xref: /openbmc/linux/arch/arm64/Kconfig (revision 6df696cd)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_APMT if ACPI
5	select ACPI_CCA_REQUIRED if ACPI
6	select ACPI_GENERIC_GSI if ACPI
7	select ACPI_GTDT if ACPI
8	select ACPI_IORT if ACPI
9	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
10	select ACPI_MCFG if (ACPI && PCI)
11	select ACPI_SPCR_TABLE if ACPI
12	select ACPI_PPTT if ACPI
13	select ARCH_HAS_DEBUG_WX
14	select ARCH_BINFMT_ELF_EXTRA_PHDRS
15	select ARCH_BINFMT_ELF_STATE
16	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
17	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
18	select ARCH_ENABLE_MEMORY_HOTPLUG
19	select ARCH_ENABLE_MEMORY_HOTREMOVE
20	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
21	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
22	select ARCH_HAS_CACHE_LINE_SIZE
23	select ARCH_HAS_CURRENT_STACK_POINTER
24	select ARCH_HAS_DEBUG_VIRTUAL
25	select ARCH_HAS_DEBUG_VM_PGTABLE
26	select ARCH_HAS_DMA_PREP_COHERENT
27	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
28	select ARCH_HAS_FAST_MULTIPLIER
29	select ARCH_HAS_FORTIFY_SOURCE
30	select ARCH_HAS_GCOV_PROFILE_ALL
31	select ARCH_HAS_GIGANTIC_PAGE
32	select ARCH_HAS_KCOV
33	select ARCH_HAS_KEEPINITRD
34	select ARCH_HAS_MEMBARRIER_SYNC_CORE
35	select ARCH_HAS_NMI_SAFE_THIS_CPU_OPS
36	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
37	select ARCH_HAS_PTE_DEVMAP
38	select ARCH_HAS_PTE_SPECIAL
39	select ARCH_HAS_SETUP_DMA_OPS
40	select ARCH_HAS_SET_DIRECT_MAP
41	select ARCH_HAS_SET_MEMORY
42	select ARCH_STACKWALK
43	select ARCH_HAS_STRICT_KERNEL_RWX
44	select ARCH_HAS_STRICT_MODULE_RWX
45	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
46	select ARCH_HAS_SYNC_DMA_FOR_CPU
47	select ARCH_HAS_SYSCALL_WRAPPER
48	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
49	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
50	select ARCH_HAS_ZONE_DMA_SET if EXPERT
51	select ARCH_HAVE_ELF_PROT
52	select ARCH_HAVE_NMI_SAFE_CMPXCHG
53	select ARCH_HAVE_TRACE_MMIO_ACCESS
54	select ARCH_INLINE_READ_LOCK if !PREEMPTION
55	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
56	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
57	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
58	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
59	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
60	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
61	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
62	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
63	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
64	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
65	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
66	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
67	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
68	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
69	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
70	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
71	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
72	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
73	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
74	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
75	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
76	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
77	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
78	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
79	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
80	select ARCH_KEEP_MEMBLOCK
81	select ARCH_USE_CMPXCHG_LOCKREF
82	select ARCH_USE_GNU_PROPERTY
83	select ARCH_USE_MEMTEST
84	select ARCH_USE_QUEUED_RWLOCKS
85	select ARCH_USE_QUEUED_SPINLOCKS
86	select ARCH_USE_SYM_ANNOTATIONS
87	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
88	select ARCH_SUPPORTS_HUGETLBFS
89	select ARCH_SUPPORTS_MEMORY_FAILURE
90	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
91	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
92	select ARCH_SUPPORTS_LTO_CLANG_THIN
93	select ARCH_SUPPORTS_CFI_CLANG
94	select ARCH_SUPPORTS_ATOMIC_RMW
95	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
96	select ARCH_SUPPORTS_NUMA_BALANCING
97	select ARCH_SUPPORTS_PAGE_TABLE_CHECK
98	select ARCH_SUPPORTS_PER_VMA_LOCK
99	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
100	select ARCH_WANT_DEFAULT_BPF_JIT
101	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
102	select ARCH_WANT_FRAME_POINTERS
103	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
104	select ARCH_WANT_LD_ORPHAN_WARN
105	select ARCH_WANTS_NO_INSTR
106	select ARCH_WANTS_THP_SWAP if ARM64_4K_PAGES
107	select ARCH_HAS_UBSAN_SANITIZE_ALL
108	select ARM_AMBA
109	select ARM_ARCH_TIMER
110	select ARM_GIC
111	select AUDIT_ARCH_COMPAT_GENERIC
112	select ARM_GIC_V2M if PCI
113	select ARM_GIC_V3
114	select ARM_GIC_V3_ITS if PCI
115	select ARM_PSCI_FW
116	select BUILDTIME_TABLE_SORT
117	select CLONE_BACKWARDS
118	select COMMON_CLK
119	select CPU_PM if (SUSPEND || CPU_IDLE)
120	select CRC32
121	select DCACHE_WORD_ACCESS
122	select DYNAMIC_FTRACE if FUNCTION_TRACER
123	select DMA_DIRECT_REMAP
124	select EDAC_SUPPORT
125	select FRAME_POINTER
126	select FUNCTION_ALIGNMENT_4B
127	select FUNCTION_ALIGNMENT_8B if DYNAMIC_FTRACE_WITH_CALL_OPS
128	select GENERIC_ALLOCATOR
129	select GENERIC_ARCH_TOPOLOGY
130	select GENERIC_CLOCKEVENTS_BROADCAST
131	select GENERIC_CPU_AUTOPROBE
132	select GENERIC_CPU_VULNERABILITIES
133	select GENERIC_EARLY_IOREMAP
134	select GENERIC_IDLE_POLL_SETUP
135	select GENERIC_IOREMAP
136	select GENERIC_IRQ_IPI
137	select GENERIC_IRQ_PROBE
138	select GENERIC_IRQ_SHOW
139	select GENERIC_IRQ_SHOW_LEVEL
140	select GENERIC_LIB_DEVMEM_IS_ALLOWED
141	select GENERIC_PCI_IOMAP
142	select GENERIC_PTDUMP
143	select GENERIC_SCHED_CLOCK
144	select GENERIC_SMP_IDLE_THREAD
145	select GENERIC_TIME_VSYSCALL
146	select GENERIC_GETTIMEOFDAY
147	select GENERIC_VDSO_TIME_NS
148	select HARDIRQS_SW_RESEND
149	select HAS_IOPORT
150	select HAVE_MOVE_PMD
151	select HAVE_MOVE_PUD
152	select HAVE_PCI
153	select HAVE_ACPI_APEI if (ACPI && EFI)
154	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
155	select HAVE_ARCH_AUDITSYSCALL
156	select HAVE_ARCH_BITREVERSE
157	select HAVE_ARCH_COMPILER_H
158	select HAVE_ARCH_HUGE_VMALLOC
159	select HAVE_ARCH_HUGE_VMAP
160	select HAVE_ARCH_JUMP_LABEL
161	select HAVE_ARCH_JUMP_LABEL_RELATIVE
162	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
163	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
164	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
165	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
166	# Some instrumentation may be unsound, hence EXPERT
167	select HAVE_ARCH_KCSAN if EXPERT
168	select HAVE_ARCH_KFENCE
169	select HAVE_ARCH_KGDB
170	select HAVE_ARCH_MMAP_RND_BITS
171	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
172	select HAVE_ARCH_PREL32_RELOCATIONS
173	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
174	select HAVE_ARCH_SECCOMP_FILTER
175	select HAVE_ARCH_STACKLEAK
176	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
177	select HAVE_ARCH_TRACEHOOK
178	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
179	select HAVE_ARCH_VMAP_STACK
180	select HAVE_ARM_SMCCC
181	select HAVE_ASM_MODVERSIONS
