler support improves the CPU scheduler's decision
1111	  making when dealing with machines that have clusters of CPUs.
1112	  Cluster usually means a couple of CPUs which are placed closely
1113	  by sharing mid-level caches, last-level cache tags or internal
1114	  busses.
1115
1116config SCHED_SMT
1117	bool "SMT scheduler support"
1118	help
1119	  Improves the CPU scheduler's decision making when dealing with
1120	  MultiThreading at a cost of slightly increased overhead in some
1121	  places. If unsure say N here.
1122
1123config NR_CPUS
1124	int "Maximum number of CPUs (2-4096)"
1125	range 2 4096
1126	default "256"
1127
1128config HOTPLUG_CPU
1129	bool "Support for hot-pluggable CPUs"
1130	select GENERIC_IRQ_MIGRATION
1131	help
1132	  Say Y here to experiment with turning CPUs off and on.  CPUs
1133	  can be controlled through /sys/devices/system/cpu.
1134
1135# Common NUMA Features
1136config NUMA
1137	bool "NUMA Memory Allocation and Scheduler Support"
1138	select GENERIC_ARCH_NUMA
1139	select ACPI_NUMA if ACPI
1140	select OF_NUMA
1141	help
1142	  Enable NUMA (Non-Uniform Memory Access) support.
1143
1144	  The kernel will try to allocate memory used by a CPU on the
1145	  local memory of the CPU and add some more
1146	  NUMA awareness to the kernel.
1147
1148config NODES_SHIFT
1149	int "Maximum NUMA Nodes (as a power of 2)"
1150	range 1 10
1151	default "4"
1152	depends on NUMA
1153	help
1154	  Specify the maximum number of NUMA Nodes available on the target
1155	  system.  Increases memory reserved to accommodate various tables.
1156
1157config USE_PERCPU_NUMA_NODE_ID
1158	def_bool y
1159	depends on NUMA
1160
1161config HAVE_SETUP_PER_CPU_AREA
1162	def_bool y
1163	depends on NUMA
1164
1165config NEED_PER_CPU_EMBED_FIRST_CHUNK
1166	def_bool y
1167	depends on NUMA
1168
1169source "kernel/Kconfig.hz"
1170
1171config ARCH_SPARSEMEM_ENABLE
1172	def_bool y
1173	select SPARSEMEM_VMEMMAP_ENABLE
1174	select SPARSEMEM_VMEMMAP
1175
1176config HW_PERF_EVENTS
1177	def_bool y
1178	depends on ARM_PMU
1179
1180config ARCH_HAS_FILTER_PGPROT
1181	def_bool y
1182
1183# Supported by clang >= 7.0
1184config CC_HAVE_SHADOW_CALL_STACK
1185	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1186
1187config PARAVIRT
1188	bool "Enable paravirtualization code"
1189	help
1190	  This changes the kernel so it can modify itself when it is run
1191	  under a hypervisor, potentially improving performance significantly
1192	  over full virtualization.
1193
1194config PARAVIRT_TIME_ACCOUNTING
1195	bool "Paravirtual steal time accounting"
1196	select PARAVIRT
1197	help
1198	  Select this option to enable fine granularity task steal time
1199	  accounting. Time spent executing other tasks in parallel with
1200	  the current vCPU is discounted from the vCPU power. To account for
1201	  that, there can be a small performance impact.
1202
1203	  If in doubt, say N here.
1204
1205config KEXEC
1206	depends on PM_SLEEP_SMP
1207	select KEXEC_CORE
1208	bool "kexec system call"
1209	help
1210	  kexec is a system call that implements the ability to shutdown your
1211	  current kernel, and to start another kernel.  It is like a reboot
1212	  but it is independent of the system firmware.   And like a reboot
1213	  you can start any kernel with it, not just Linux.
1214
1215config KEXEC_FILE
1216	bool "kexec file based system call"
1217	select KEXEC_CORE
1218	select HAVE_IMA_KEXEC if IMA
1219	help
1220	  This is new version of kexec system call. This system call is
1221	  file based and takes file descriptors as system call argument
1222	  for kernel and initramfs as opposed to list of segments as
1223	  accepted by previous system call.
1224
1225config KEXEC_SIG
1226	bool "Verify kernel signature during kexec_file_load() syscall"
1227	depends on KEXEC_FILE
1228	help
1229	  Select this option to verify a signature with loaded kernel
1230	  image. If configured, any attempt of loading a image without
1231	  valid signature will fail.