182	select HAVE_EBPF_JIT
183	select HAVE_C_RECORDMCOUNT
184	select HAVE_CMPXCHG_DOUBLE
185	select HAVE_CMPXCHG_LOCAL
186	select HAVE_CONTEXT_TRACKING_USER
187	select HAVE_DEBUG_KMEMLEAK
188	select HAVE_DMA_CONTIGUOUS
189	select HAVE_DYNAMIC_FTRACE
190	select HAVE_DYNAMIC_FTRACE_WITH_ARGS \
191		if $(cc-option,-fpatchable-function-entry=2)
192	select HAVE_DYNAMIC_FTRACE_WITH_DIRECT_CALLS \
193		if DYNAMIC_FTRACE_WITH_ARGS && DYNAMIC_FTRACE_WITH_CALL_OPS
194	select HAVE_DYNAMIC_FTRACE_WITH_CALL_OPS \
195		if (DYNAMIC_FTRACE_WITH_ARGS && !CFI_CLANG && \
196		    !CC_OPTIMIZE_FOR_SIZE)
197	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
198		if DYNAMIC_FTRACE_WITH_ARGS
199	select HAVE_EFFICIENT_UNALIGNED_ACCESS
200	select HAVE_FAST_GUP
201	select HAVE_FTRACE_MCOUNT_RECORD
202	select HAVE_FUNCTION_TRACER
203	select HAVE_FUNCTION_ERROR_INJECTION
204	select HAVE_FUNCTION_GRAPH_TRACER
205	select HAVE_GCC_PLUGINS
206	select HAVE_HW_BREAKPOINT if PERF_EVENTS
207	select HAVE_IOREMAP_PROT
208	select HAVE_IRQ_TIME_ACCOUNTING
209	select HAVE_KVM
210	select HAVE_NMI
211	select HAVE_PERF_EVENTS
212	select HAVE_PERF_REGS
213	select HAVE_PERF_USER_STACK_DUMP
214	select HAVE_PREEMPT_DYNAMIC_KEY
215	select HAVE_REGS_AND_STACK_ACCESS_API
216	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
217	select HAVE_FUNCTION_ARG_ACCESS_API
218	select MMU_GATHER_RCU_TABLE_FREE
219	select HAVE_RSEQ
220	select HAVE_STACKPROTECTOR
221	select HAVE_SYSCALL_TRACEPOINTS
222	select HAVE_KPROBES
223	select HAVE_KRETPROBES
224	select HAVE_GENERIC_VDSO
225	select IRQ_DOMAIN
226	select IRQ_FORCED_THREADING
227	select KASAN_VMALLOC if KASAN
228	select MODULES_USE_ELF_RELA
229	select NEED_DMA_MAP_STATE
230	select NEED_SG_DMA_LENGTH
231	select OF
232	select OF_EARLY_FLATTREE
233	select PCI_DOMAINS_GENERIC if PCI
234	select PCI_ECAM if (ACPI && PCI)
235	select PCI_SYSCALL if PCI
236	select POWER_RESET
237	select POWER_SUPPLY
238	select SPARSE_IRQ
239	select SWIOTLB
240	select SYSCTL_EXCEPTION_TRACE
241	select THREAD_INFO_IN_TASK
242	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
243	select TRACE_IRQFLAGS_SUPPORT
244	select TRACE_IRQFLAGS_NMI_SUPPORT
245	select HAVE_SOFTIRQ_ON_OWN_STACK
246	help
247	  ARM 64-bit (AArch64) Linux support.
248
249config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
250	def_bool CC_IS_CLANG
251	# https://github.com/ClangBuiltLinux/linux/issues/1507
252	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
253	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
254
255config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_ARGS
256	def_bool CC_IS_GCC
257	depends on $(cc-option,-fpatchable-function-entry=2)
258	select HAVE_DYNAMIC_FTRACE_WITH_ARGS
259
260config 64BIT
261	def_bool y
262
263config MMU
264	def_bool y
265
266config ARM64_PAGE_SHIFT
267	int
268	default 16 if ARM64_64K_PAGES
269	default 14 if ARM64_16K_PAGES
270	default 12
271
272config ARM64_CONT_PTE_SHIFT
273	int
274	default 5 if ARM64_64K_PAGES
275	default 7 if ARM64_16K_PAGES
276	default 4
277
278config ARM64_CONT_PMD_SHIFT
279	int
280	default 5 if ARM64_64K_PAGES
281	default 5 if ARM64_16K_PAGES
282	default 4
283
284config ARCH_MMAP_RND_BITS_MIN
285	default 14 if ARM64_64K_PAGES
286	default 16 if ARM64_16K_PAGES
287	default 18
288
289# max bits determined by the following formula:
290#  VA_BITS - PAGE_SHIFT - 3
291config ARCH_MMAP_RND_BITS_MAX
292	default 19 if ARM64_VA_BITS=36
293	default 24 if ARM64_VA_BITS=39
294	default 27 if ARM64_VA_BITS=42
295	default 30 if ARM64_VA_BITS=47
296	default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
297	default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
298	default 33 if ARM64_VA_BITS=48
299	default 14 if ARM64_64K_PAGES
300	default 16 if ARM64_16K_PAGES
301	default 18
302
303config ARCH_MMAP_RND_COMPAT_BITS_MIN
304	default 7 if ARM64_64K_PAGES
305	default 9 if ARM64_16K_PAGES
306	default 11
307
308config ARCH_MMAP_RND_COMPAT_BITS_MAX
309	default 16
310
311config NO_IOPORT_MAP
312	def_bool y if !PCI
313
314config STACKTRACE_SUPPORT
315	def_bool y
316
317config ILLEGAL_POINTER_VALUE
318	hex
319	default 0xdead000000000000
320
321config LOCKDEP_SUPPORT
322	def_bool y
323
324config GENERIC_BUG
325	def_bool y
326	depends on BUG
327
328config GENERIC_BUG_RELATIVE_POINTERS
329	def_bool y
330	depends on GENERIC_BUG
331
332config GENERIC_HWEIGHT
333	def_bool y
334
335config GENERIC_CSUM
336	def_bool y
337
338config GENERIC_CALIBRATE_DELAY
339	def_bool y
340
341config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
342	def_bool y
343
344config SMP
345	def_bool y
346
347config KERNEL_MODE_NEON
348	def_bool y
349
350config FIX_EARLYCON_MEM
351	def_bool y
352
353config PGTABLE_LEVELS
354	int
355	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
356	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
357	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
358	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
359	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
360	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
361
362config ARCH_SUPPORTS_UPROBES
363	def_bool y
364
365config ARCH_PROC_KCORE_TEXT
366	def_bool y
367
368config BROKEN_GAS_INST
369	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
370
371config BUILTIN_RETURN_ADDRESS_STRIPS_PAC
372	bool
373	# Clang's __builtin_return_adddress() strips the PAC since 12.0.0
374	# https://reviews.llvm.org/D75044
375	default y if CC_IS_CLANG && (CLANG_VERSION >= 120000)
376	# GCC's __builtin_return_address() strips the PAC since 11.1.0,
377	# and this was backported to 10.2.0, 9.4.0, 8.5.0, but not earlier
378	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94891
379	default y if CC_IS_GCC && (GCC_VERSION >= 110100)
380	default y if CC_IS_GCC && (GCC_VERSION >= 100200) && (GCC_VERSION < 110000)
381	default y if CC_IS_GCC && (GCC_VERSION >=  90400) && (GCC_VERSION < 100000)
382	default y if CC_IS_GCC && (GCC_VERSION >=  80500) && (GCC_VERSION <  90000)
383	default n
384
385config KASAN_SHADOW_OFFSET
386	hex
387	depends on KASAN_GENERIC || KASAN_SW_TAGS
388	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
389	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
390	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
391	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
392	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
393	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
394	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
395	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
396	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
397	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
398	default 0xffffffffffffffff
399
400config UNWIND_TABLES
401	bool
402
403source "arch/arm64/Kconfig.platforms"
404
405menu "Kernel Features"
406
407menu "ARM errata workarounds via the alternatives framework"
408
409config AMPERE_ERRATUM_AC03_CPU_38
410        bool "AmpereOne: AC03_CPU_38: Certain bits in the Virtualization Translation Control Register and Translation Control Registers do not follow RES0 semantics"
411	default y
412	help
413	  This option adds an alternative code sequence to work around Ampere
414	  erratum AC03_CPU_38 on AmpereOne.
415
416	  The affected design reports FEAT_HAFDBS as not implemented in
417	  ID_AA64MMFR1_EL1.HAFDBS, but (V)TCR_ELx.{HA,HD} are not RES0
418	  as required by the architecture. The unadvertised HAFDBS
419	  implementation suffers from an additional erratum where hardware
420	  A/D updates can occur after a PTE has been marked invalid.
421
422	  The workaround forces KVM to explicitly set VTCR_EL2.HA to 0,
423	  which avoids enabling unadvertised hardware Access Flag management
424	  at stage-2.
425
426	  If unsure, say Y.
427
428config ARM64_WORKAROUND_CLEAN_CACHE
429	bool
430
431config ARM64_ERRATUM_826319
432	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
433	default y
434	select ARM64_WORKAROUND_CLEAN_CACHE
435	help
436	  This option adds an alternative code sequence to work around ARM
437	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
438	  AXI master interface and an L2 cache.
439
440	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
441	  and is unable to accept a certain write via this interface, it will
442	  not progress on read data presented on the read data channel and the
443	  system can deadlock.
444
445	  The workaround promotes data cache clean instructions to
446	  data cache clean-and-invalidate.
447	  Please note that this does not necessarily enable the workaround,
448	  as it depends on the alternative framework, which will only patch
449	  the kernel if an affected CPU is detected.
450
451	  If unsure, say Y.
452
453config ARM64_ERRATUM_827319
454	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
455	default y
456	select ARM64_WORKAROUND_CLEAN_CACHE
457	help
458	  This option adds an alternative code sequence to work around ARM
459	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
460	  master interface and an L2 cache.
461
462	  Under certain conditions this erratum can cause a clean line eviction
463	  to occur at the same time as another transaction to the same address
464	  on the AMBA 5 CHI interface, which can cause data corruption if the
465	  interconnect reorders the two transactions.
466
467	  The workaround promotes data cache clean instructions to
468	  data cache clean-and-invalidate.
469	  Please note that this does not necessarily enable the workaround,
470	  as it depends on the alternative framework, which will only patch
471	  the kernel if an affected CPU is detected.
472
473	  If unsure, say Y.
474
475config ARM64_ERRATUM_824069
476	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
477	default y
478	select ARM64_WORKAROUND_CLEAN_CACHE
479	help
480	  This option adds an alternative code sequence to work around ARM
481	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
482	  to a coherent interconnect.
483
484	  If a Cortex-A53 processor is executing a store or prefetch for
485	  write instruction at the same time as a processor in another
486	  cluster is executing a cache maintenance operation to the same
487	  address, then this erratum might cause a clean cache line to be
488	  incorrectly marked as dirty.
489
490	  The workaround promotes data cache clean instructions to
491	  data cache clean-and-invalidate.
492	  Please note that this option does not necessarily enable the
493	  workaround, as it depends on the alternative framework, which will
494	  only patch the kernel if an affected CPU is detected.
495
496	  If unsure, say Y.
497
498config ARM64_ERRATUM_819472
499	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
500	default y
501	select ARM64_WORKAROUND_CLEAN_CACHE
502	help
503	  This option adds an alternative code sequence to work around ARM
504	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
505	  present when it is connected to a coherent interconnect.
506
507	  If the processor is executing a load and store exclusive sequence at
508	  the same time as a processor in another cluster is executing a cache
509	  maintenance operation to the same address, then this erratum might
510	  cause data corruption.
511
512	  The workaround promotes data cache clean instructions to
513	  data cache clean-and-invalidate.
514	  Please note that this does not necessarily enable the workaround,
515	  as it depends on the alternative framework, which will only patch
516	  the kernel if an affected CPU is detected.
517
518	  If unsure, say Y.
519
520config ARM64_ERRATUM_832075
521	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
522	default y
523	help
524	  This option adds an alternative code sequence to work around ARM
525	  erratum 832075 on Cortex-A57 parts up to r1p2.
526
527	  Affected Cortex-A57 parts might deadlock when exclusive load/store
528	  instructions to Write-Back memory are mixed with Device loads.
529
530	  The workaround is to promote device loads to use Load-Acquire
531	  semantics.
532	  Please note that this does not necessarily enable the workaround,
533	  as it depends on the alternative framework, which will only patch
534	  the kernel if an affected CPU is detected.
535
536	  If unsure, say Y.
537
538config ARM64_ERRATUM_834220
539	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
540	depends on KVM
541	default y
542	help
543	  This option adds an alternative code sequence to work around ARM
544	  erratum 834220 on Cortex-A57 parts up to r1p2.
545
546	  Affected Cortex-A57 parts might report a Stage 2 translation
547	  fault as the result of a Stage 1 fault for load crossing a
548	  page boundary when there is a permission or device memory
549	  alignment fault at Stage 1 and a translation fault at Stage 2.
550
551	  The workaround is to verify that the Stage 1 translation
552	  doesn't generate a fault before handling the Stage 2 fault.
553	  Please note that this does not necessarily enable the workaround,
554	  as it depends on the alternative framework, which will only patch
555	  the kernel if an affected CPU is detected.