1232
1233	  In addition to that option, you need to enable signature
1234	  verification for the corresponding kernel image type being
1235	  loaded in order for this to work.
1236
1237config KEXEC_IMAGE_VERIFY_SIG
1238	bool "Enable Image signature verification support"
1239	default y
1240	depends on KEXEC_SIG
1241	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1242	help
1243	  Enable Image signature verification support.
1244
1245comment "Support for PE file signature verification disabled"
1246	depends on KEXEC_SIG
1247	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1248
1249config CRASH_DUMP
1250	bool "Build kdump crash kernel"
1251	help
1252	  Generate crash dump after being started by kexec. This should
1253	  be normally only set in special crash dump kernels which are
1254	  loaded in the main kernel with kexec-tools into a specially
1255	  reserved region and then later executed after a crash by
1256	  kdump/kexec.
1257
1258	  For more details see Documentation/admin-guide/kdump/kdump.rst
1259
1260config TRANS_TABLE
1261	def_bool y
1262	depends on HIBERNATION || KEXEC_CORE
1263
1264config XEN_DOM0
1265	def_bool y
1266	depends on XEN
1267
1268config XEN
1269	bool "Xen guest support on ARM64"
1270	depends on ARM64 && OF
1271	select SWIOTLB_XEN
1272	select PARAVIRT
1273	help
1274	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1275
1276config FORCE_MAX_ZONEORDER
1277	int
1278	default "14" if ARM64_64K_PAGES
1279	default "12" if ARM64_16K_PAGES
1280	default "11"
1281	help
1282	  The kernel memory allocator divides physically contiguous memory
1283	  blocks into "zones", where each zone is a power of two number of
1284	  pages.  This option selects the largest power of two that the kernel
1285	  keeps in the memory allocator.  If you need to allocate very large
1286	  blocks of physically contiguous memory, then you may need to
1287	  increase this value.
1288
1289	  This config option is actually maximum order plus one. For example,
1290	  a value of 11 means that the largest free memory block is 2^10 pages.
1291
1292	  We make sure that we can allocate upto a HugePage size for each configuration.
1293	  Hence we have :
1294		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1295
1296	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1297	  4M allocations matching the default size used by generic code.
1298
1299config UNMAP_KERNEL_AT_EL0
1300	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1301	default y
1302	help
1303	  Speculation attacks against some high-performance processors can
1304	  be used to bypass MMU permission checks and leak kernel data to
1305	  userspace. This can be defended against by unmapping the kernel
1306	  when running in userspace, mapping it back in on exception entry
1307	  via a trampoline page in the vector table.
1308
1309	  If unsure, say Y.
1310
1311config RODATA_FULL_DEFAULT_ENABLED
1312	bool "Apply r/o permissions of VM areas also to their linear aliases"
1313	default y
1314	help
1315	  Apply read-only attributes of VM areas to the linear alias of
1316	  the backing pages as well. This prevents code or read-only data
1317	  from being modified (inadvertently or intentionally) via another
1318	  mapping of the same memory page. This additional enhancement can
1319	  be turned off at runtime by passing rodata=[off|on] (and turned on
1320	  with rodata=full if this option is set to 'n')
1321
1322	  This requires the linear region to be mapped down to pages,
1323	  which may adversely affect performance in some cases.
1324
1325config ARM64_SW_TTBR0_PAN
1326	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1327	help
1328	  Enabling this option prevents the kernel from accessing
1329	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1330	  zeroed area and reserved ASID. The user access routines
1331	  restore the valid TTBR0_EL1 temporarily.
1332
1333config ARM64_TAGGED_ADDR_ABI
1334	bool "Enable the tagged user addresses syscall ABI"
1335	default y
1336	help
1337	  When this option is enabled, user applications can opt in to a
1338	  relaxed ABI via prctl() allowing tagged addresses to be passed
1339	  to system calls as pointer arguments. For details, see
1340	  Documentation/arm64/tagged-address-abi.rst.
1341
1342menuconfig COMPAT
1343	bool "Kernel support for 32-bit EL0"
1344	depends on ARM64_4K_PAGES || EXPERT
1345	select HAVE_UID16
1346	select OLD_SIGSUSPEND3
1347	select COMPAT_OLD_SIGACTION
1348	help
1349	  This option enables support for a 32-bit EL0 running under a 64-bit
1350	  kernel at EL1. AArch32-specific components such as system calls,
1351	  the user helper functions, VFP support and the ptrace interface are
1352	  handled appropriately by the kernel.