556
557	  If unsure, say Y.
558
559config ARM64_ERRATUM_1742098
560	bool "Cortex-A57/A72: 1742098: ELR recorded incorrectly on interrupt taken between cryptographic instructions in a sequence"
561	depends on COMPAT
562	default y
563	help
564	  This option removes the AES hwcap for aarch32 user-space to
565	  workaround erratum 1742098 on Cortex-A57 and Cortex-A72.
566
567	  Affected parts may corrupt the AES state if an interrupt is
568	  taken between a pair of AES instructions. These instructions
569	  are only present if the cryptography extensions are present.
570	  All software should have a fallback implementation for CPUs
571	  that don't implement the cryptography extensions.
572
573	  If unsure, say Y.
574
575config ARM64_ERRATUM_845719
576	bool "Cortex-A53: 845719: a load might read incorrect data"
577	depends on COMPAT
578	default y
579	help
580	  This option adds an alternative code sequence to work around ARM
581	  erratum 845719 on Cortex-A53 parts up to r0p4.
582
583	  When running a compat (AArch32) userspace on an affected Cortex-A53
584	  part, a load at EL0 from a virtual address that matches the bottom 32
585	  bits of the virtual address used by a recent load at (AArch64) EL1
586	  might return incorrect data.
587
588	  The workaround is to write the contextidr_el1 register on exception
589	  return to a 32-bit task.
590	  Please note that this does not necessarily enable the workaround,
591	  as it depends on the alternative framework, which will only patch
592	  the kernel if an affected CPU is detected.
593
594	  If unsure, say Y.
595
596config ARM64_ERRATUM_843419
597	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
598	default y
599	select ARM64_MODULE_PLTS if MODULES
600	help
601	  This option links the kernel with '--fix-cortex-a53-843419' and
602	  enables PLT support to replace certain ADRP instructions, which can
603	  cause subsequent memory accesses to use an incorrect address on
604	  Cortex-A53 parts up to r0p4.
605
606	  If unsure, say Y.
607
608config ARM64_LD_HAS_FIX_ERRATUM_843419
609	def_bool $(ld-option,--fix-cortex-a53-843419)
610
611config ARM64_ERRATUM_1024718
612	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
613	default y
614	help
615	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
616
617	  Affected Cortex-A55 cores (all revisions) could cause incorrect
618	  update of the hardware dirty bit when the DBM/AP bits are updated
619	  without a break-before-make. The workaround is to disable the usage
620	  of hardware DBM locally on the affected cores. CPUs not affected by
621	  this erratum will continue to use the feature.
622
623	  If unsure, say Y.
624
625config ARM64_ERRATUM_1418040
626	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
627	default y
628	depends on COMPAT
629	help
630	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
631	  errata 1188873 and 1418040.
632
633	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
634	  cause register corruption when accessing the timer registers
635	  from AArch32 userspace.
636
637	  If unsure, say Y.
638
639config ARM64_WORKAROUND_SPECULATIVE_AT
640	bool
641
642config ARM64_ERRATUM_1165522
643	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
644	default y
645	select ARM64_WORKAROUND_SPECULATIVE_AT
646	help
647	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
648
649	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
650	  corrupted TLBs by speculating an AT instruction during a guest
651	  context switch.
652
653	  If unsure, say Y.
654
655config ARM64_ERRATUM_1319367
656	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
657	default y
658	select ARM64_WORKAROUND_SPECULATIVE_AT
659	help
660	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
661	  and A72 erratum 1319367
662
663	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
664	  speculating an AT instruction during a guest context switch.
665
666	  If unsure, say Y.
667
668config ARM64_ERRATUM_1530923
669	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
670	default y
671	select ARM64_WORKAROUND_SPECULATIVE_AT
672	help
673	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
674
675	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
676	  corrupted TLBs by speculating an AT instruction during a guest
677	  context switch.
678
679	  If unsure, say Y.
680
681config ARM64_WORKAROUND_REPEAT_TLBI
682	bool
683
684config ARM64_ERRATUM_2441007
685	bool "Cortex-A55: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
686	default y
687	select ARM64_WORKAROUND_REPEAT_TLBI
688	help
689	  This option adds a workaround for ARM Cortex-A55 erratum #2441007.
690
691	  Under very rare circumstances, affected Cortex-A55 CPUs
692	  may not handle a race between a break-before-make sequence on one
693	  CPU, and another CPU accessing the same page. This could allow a
694	  store to a page that has been unmapped.
695
696	  Work around this by adding the affected CPUs to the list that needs
697	  TLB sequences to be done twice.
698
699	  If unsure, say Y.
700
701config ARM64_ERRATUM_1286807
702	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
703	default y
704	select ARM64_WORKAROUND_REPEAT_TLBI
705	help
706	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
707
708	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
709	  address for a cacheable mapping of a location is being
710	  accessed by a core while another core is remapping the virtual
711	  address to a new physical page using the recommended
712	  break-before-make sequence, then under very rare circumstances
713	  TLBI+DSB completes before a read using the translation being
714	  invalidated has been observed by other observers. The
715	  workaround repeats the TLBI+DSB operation.
716
717config ARM64_ERRATUM_1463225
718	bool "Cortex-A76: Software Step might prevent interrupt recognition"
719	default y
720	help
721	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
722
723	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
724	  of a system call instruction (SVC) can prevent recognition of
725	  subsequent interrupts when software stepping is disabled in the
726	  exception handler of the system call and either kernel debugging
727	  is enabled or VHE is in use.
728
729	  Work around the erratum by triggering a dummy step exception
730	  when handling a system call from a task that is being stepped
731	  in a VHE configuration of the kernel.
732
733	  If unsure, say Y.
734
735config ARM64_ERRATUM_1542419
736	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
737	default y
738	help
739	  This option adds a workaround for ARM Neoverse-N1 erratum
740	  1542419.
741
742	  Affected Neoverse-N1 cores could execute a stale instruction when
743	  modified by another CPU. The workaround depends on a firmware
744	  counterpart.
745
746	  Workaround the issue by hiding the DIC feature from EL0. This
747	  forces user-space to perform cache maintenance.
748
749	  If unsure, say Y.
750
751config ARM64_ERRATUM_1508412
752	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
753	default y
754	help
755	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
756
757	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
758	  of a store-exclusive or read of PAR_EL1 and a load with device or
759	  non-cacheable memory attributes. The workaround depends on a firmware
760	  counterpart.
761
762	  KVM guests must also have the workaround implemented or they can
763	  deadlock the system.
764
765	  Work around the issue by inserting DMB SY barriers around PAR_EL1
766	  register reads and warning KVM users. The DMB barrier is sufficient
767	  to prevent a speculative PAR_EL1 read.
768
769	  If unsure, say Y.
770
771config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
772	bool
773
774config ARM64_ERRATUM_2051678
775	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
776	default y
777	help
778	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
779	  Affected Cortex-A510 might not respect the ordering rules for
780	  hardware update of the page table's dirty bit. The workaround
781	  is to not enable the feature on affected CPUs.
782
783	  If unsure, say Y.
784
785config ARM64_ERRATUM_2077057
786	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
787	default y
788	help
789	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
790	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
791	  expected, but a Pointer Authentication trap is taken instead. The
792	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
793	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
794
795	  This can only happen when EL2 is stepping EL1.
796
797	  When these conditions occur, the SPSR_EL2 value is unchanged from the
798	  previous guest entry, and can be restored from the in-memory copy.
799
800	  If unsure, say Y.
801
802config ARM64_ERRATUM_2658417
803	bool "Cortex-A510: 2658417: remove BF16 support due to incorrect result"
804	default y
805	help
806	  This option adds the workaround for ARM Cortex-A510 erratum 2658417.
807	  Affected Cortex-A510 (r0p0 to r1p1) may produce the wrong result for
808	  BFMMLA or VMMLA instructions in rare circumstances when a pair of
809	  A510 CPUs are using shared neon hardware. As the sharing is not
810	  discoverable by the kernel, hide the BF16 HWCAP to indicate that
811	  user-space should not be using these instructions.
812
813	  If unsure, say Y.
814
815config ARM64_ERRATUM_2119858
816	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
817	default y
818	depends on CORESIGHT_TRBE
819	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
820	help
821	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
822
823	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
824	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
825	  the event of a WRAP event.
826
827	  Work around the issue by always making sure we move the TRBPTR_EL1 by
828	  256 bytes before enabling the buffer and filling the first 256 bytes of
829	  the buffer with ETM ignore packets upon disabling.
830
831	  If unsure, say Y.
832
833config ARM64_ERRATUM_2139208
834	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
835	default y
836	depends on CORESIGHT_TRBE
837	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
838	help
839	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
840
841	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
842	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
843	  the event of a WRAP event.
844
845	  Work around the issue by always making sure we move the TRBPTR_EL1 by
846	  256 bytes before enabling the buffer and filling the first 256 bytes of
847	  the buffer with ETM ignore packets upon disabling.
848
849	  If unsure, say Y.
850
851config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
852	bool
853
854config ARM64_ERRATUM_2054223
855	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
856	default y
857	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
858	help
859	  Enable workaround for ARM Cortex-A710 erratum 2054223
860
861	  Affected cores may fail to flush the trace data on a TSB instruction, when
862	  the PE is in trace prohibited state. This will cause losing a few bytes
863	  of the trace cached.
864
865	  Workaround is to issue two TSB consecutively on affected cores.
866
867	  If unsure, say Y.
868
869config ARM64_ERRATUM_2067961
870	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
871	default y
872	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
873	help
874	  Enable workaround for ARM Neoverse-N2 erratum 2067961
875
876	  Affected cores may fail to flush the trace data on a TSB instruction, when
877	  the PE is in trace prohibited state. This will cause losing a few bytes
878	  of the trace cached.
879
880	  Workaround is to issue two TSB consecutively on affected cores.
881
882	  If unsure, say Y.
883
884config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
885	bool
886
887config ARM64_ERRATUM_2253138
888	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
889	depends on CORESIGHT_TRBE
890	default y
891	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
892	help
893	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
894
895	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
896	  for TRBE. Under some conditions, the TRBE might generate a write to the next
897	  virtually addressed page following the last page of the TRBE address space
898	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
899
900	  Work around this in the driver by always making sure that there is a
901	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
902
903	  If unsure, say Y.
904
905config ARM64_ERRATUM_2224489
906	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
907	depends on CORESIGHT_TRBE
908	default y
909	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
910	help
911	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
912
913	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
914	  for TRBE. Under some conditions, the TRBE might generate a write to the next
915	  virtually addressed page following the last page of the TRBE address space
916	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
917
918	  Work around this in the driver by always making sure that there is a
919	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
920
921	  If unsure, say Y.
922
923config ARM64_ERRATUM_2441009
924	bool "Cortex-A510: Completion of affected memory accesses might not be guaranteed by completion of a TLBI"
925	default y
926	select ARM64_WORKAROUND_REPEAT_TLBI
927	help
928	  This option adds a workaround for ARM Cortex-A510 erratum #2441009.
929
930	  Under very rare circumstances, affected Cortex-A510 CPUs
931	  may not handle a race between a break-before-make sequence on one
932	  CPU, and another CPU accessing the same page. This could allow a
933	  store to a page that has been unmapped.
934
935	  Work around this by adding the affected CPUs to the list that needs
936	  TLB sequences to be done twice.
937
938	  If unsure, say Y.
939
940config ARM64_ERRATUM_2064142
941	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
942	depends on CORESIGHT_TRBE
943	default y
944	help
945	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
946
947	  Affected Cortex-A510 core might fail to write into system registers after the
948	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
949	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
950	  and TRBTRG_EL1 will be ignored and will not be effected.
951
952	  Work around this in the driver by executing TSB CSYNC and DSB after collection
953	  is stopped and before performing a system register write to one of the affected
954	  registers.
955
956	  If unsure, say Y.
957
958config ARM64_ERRATUM_2038923
959	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
960	depends on CORESIGHT_TRBE
961	default y
962	help
963	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
964
965	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
966	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
967	  might be corrupted. This happens after TRBE buffer has been enabled by setting
968	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
969	  execution changes from a context, in which trace is prohibited to one where it
970	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
971	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
972	  the trace buffer state might be corrupted.
973
974	  Work around this in the driver by preventing an inconsistent view of whether the
975	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
976	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
977	  two ISB instructions if no ERET is to take place.
978
979	  If unsure, say Y.
980
981config ARM64_ERRATUM_1902691
982	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
983	depends on CORESIGHT_TRBE
984	default y
985	help
986	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
987
988	  Affected Cortex-A510 core might cause trace data corruption, when being written
989	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
990	  trace data.
991
992	  Work around this problem in the driver by just preventing TRBE initialization on
993	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
994	  on such implementations. This will cover the kernel for any firmware that doesn't
995	  do this already.
996
997	  If unsure, say Y.
998
999config ARM64_ERRATUM_2457168
1000	bool "Cortex-A510: 2457168: workaround for AMEVCNTR01 incrementing incorrectly"
1001	depends on ARM64_AMU_EXTN
1002	default y
1003	help
1004	  This option adds the workaround for ARM Cortex-A510 erratum 2457168.
1005
1006	  The AMU counter AMEVCNTR01 (constant counter) should increment at the same rate
1007	  as the system counter. On affected Cortex-A510 cores AMEVCNTR01 increments
1008	  incorrectly giving a significantly higher output value.
1009
1010	  Work around this problem by returning 0 when reading the affected counter in
1011	  key locations that results in disabling all users of this counter. This effect
1012	  is the same to firmware disabling affected counters.
1013
1014	  If unsure, say Y.
1015
1016config ARM64_ERRATUM_2645198
1017	bool "Cortex-A715: 2645198: Workaround possible [ESR|FAR]_ELx corruption"
1018	default y
1019	help
1020	  This option adds the workaround for ARM Cortex-A715 erratum 2645198.
1021
1022	  If a Cortex-A715 cpu sees a page mapping permissions change from executable
1023	  to non-executable, it may corrupt the ESR_ELx and FAR_ELx registers on the
1024	  next instruction abort caused by permission fault.