1353
1354	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1355	  that you will only be able to execute AArch32 binaries that were compiled
1356	  with page size aligned segments.
1357
1358	  If you want to execute 32-bit userspace applications, say Y.
1359
1360if COMPAT
1361
1362config KUSER_HELPERS
1363	bool "Enable kuser helpers page for 32-bit applications"
1364	default y
1365	help
1366	  Warning: disabling this option may break 32-bit user programs.
1367
1368	  Provide kuser helpers to compat tasks. The kernel provides
1369	  helper code to userspace in read only form at a fixed location
1370	  to allow userspace to be independent of the CPU type fitted to
1371	  the system. This permits binaries to be run on ARMv4 through
1372	  to ARMv8 without modification.
1373
1374	  See Documentation/arm/kernel_user_helpers.rst for details.
1375
1376	  However, the fixed address nature of these helpers can be used
1377	  by ROP (return orientated programming) authors when creating
1378	  exploits.
1379
1380	  If all of the binaries and libraries which run on your platform
1381	  are built specifically for your platform, and make no use of
1382	  these helpers, then you can turn this option off to hinder
1383	  such exploits. However, in that case, if a binary or library
1384	  relying on those helpers is run, it will not function correctly.
1385
1386	  Say N here only if you are absolutely certain that you do not
1387	  need these helpers; otherwise, the safe option is to say Y.
1388
1389config COMPAT_VDSO
1390	bool "Enable vDSO for 32-bit applications"
1391	depends on !CPU_BIG_ENDIAN
1392	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1393	select GENERIC_COMPAT_VDSO
1394	default y
1395	help
1396	  Place in the process address space of 32-bit applications an
1397	  ELF shared object providing fast implementations of gettimeofday
1398	  and clock_gettime.
1399
1400	  You must have a 32-bit build of glibc 2.22 or later for programs
1401	  to seamlessly take advantage of this.
1402
1403config THUMB2_COMPAT_VDSO
1404	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1405	depends on COMPAT_VDSO
1406	default y
1407	help
1408	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1409	  otherwise with '-marm'.
1410
1411menuconfig ARMV8_DEPRECATED
1412	bool "Emulate deprecated/obsolete ARMv8 instructions"
1413	depends on SYSCTL
1414	help
1415	  Legacy software support may require certain instructions
1416	  that have been deprecated or obsoleted in the architecture.
1417
1418	  Enable this config to enable selective emulation of these
1419	  features.
1420
1421	  If unsure, say Y
1422
1423if ARMV8_DEPRECATED
1424
1425config SWP_EMULATION
1426	bool "Emulate SWP/SWPB instructions"
1427	help
1428	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1429	  they are always undefined. Say Y here to enable software
1430	  emulation of these instructions for userspace using LDXR/STXR.
1431	  This feature can be controlled at runtime with the abi.swp
1432	  sysctl which is disabled by default.
1433
1434	  In some older versions of glibc [<=2.8] SWP is used during futex
1435	  trylock() operations with the assumption that the code will not
1436	  be preempted. This invalid assumption may be more likely to fail
1437	  with SWP emulation enabled, leading to deadlock of the user
1438	  application.
1439
1440	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1441	  on an external transaction monitoring block called a global
1442	  monitor to maintain update atomicity. If your system does not
1443	  implement a global monitor, this option can cause programs that
1444	  perform SWP operations to uncached memory to deadlock.
1445
1446	  If unsure, say Y
1447
1448config CP15_BARRIER_EMULATION
1449	bool "Emulate CP15 Barrier instructions"
1450	help
1451	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1452	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1453	  strongly recommended to use the ISB, DSB, and DMB
1454	  instructions instead.
1455
1456	  Say Y here to enable software emulation of these
1457	  instructions for AArch32 userspace code. When this option is
1458	  enabled, CP15 barrier usage is traced which can help
1459	  identify software that needs updating. This feature can be
1460	  controlled at runtime with the abi.cp15_barrier sysctl.