1025
1026	  Only user-space does executable to non-executable permission transition via
1027	  mprotect() system call. Workaround the problem by doing a break-before-make
1028	  TLB invalidation, for all changes to executable user space mappings.
1029
1030	  If unsure, say Y.
1031
1032config CAVIUM_ERRATUM_22375
1033	bool "Cavium erratum 22375, 24313"
1034	default y
1035	help
1036	  Enable workaround for errata 22375 and 24313.
1037
1038	  This implements two gicv3-its errata workarounds for ThunderX. Both
1039	  with a small impact affecting only ITS table allocation.
1040
1041	    erratum 22375: only alloc 8MB table size
1042	    erratum 24313: ignore memory access type
1043
1044	  The fixes are in ITS initialization and basically ignore memory access
1045	  type and table size provided by the TYPER and BASER registers.
1046
1047	  If unsure, say Y.
1048
1049config CAVIUM_ERRATUM_23144
1050	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
1051	depends on NUMA
1052	default y
1053	help
1054	  ITS SYNC command hang for cross node io and collections/cpu mapping.
1055
1056	  If unsure, say Y.
1057
1058config CAVIUM_ERRATUM_23154
1059	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
1060	default y
1061	help
1062	  The ThunderX GICv3 implementation requires a modified version for
1063	  reading the IAR status to ensure data synchronization
1064	  (access to icc_iar1_el1 is not sync'ed before and after).
1065
1066	  It also suffers from erratum 38545 (also present on Marvell's
1067	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
1068	  spuriously presented to the CPU interface.
1069
1070	  If unsure, say Y.
1071
1072config CAVIUM_ERRATUM_27456
1073	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
1074	default y
1075	help
1076	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
1077	  instructions may cause the icache to become corrupted if it
1078	  contains data for a non-current ASID.  The fix is to
1079	  invalidate the icache when changing the mm context.
1080
1081	  If unsure, say Y.
1082
1083config CAVIUM_ERRATUM_30115
1084	bool "Cavium erratum 30115: Guest may disable interrupts in host"
1085	default y
1086	help
1087	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
1088	  1.2, and T83 Pass 1.0, KVM guest execution may disable
1089	  interrupts in host. Trapping both GICv3 group-0 and group-1
1090	  accesses sidesteps the issue.
1091
1092	  If unsure, say Y.
1093
1094config CAVIUM_TX2_ERRATUM_219
1095	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
1096	default y
1097	help
1098	  On Cavium ThunderX2, a load, store or prefetch instruction between a
1099	  TTBR update and the corresponding context synchronizing operation can
1100	  cause a spurious Data Abort to be delivered to any hardware thread in
1101	  the CPU core.
1102
1103	  Work around the issue by avoiding the problematic code sequence and
1104	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
1105	  trap handler performs the corresponding register access, skips the
1106	  instruction and ensures context synchronization by virtue of the
1107	  exception return.
1108
1109	  If unsure, say Y.
1110
1111config FUJITSU_ERRATUM_010001
1112	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
1113	default y
1114	help
1115	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
1116	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
1117	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
1118	  This fault occurs under a specific hardware condition when a
1119	  load/store instruction performs an address translation using:
1120	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
1121	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
1122	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
1123	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
1124
1125	  The workaround is to ensure these bits are clear in TCR_ELx.
1126	  The workaround only affects the Fujitsu-A64FX.
1127
1128	  If unsure, say Y.
1129
1130config HISILICON_ERRATUM_161600802
1131	bool "Hip07 161600802: Erroneous redistributor VLPI base"
1132	default y
1133	help
1134	  The HiSilicon Hip07 SoC uses the wrong redistributor base
1135	  when issued ITS commands such as VMOVP and VMAPP, and requires
1136	  a 128kB offset to be applied to the target address in this commands.
1137
1138	  If unsure, say Y.
1139
1140config QCOM_FALKOR_ERRATUM_1003
1141	bool "Falkor E1003: Incorrect translation due to ASID change"
1142	default y
1143	help
1144	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
1145	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
1146	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
1147	  then only for entries in the walk cache, since the leaf translation
1148	  is unchanged. Work around the erratum by invalidating the walk cache
1149	  entries for the trampoline before entering the kernel proper.
1150
1151config QCOM_FALKOR_ERRATUM_1009
1152	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1153	default y
1154	select ARM64_WORKAROUND_REPEAT_TLBI
1155	help
1156	  On Falkor v1, the CPU may prematurely complete a DSB following a
1157	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1158	  one more time to fix the issue.
1159
1160	  If unsure, say Y.
1161
1162config QCOM_QDF2400_ERRATUM_0065
1163	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1164	default y
1165	help
1166	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1167	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1168	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1169
1170	  If unsure, say Y.
1171
1172config QCOM_FALKOR_ERRATUM_E1041
1173	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1174	default y
1175	help
1176	  Falkor CPU may speculatively fetch instructions from an improper
1177	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1178	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1179
1180	  If unsure, say Y.
1181
1182config NVIDIA_CARMEL_CNP_ERRATUM
1183	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1184	default y
1185	help
1186	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1187	  invalidate shared TLB entries installed by a different core, as it would
1188	  on standard ARM cores.
1189
1190	  If unsure, say Y.
1191
1192config ROCKCHIP_ERRATUM_3588001
1193	bool "Rockchip 3588001: GIC600 can not support shareability attributes"
1194	default y
1195	help
1196	  The Rockchip RK3588 GIC600 SoC integration does not support ACE/ACE-lite.
1197	  This means, that its sharability feature may not be used, even though it
1198	  is supported by the IP itself.
1199
1200	  If unsure, say Y.
1201
1202config SOCIONEXT_SYNQUACER_PREITS
1203	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1204	default y
1205	help
1206	  Socionext Synquacer SoCs implement a separate h/w block to generate
1207	  MSI doorbell writes with non-zero values for the device ID.
1208
1209	  If unsure, say Y.
1210
1211endmenu # "ARM errata workarounds via the alternatives framework"
1212
1213choice
1214	prompt "Page size"
1215	default ARM64_4K_PAGES
1216	help
1217	  Page size (translation granule) configuration.
1218
1219config ARM64_4K_PAGES
1220	bool "4KB"
1221	help
1222	  This feature enables 4KB pages support.
1223
1224config ARM64_16K_PAGES
1225	bool "16KB"
1226	help
1227	  The system will use 16KB pages support. AArch32 emulation
1228	  requires applications compiled with 16K (or a multiple of 16K)
1229	  aligned segments.
1230
1231config ARM64_64K_PAGES
1232	bool "64KB"
1233	help
1234	  This feature enables 64KB pages support (4KB by default)
1235	  allowing only two levels of page tables and faster TLB
1236	  look-up. AArch32 emulation requires applications compiled
1237	  with 64K aligned segments.
1238
1239endchoice
1240
1241choice
1242	prompt "Virtual address space size"
1243	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1244	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1245	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1246	help
1247	  Allows choosing one of multiple possible virtual address
1248	  space sizes. The level of translation table is determined by
1249	  a combination of page size and virtual address space size.