1461
1462	  If unsure, say Y
1463
1464config SETEND_EMULATION
1465	bool "Emulate SETEND instruction"
1466	help
1467	  The SETEND instruction alters the data-endianness of the
1468	  AArch32 EL0, and is deprecated in ARMv8.
1469
1470	  Say Y here to enable software emulation of the instruction
1471	  for AArch32 userspace code. This feature can be controlled
1472	  at runtime with the abi.setend sysctl.
1473
1474	  Note: All the cpus on the system must have mixed endian support at EL0
1475	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1476	  endian - is hotplugged in after this feature has been enabled, there could
1477	  be unexpected results in the applications.
1478
1479	  If unsure, say Y
1480endif
1481
1482endif
1483
1484menu "ARMv8.1 architectural features"
1485
1486config ARM64_HW_AFDBM
1487	bool "Support for hardware updates of the Access and Dirty page flags"
1488	default y
1489	help
1490	  The ARMv8.1 architecture extensions introduce support for
1491	  hardware updates of the access and dirty information in page
1492	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1493	  capable processors, accesses to pages with PTE_AF cleared will
1494	  set this bit instead of raising an access flag fault.
1495	  Similarly, writes to read-only pages with the DBM bit set will
1496	  clear the read-only bit (AP[2]) instead of raising a
1497	  permission fault.
1498
1499	  Kernels built with this configuration option enabled continue
1500	  to work on pre-ARMv8.1 hardware and the performance impact is
1501	  minimal. If unsure, say Y.
1502
1503config ARM64_PAN
1504	bool "Enable support for Privileged Access Never (PAN)"
1505	default y
1506	help
1507	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1508	 prevents the kernel or hypervisor from accessing user-space (EL0)
1509	 memory directly.
1510
1511	 Choosing this option will cause any unprotected (not using
1512	 copy_to_user et al) memory access to fail with a permission fault.
1513
1514	 The feature is detected at runtime, and will remain as a 'nop'
1515	 instruction if the cpu does not implement the feature.
1516
1517config AS_HAS_LDAPR
1518	def_bool $(as-instr,.arch_extension rcpc)
1519
1520config AS_HAS_LSE_ATOMICS
1521	def_bool $(as-instr,.arch_extension lse)
1522
1523config ARM64_LSE_ATOMICS
1524	bool
1525	default ARM64_USE_LSE_ATOMICS
1526	depends on AS_HAS_LSE_ATOMICS
1527
1528config ARM64_USE_LSE_ATOMICS
1529	bool "Atomic instructions"
1530	depends on JUMP_LABEL
1531	default y
1532	help
1533	  As part of the Large System Extensions, ARMv8.1 introduces new
1534	  atomic instructions that are designed specifically to scale in
1535	  very large systems.
1536
1537	  Say Y here to make use of these instructions for the in-kernel
1538	  atomic routines. This incurs a small overhead on CPUs that do
1539	  not support these instructions and requires the kernel to be
1540	  built with binutils >= 2.25 in order for the new instructions
1541	  to be used.
1542
1543endmenu
1544
1545menu "ARMv8.2 architectural features"
1546
1547config ARM64_PMEM
1548	bool "Enable support for persistent memory"
1549	select ARCH_HAS_PMEM_API
1550	select ARCH_HAS_UACCESS_FLUSHCACHE
1551	help
1552	  Say Y to enable support for the persistent memory API based on the
1553	  ARMv8.2 DCPoP feature.
1554
1555	  The feature is detected at runtime, and the kernel will use DC CVAC
1556	  operations if DC CVAP is not supported (following the behaviour of
1557	  DC CVAP itself if the system does not define a point of persistence).
1558
1559config ARM64_RAS_EXTN
1560	bool "Enable support for RAS CPU Extensions"
1561	default y
1562	help
1563	  CPUs that support the Reliability, Availability and Serviceability
1564	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1565	  errors, classify them and report them to software.
1566
1567	  On CPUs with these extensions system software can use additional
1568	  barriers to determine if faults are pending and read the
1569	  classification from a new set of registers.
1570
1571	  Selecting this feature will allow the kernel to use these barriers
1572	  and access the new registers if the system supports the extension.
1573	  Platform RAS features may additionally depend on firmware support.
1574
1575config ARM64_CNP
1576	bool "Enable support for Common Not Private (CNP) translations"
1577	default y
1578	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1579	help
1580	  Common Not Private (CNP) allows translation table entries to
1581	  be shared between different PEs in the same inner shareable
1582	  domain, so the hardware can use this fact to optimise the
1583	  caching of such entries in the TLB.