1250
1251config ARM64_VA_BITS_36
1252	bool "36-bit" if EXPERT
1253	depends on ARM64_16K_PAGES
1254
1255config ARM64_VA_BITS_39
1256	bool "39-bit"
1257	depends on ARM64_4K_PAGES
1258
1259config ARM64_VA_BITS_42
1260	bool "42-bit"
1261	depends on ARM64_64K_PAGES
1262
1263config ARM64_VA_BITS_47
1264	bool "47-bit"
1265	depends on ARM64_16K_PAGES
1266
1267config ARM64_VA_BITS_48
1268	bool "48-bit"
1269
1270config ARM64_VA_BITS_52
1271	bool "52-bit"
1272	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1273	help
1274	  Enable 52-bit virtual addressing for userspace when explicitly
1275	  requested via a hint to mmap(). The kernel will also use 52-bit
1276	  virtual addresses for its own mappings (provided HW support for
1277	  this feature is available, otherwise it reverts to 48-bit).
1278
1279	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1280	  ARMv8.3 Pointer Authentication will result in the PAC being
1281	  reduced from 7 bits to 3 bits, which may have a significant
1282	  impact on its susceptibility to brute-force attacks.
1283
1284	  If unsure, select 48-bit virtual addressing instead.
1285
1286endchoice
1287
1288config ARM64_FORCE_52BIT
1289	bool "Force 52-bit virtual addresses for userspace"
1290	depends on ARM64_VA_BITS_52 && EXPERT
1291	help
1292	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1293	  to maintain compatibility with older software by providing 48-bit VAs
1294	  unless a hint is supplied to mmap.
1295
1296	  This configuration option disables the 48-bit compatibility logic, and
1297	  forces all userspace addresses to be 52-bit on HW that supports it. One
1298	  should only enable this configuration option for stress testing userspace
1299	  memory management code. If unsure say N here.
1300
1301config ARM64_VA_BITS
1302	int
1303	default 36 if ARM64_VA_BITS_36
1304	default 39 if ARM64_VA_BITS_39
1305	default 42 if ARM64_VA_BITS_42
1306	default 47 if ARM64_VA_BITS_47
1307	default 48 if ARM64_VA_BITS_48
1308	default 52 if ARM64_VA_BITS_52
1309
1310choice
1311	prompt "Physical address space size"
1312	default ARM64_PA_BITS_48
1313	help
1314	  Choose the maximum physical address range that the kernel will
1315	  support.
1316
1317config ARM64_PA_BITS_48
1318	bool "48-bit"
1319
1320config ARM64_PA_BITS_52
1321	bool "52-bit (ARMv8.2)"
1322	depends on ARM64_64K_PAGES
1323	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1324	help
1325	  Enable support for a 52-bit physical address space, introduced as
1326	  part of the ARMv8.2-LPA extension.
1327
1328	  With this enabled, the kernel will also continue to work on CPUs that
1329	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1330	  minor performance overhead).
1331
1332endchoice
1333
1334config ARM64_PA_BITS
1335	int
1336	default 48 if ARM64_PA_BITS_48
1337	default 52 if ARM64_PA_BITS_52
1338
1339choice
1340	prompt "Endianness"
1341	default CPU_LITTLE_ENDIAN
1342	help
1343	  Select the endianness of data accesses performed by the CPU. Userspace
1344	  applications will need to be compiled and linked for the endianness
1345	  that is selected here.
1346
1347config CPU_BIG_ENDIAN
1348	bool "Build big-endian kernel"
1349	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1350	help
1351	  Say Y if you plan on running a kernel with a big-endian userspace.
1352
1353config CPU_LITTLE_ENDIAN
1354	bool "Build little-endian kernel"
1355	help
1356	  Say Y if you plan on running a kernel with a little-endian userspace.
1357	  This is usually the case for distributions targeting arm64.
1358
1359endchoice
1360
1361config SCHED_MC
1362	bool "Multi-core scheduler support"
1363	help
1364	  Multi-core scheduler support improves the CPU scheduler's decision
1365	  making when dealing with multi-core CPU chips at a cost of slightly
1366	  increased overhead in some places. If unsure say N here.
1367
1368config SCHED_CLUSTER
1369	bool "Cluster scheduler support"
1370	help
1371	  Cluster scheduler support improves the CPU scheduler's decision
1372	  making when dealing with machines that have clusters of CPUs.
1373	  Cluster usually means a couple of CPUs which are placed closely
1374	  by sharing mid-level caches, last-level cache tags or internal
1375	  busses.
1376
1377config SCHED_SMT
1378	bool "SMT scheduler support"
1379	help
1380	  Improves the CPU scheduler's decision making when dealing with
1381	  MultiThreading at a cost of slightly increased overhead in some
1382	  places. If unsure say N here.
1383
1384config NR_CPUS
1385	int "Maximum number of CPUs (2-4096)"
1386	range 2 4096
1387	default "256"
1388
1389config HOTPLUG_CPU
1390	bool "Support for hot-pluggable CPUs"
1391	select GENERIC_IRQ_MIGRATION
1392	help
1393	  Say Y here to experiment with turning CPUs off and on.  CPUs
1394	  can be controlled through /sys/devices/system/cpu.
1395
1396# Common NUMA Features
1397config NUMA
1398	bool "NUMA Memory Allocation and Scheduler Support"
1399	select GENERIC_ARCH_NUMA
1400	select ACPI_NUMA if ACPI
1401	select OF_NUMA
1402	select HAVE_SETUP_PER_CPU_AREA
1403	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1404	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1405	select USE_PERCPU_NUMA_NODE_ID
1406	help
1407	  Enable NUMA (Non-Uniform Memory Access) support.
1408
1409	  The kernel will try to allocate memory used by a CPU on the
1410	  local memory of the CPU and add some more
1411	  NUMA awareness to the kernel.
1412
1413config NODES_SHIFT
1414	int "Maximum NUMA Nodes (as a power of 2)"
1415	range 1 10
1416	default "4"
1417	depends on NUMA
1418	help
1419	  Specify the maximum number of NUMA Nodes available on the target
1420	  system.  Increases memory reserved to accommodate various tables.
1421
1422source "kernel/Kconfig.hz"
1423
1424config ARCH_SPARSEMEM_ENABLE
1425	def_bool y
1426	select SPARSEMEM_VMEMMAP_ENABLE
1427	select SPARSEMEM_VMEMMAP
1428
1429config HW_PERF_EVENTS
1430	def_bool y
1431	depends on ARM_PMU
1432
1433# Supported by clang >= 7.0 or GCC >= 12.0.0
1434config CC_HAVE_SHADOW_CALL_STACK
1435	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1436
1437config PARAVIRT
1438	bool "Enable paravirtualization code"
1439	help
1440	  This changes the kernel so it can modify itself when it is run
1441	  under a hypervisor, potentially improving performance significantly
1442	  over full virtualization.
1443
1444config PARAVIRT_TIME_ACCOUNTING
1445	bool "Paravirtual steal time accounting"
1446	select PARAVIRT
1447	help
1448	  Select this option to enable fine granularity task steal time
1449	  accounting. Time spent executing other tasks in parallel with
1450	  the current vCPU is discounted from the vCPU power. To account for
1451	  that, there can be a small performance impact.
1452
1453	  If in doubt, say N here.
1454
1455config KEXEC
1456	depends on PM_SLEEP_SMP
1457	select KEXEC_CORE
1458	bool "kexec system call"
1459	help
1460	  kexec is a system call that implements the ability to shutdown your
1461	  current kernel, and to start another kernel.  It is like a reboot
1462	  but it is independent of the system firmware.   And like a reboot
1463	  you can start any kernel with it, not just Linux.