1584
1585	  Selecting this option allows the CNP feature to be detected
1586	  at runtime, and does not affect PEs that do not implement
1587	  this feature.
1588
1589endmenu
1590
1591menu "ARMv8.3 architectural features"
1592
1593config ARM64_PTR_AUTH
1594	bool "Enable support for pointer authentication"
1595	default y
1596	help
1597	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1598	  instructions for signing and authenticating pointers against secret
1599	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1600	  and other attacks.
1601
1602	  This option enables these instructions at EL0 (i.e. for userspace).
1603	  Choosing this option will cause the kernel to initialise secret keys
1604	  for each process at exec() time, with these keys being
1605	  context-switched along with the process.
1606
1607	  The feature is detected at runtime. If the feature is not present in
1608	  hardware it will not be advertised to userspace/KVM guest nor will it
1609	  be enabled.
1610
1611	  If the feature is present on the boot CPU but not on a late CPU, then
1612	  the late CPU will be parked. Also, if the boot CPU does not have
1613	  address auth and the late CPU has then the late CPU will still boot
1614	  but with the feature disabled. On such a system, this option should
1615	  not be selected.
1616
1617config ARM64_PTR_AUTH_KERNEL
1618	bool "Use pointer authentication for kernel"
1619	default y
1620	depends on ARM64_PTR_AUTH
1621	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1622	# Modern compilers insert a .note.gnu.property section note for PAC
1623	# which is only understood by binutils starting with version 2.33.1.
1624	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1625	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1626	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1627	help
1628	  If the compiler supports the -mbranch-protection or
1629	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1630	  will cause the kernel itself to be compiled with return address
1631	  protection. In this case, and if the target hardware is known to
1632	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1633	  disabled with minimal loss of protection.
1634
1635	  This feature works with FUNCTION_GRAPH_TRACER option only if
1636	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1637
1638config CC_HAS_BRANCH_PROT_PAC_RET
1639	# GCC 9 or later, clang 8 or later
1640	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1641
1642config CC_HAS_SIGN_RETURN_ADDRESS
1643	# GCC 7, 8
1644	def_bool $(cc-option,-msign-return-address=all)
1645
1646config AS_HAS_PAC
1647	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1648
1649config AS_HAS_CFI_NEGATE_RA_STATE
1650	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1651
1652endmenu
1653
1654menu "ARMv8.4 architectural features"
1655
1656config ARM64_AMU_EXTN
1657	bool "Enable support for the Activity Monitors Unit CPU extension"
1658	default y
1659	help
1660	  The activity monitors extension is an optional extension introduced
1661	  by the ARMv8.4 CPU architecture. This enables support for version 1
1662	  of the activity monitors architecture, AMUv1.
1663
1664	  To enable the use of this extension on CPUs that implement it, say Y.
1665
1666	  Note that for architectural reasons, firmware _must_ implement AMU
1667	  support when running on CPUs that present the activity monitors
1668	  extension. The required support is present in:
1669	    * Version 1.5 and later of the ARM Trusted Firmware
1670
1671	  For kernels that have this configuration enabled but boot with broken
1672	  firmware, you may need to say N here until the firmware is fixed.
1673	  Otherwise you may experience firmware panics or lockups when
1674	  accessing the counter registers. Even if you are not observing these
1675	  symptoms, the values returned by the register reads might not
1676	  correctly reflect reality. Most commonly, the value read will be 0,
1677	  indicating that the counter is not enabled.
1678
1679config AS_HAS_ARMV8_4
1680	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1681
1682config ARM64_TLB_RANGE
1683	bool "Enable support for tlbi range feature"
1684	default y
1685	depends on AS_HAS_ARMV8_4
1686	help
1687	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1688	  range of input addresses.
1689
1690	  The feature introduces new assembly instructions, and they were
1691	  support when binutils >= 2.30.
1692
1693endmenu
1694
1695menu "ARMv8.5 architectural features"
1696
1697config AS_HAS_ARMV8_5
1698	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1699
1700config ARM64_BTI
1701	bool "Branch Target Identification support"
1702	default y
1703	help
1704	  Branch Target Identification (part of the ARMv8.5 Extensions)
1705	  provides a mechanism to limit the set of locations to which computed
1706	  branch instructions such as BR or BLR can jump.
1707
1708	  To make use of BTI on CPUs that support it, say Y.
1709
1710	  BTI is intended to provide complementary protection to other control
1711	  flow integrity protection mechanisms, such as the Pointer
1712	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1713	  For this reason, it does not make sense to enable this option without
1714	  also enabling support for pointer authentication.  Thus, when
1715	  enabling this option you should also select ARM64_PTR_AUTH=y.
1716
1717	  Userspace binaries must also be specifically compiled to make use of
1718	  this mechanism.  If you say N here or the hardware does not support
1719	  BTI, such binaries can still run, but you get no additional
1720	  enforcement of branch destinations.
1721
1722config ARM64_BTI_KERNEL
1723	bool "Use Branch Target Identification for kernel"
1724	default y
1725	depends on ARM64_BTI
1726	depends on ARM64_PTR_AUTH_KERNEL
1727	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1728	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1729	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1730	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1731	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1732	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1733	help
1734	  Build the kernel with Branch Target Identification annotations
1735	  and enable enforcement of this for kernel code. When this option
1736	  is enabled and the system supports BTI all kernel code including
1737	  modular code must have BTI enabled.
1738
1739config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1740	# GCC 9 or later, clang 8 or later
1741	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1742
1743config ARM64_E0PD
1744	bool "Enable support for E0PD"
1745	default y
1746	help
1747	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1748	  that EL0 accesses made via TTBR1 always fault in constant time,
1749	  providing similar benefits to KASLR as those provided by KPTI, but
1750	  with lower overhead and without disrupting legitimate access to
1751	  kernel memory such as SPE.
1752
1753	  This option enables E0PD for TTBR1 where available.
1754
1755config ARCH_RANDOM
1756	bool "Enable support for random number generation"
1757	default y
1758	help
1759	  Random number generation (part of the ARMv8.5 Extensions)
1760	  provides a high bandwidth, cryptographically secure
1761	  hardware random number generator.
1762
1763config ARM64_AS_HAS_MTE
1764	# Initial support for MTE went in binutils 2.32.0, checked with
1765	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1766	# as a late addition to the final architecture spec (LDGM/STGM)
1767	# is only supported in the newer 2.32.x and 2.33 binutils
1768	# versions, hence the extra "stgm" instruction check below.
1769	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1770
1771config ARM64_MTE
1772	bool "Memory Tagging Extension support"
1773	default y
1774	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1775	depends on AS_HAS_ARMV8_5
1776	depends on AS_HAS_LSE_ATOMICS
1777	# Required for tag checking in the uaccess routines
1778	depends on ARM64_PAN
1779	select ARCH_USES_HIGH_VMA_FLAGS
1780	help
1781	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1782	  architectural support for run-time, always-on detection of
1783	  various classes of memory error to aid with software debugging
1784	  to eliminate vulnerabilities arising from memory-unsafe
1785	  languages.
1786
1787	  This option enables the support for the Memory Tagging
1788	  Extension at EL0 (i.e. for userspace).
1789
1790	  Selecting this option allows the feature to be detected at
1791	  runtime. Any secondary CPU not implementing this feature will
1792	  not be allowed a late bring-up.
1793
1794	  Userspace binaries that want to use this feature must
1795	  explicitly opt in. The mechanism for the userspace is
1796	  described in:
1797
1798	  Documentation/arm64/memory-tagging-extension.rst.
1799
1800endmenu
1801
1802menu "ARMv8.7 architectural features"
1803
1804config ARM64_EPAN
1805	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1806	default y
1807	depends on ARM64_PAN
1808	help
1809	 Enhanced Privileged Access Never (EPAN) allows Privileged
1810	 Access Never to be used with Execute-only mappings.
1811
1812	 The feature is detected at runtime, and will remain disabled
1813	 if the cpu does not implement the feature.
1814endmenu
1815
1816config ARM64_SVE
1817	bool "ARM Scalable Vector Extension support"
1818	default y
1819	help
1820	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1821	  execution state which complements and extends the SIMD functionality
1822	  of the base architecture to support much larger vectors and to enable
1823	  additional vectorisation opportunities.
1824
1825	  To enable use of this extension on CPUs that implement it, say Y.
1826
1827	  On CPUs that support the SVE2 extensions, this option will enable
1828	  those too.
1829
1830	  Note that for architectural reasons, firmware _must_ implement SVE
1831	  support when running on SVE capable hardware.  The required support
1832	  is present in:
1833
1834	    * version 1.5 and later of the ARM Trusted Firmware
1835	    * the AArch64 boot wrapper since commit 5e1261e08abf
1836	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1837
1838	  For other firmware implementations, consult the firmware documentation
1839	  or vendor.
1840
1841	  If you need the kernel to boot on SVE-capable hardware with broken
1842	  firmware, you may need to say N here until you get your firmware
1843	  fixed.  Otherwise, you may experience firmware panics or lockups when
1844	  booting the kernel.  If unsure and you are not observing these
1845	  symptoms, you should assume that it is safe to say Y.
1846
1847config ARM64_MODULE_PLTS
1848	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1849	depends on MODULES
1850	select HAVE_MOD_ARCH_SPECIFIC
1851	help
1852	  Allocate PLTs when loading modules so that jumps and calls whose
1853	  targets are too far away for their relative offsets to be encoded
1854	  in the instructions themselves can be bounced via veneers in the
1855	  module's PLT. This allows modules to be allocated in the generic
1856	  vmalloc area after the dedicated module memory area has been
1857	  exhausted.
1858
1859	  When running with address space randomization (KASLR), the module
1860	  region itself may be too far away for ordinary relative jumps and
1861	  calls, and so in that case, module PLTs are required and cannot be
1862	  disabled.
1863
1864	  Specific errata workaround(s) might also force module PLTs to be
1865	  enabled (ARM64_ERRATUM_843419).
1866
1867config ARM64_PSEUDO_NMI
1868	bool "Support for NMI-like interrupts"
1869	select ARM_GIC_V3
1870	help
1871	  Adds support for mimicking Non-Maskable Interrupts through the use of
1872	  GIC interrupt priority. This support requires version 3 or later of
1873	  ARM GIC.
1874
1875	  This high priority configuration for interrupts needs to be
1876	  explicitly enabled by setting the kernel parameter
1877	  "irqchip.gicv3_pseudo_nmi" to 1.
1878
1879	  If unsure, say N
1880
1881if ARM64_PSEUDO_NMI
1882config ARM64_DEBUG_PRIORITY_MASKING
1883	bool "Debug interrupt priority masking"
1884	help
1885	  This adds runtime checks to functions enabling/disabling
1886	  interrupts when using priority masking. The additional checks verify
1887	  the validity of ICC_PMR_EL1 when calling concerned functions.
1888
1889	  If unsure, say N
1890endif
1891
1892config RELOCATABLE
1893	bool "Build a relocatable kernel image" if EXPERT
1894	select ARCH_HAS_RELR
1895	default y
1896	help
1897	  This builds the kernel as a Position Independent Executable (PIE),
1898	  which retains all relocation metadata required to relocate the
1899	  kernel binary at runtime to a different virtual address than the
1900	  address it was linked at.
1901	  Since AArch64 uses the RELA relocation format, this requires a
1902	  relocation pass at runtime even if the kernel is loaded at the
1903	  same address it was linked at.
1904
1905config RANDOMIZE_BASE
1906	bool "Randomize the address of the kernel image"
1907	select ARM64_MODULE_PLTS if MODULES
1908	select RELOCATABLE
1909	help
1910	  Randomizes the virtual address at which the kernel image is
1911	  loaded, as a security feature that deters exploit attempts
1912	  relying on knowledge of the location of kernel internals.
1913
1914	  It is the bootloader's job to provide entropy, by passing a
1915	  random u64 value in /chosen/kaslr-seed at kernel entry.
1916
1917	  When booting via the UEFI stub, it will invoke the firmware's
1918	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1919	  to the kernel proper. In addition, it will randomise the physical
1920	  location of the kernel Image as well.
1921
1922	  If unsure, say N.
1923
1924config RANDOMIZE_MODULE_REGION_FULL
1925	bool "Randomize the module region over a 2 GB range"
1926	depends on RANDOMIZE_BASE
1927	default y
1928	help
1929	  Randomizes the location of the module region inside a 2 GB window
1930	  covering the core kernel. This way, it is less likely for modules
1931	  to leak information about the location of core kernel data structures
1932	  but it does imply that function calls between modules and the core
1933	  kernel will need to be resolved via veneers in the module PLT.
1934
1935	  When this option is not set, the module region will be randomized over
1936	  a limited range that contains the [_stext, _etext] interval of the
1937	  core kernel, so branch relocations are almost always in range unless
1938	  ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
1939	  particular case of region exhaustion, modules might be able to fall
1940	  back to a larger 2GB area.
1941
1942config CC_HAVE_STACKPROTECTOR_SYSREG
1943	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1944
1945config STACKPROTECTOR_PER_TASK
1946	def_bool y
1947	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1948
1949endmenu
1950
1951menu "Boot options"
1952
1953config ARM64_ACPI_PARKING_PROTOCOL
1954	bool "Enable support for the ARM64 ACPI parking protocol"
1955	depends on ACPI
1956	help
1957	  Enable support for the ARM64 ACPI parking protocol. If disabled
1958	  the kernel will not allow booting through the ARM64 ACPI parking
1959	  protocol even if the corresponding data is present in the ACPI
1960	  MADT table.
1961
1962config CMDLINE
1963	string "Default kernel command string"
1964	default ""
1965	help
1966	  Provide a set of default command-line options at build time by
1967	  entering them here. As a minimum, you should specify the the
1968	  root device (e.g. root=/dev/nfs).
1969
1970choice
1971	prompt "Kernel command line type" if CMDLINE != ""
1972	default CMDLINE_FROM_BOOTLOADER
1973	help
1974	  Choose how the kernel will handle the provided default kernel
1975	  command line string.
1976
1977config CMDLINE_FROM_BOOTLOADER
1978	bool "Use bootloader kernel arguments if available"
1979	help
1980	  Uses the command-line options passed by the boot loader. If
1981	  the boot loader doesn't provide any, the default kernel command
1982	  string provided in CMDLINE will be used.
1983
1984config CMDLINE_FORCE
1985	bool "Always use the default kernel command string"
1986	help
1987	  Always use the default kernel command string, even if the boot
1988	  loader passes other arguments to the kernel.
1989	  This is useful if you cannot or don't want to change the
1990	  command-line options your boot loader passes to the kernel.
1991
1992endchoice
1993
1994config EFI_STUB
1995	bool
1996
1997config EFI
1998	bool "UEFI runtime support"
1999	depends on OF && !CPU_BIG_ENDIAN
2000	depends on KERNEL_MODE_NEON
2001	select ARCH_SUPPORTS_ACPI
2002	select LIBFDT
2003	select UCS2_STRING
2004	select EFI_PARAMS_FROM_FDT
2005	select EFI_RUNTIME_WRAPPERS
2006	select EFI_STUB
2007	select EFI_GENERIC_STUB
2008	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2009	default y
2010	help
2011	  This option provides support for runtime services provided
2012	  by UEFI firmware (such as non-volatile variables, realtime
2013          clock, and platform reset). A UEFI stub is also provided to
2014	  allow the kernel to be booted as an EFI application. This
2015	  is only useful on systems that have UEFI firmware.
2016
2017config DMI
2018	bool "Enable support for SMBIOS (DMI) tables"
2019	depends on EFI
2020	default y
2021	help
2022	  This enables SMBIOS/DMI feature for systems.
2023
2024	  This option is only useful on systems that have UEFI firmware.
2025	  However, even with this option, the resultant kernel should
2026	  continue to boot on existing non-UEFI platforms.
2027
2028endmenu
2029
2030config SYSVIPC_COMPAT
2031	def_bool y
2032	depends on COMPAT && SYSVIPC
2033
2034menu "Power management options"
2035
2036source "kernel/power/Kconfig"
2037
2038config ARCH_HIBERNATION_POSSIBLE
2039	def_bool y
2040	depends on CPU_PM
2041
2042config ARCH_HIBERNATION_HEADER
2043	def_bool y
2044	depends on HIBERNATION
2045
2046config ARCH_SUSPEND_POSSIBLE
2047	def_bool y
2048
2049endmenu
2050
2051menu "CPU Power Management"
2052
2053source "drivers/cpuidle/Kconfig"
2054
2055source "drivers/cpufreq/Kconfig"
2056
2057endmenu
2058
2059source "drivers/acpi/Kconfig"
2060
2061source "arch/arm64/kvm/Kconfig"
2062
2063if CRYPTO
2064source "arch/arm64/crypto/Kconfig"
2065endif
2066