1464
1465config KEXEC_FILE
1466	bool "kexec file based system call"
1467	select KEXEC_CORE
1468	select HAVE_IMA_KEXEC if IMA
1469	help
1470	  This is new version of kexec system call. This system call is
1471	  file based and takes file descriptors as system call argument
1472	  for kernel and initramfs as opposed to list of segments as
1473	  accepted by previous system call.
1474
1475config KEXEC_SIG
1476	bool "Verify kernel signature during kexec_file_load() syscall"
1477	depends on KEXEC_FILE
1478	help
1479	  Select this option to verify a signature with loaded kernel
1480	  image. If configured, any attempt of loading a image without
1481	  valid signature will fail.
1482
1483	  In addition to that option, you need to enable signature
1484	  verification for the corresponding kernel image type being
1485	  loaded in order for this to work.
1486
1487config KEXEC_IMAGE_VERIFY_SIG
1488	bool "Enable Image signature verification support"
1489	default y
1490	depends on KEXEC_SIG
1491	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1492	help
1493	  Enable Image signature verification support.
1494
1495comment "Support for PE file signature verification disabled"
1496	depends on KEXEC_SIG
1497	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1498
1499config CRASH_DUMP
1500	bool "Build kdump crash kernel"
1501	help
1502	  Generate crash dump after being started by kexec. This should
1503	  be normally only set in special crash dump kernels which are
1504	  loaded in the main kernel with kexec-tools into a specially
1505	  reserved region and then later executed after a crash by
1506	  kdump/kexec.
1507
1508	  For more details see Documentation/admin-guide/kdump/kdump.rst
1509
1510config TRANS_TABLE
1511	def_bool y
1512	depends on HIBERNATION || KEXEC_CORE
1513
1514config XEN_DOM0
1515	def_bool y
1516	depends on XEN
1517
1518config XEN
1519	bool "Xen guest support on ARM64"
1520	depends on ARM64 && OF
1521	select SWIOTLB_XEN
1522	select PARAVIRT
1523	help
1524	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1525
1526# include/linux/mmzone.h requires the following to be true:
1527#
1528#   MAX_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1529#
1530# so the maximum value of MAX_ORDER is SECTION_SIZE_BITS - PAGE_SHIFT:
1531#
1532#     | SECTION_SIZE_BITS |  PAGE_SHIFT  |  max MAX_ORDER  |  default MAX_ORDER |
1533# ----+-------------------+--------------+-----------------+--------------------+
1534# 4K  |       27          |      12      |       15        |         10         |
1535# 16K |       27          |      14      |       13        |         11         |
1536# 64K |       29          |      16      |       13        |         13         |
1537config ARCH_FORCE_MAX_ORDER
1538	int "Order of maximal physically contiguous allocations" if EXPERT && (ARM64_4K_PAGES || ARM64_16K_PAGES)
1539	default "13" if ARM64_64K_PAGES
1540	default "11" if ARM64_16K_PAGES
1541	default "10"
1542	help
1543	  The kernel page allocator limits the size of maximal physically
1544	  contiguous allocations. The limit is called MAX_ORDER and it
1545	  defines the maximal power of two of number of pages that can be
1546	  allocated as a single contiguous block. This option allows
1547	  overriding the default setting when ability to allocate very
1548	  large blocks of physically contiguous memory is required.
1549
1550	  The maximal size of allocation cannot exceed the size of the
1551	  section, so the value of MAX_ORDER should satisfy
1552
1553	    MAX_ORDER + PAGE_SHIFT <= SECTION_SIZE_BITS
1554
1555	  Don't change if unsure.
1556
1557config UNMAP_KERNEL_AT_EL0
1558	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1559	default y
1560	help
1561	  Speculation attacks against some high-performance processors can
1562	  be used to bypass MMU permission checks and leak kernel data to
1563	  userspace. This can be defended against by unmapping the kernel
1564	  when running in userspace, mapping it back in on exception entry
1565	  via a trampoline page in the vector table.
1566
1567	  If unsure, say Y.
1568
1569config MITIGATE_SPECTRE_BRANCH_HISTORY
1570	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1571	default y
1572	help
1573	  Speculation attacks against some high-performance processors can
1574	  make use of branch history to influence future speculation.
1575	  When taking an exception from user-space, a sequence of branches
1576	  or a firmware call overwrites the branch history.
1577
1578config RODATA_FULL_DEFAULT_ENABLED
1579	bool "Apply r/o permissions of VM areas also to their linear aliases"
1580	default y
1581	help
1582	  Apply read-only attributes of VM areas to the linear alias of
1583	  the backing pages as well. This prevents code or read-only data
1584	  from being modified (inadvertently or intentionally) via another
1585	  mapping of the same memory page. This additional enhancement can
1586	  be turned off at runtime by passing rodata=[off|on] (and turned on
1587	  with rodata=full if this option is set to 'n')
1588
1589	  This requires the linear region to be mapped down to pages,
1590	  which may adversely affect performance in some cases.
1591
1592config ARM64_SW_TTBR0_PAN
1593	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1594	help
1595	  Enabling this option prevents the kernel from accessing
1596	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1597	  zeroed area and reserved ASID. The user access routines
1598	  restore the valid TTBR0_EL1 temporarily.
1599
1600config ARM64_TAGGED_ADDR_ABI
1601	bool "Enable the tagged user addresses syscall ABI"
1602	default y
1603	help
1604	  When this option is enabled, user applications can opt in to a
1605	  relaxed ABI via prctl() allowing tagged addresses to be passed
1606	  to system calls as pointer arguments. For details, see
1607	  Documentation/arm64/tagged-address-abi.rst.
1608
1609menuconfig COMPAT
1610	bool "Kernel support for 32-bit EL0"
1611	depends on ARM64_4K_PAGES || EXPERT
1612	select HAVE_UID16
1613	select OLD_SIGSUSPEND3
1614	select COMPAT_OLD_SIGACTION
1615	help
1616	  This option enables support for a 32-bit EL0 running under a 64-bit
1617	  kernel at EL1. AArch32-specific components such as system calls,
1618	  the user helper functions, VFP support and the ptrace interface are
1619	  handled appropriately by the kernel.
1620
1621	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1622	  that you will only be able to execute AArch32 binaries that were compiled
1623	  with page size aligned segments.
1624
1625	  If you want to execute 32-bit userspace applications, say Y.
1626
1627if COMPAT
1628
1629config KUSER_HELPERS
1630	bool "Enable kuser helpers page for 32-bit applications"
1631	default y
1632	help
1633	  Warning: disabling this option may break 32-bit user programs.
1634
1635	  Provide kuser helpers to compat tasks. The kernel provides
1636	  helper code to userspace in read only form at a fixed location
1637	  to allow userspace to be independent of the CPU type fitted to
1638	  the system. This permits binaries to be run on ARMv4 through
1639	  to ARMv8 without modification.
1640
1641	  See Documentation/arm/kernel_user_helpers.rst for details.
1642
1643	  However, the fixed address nature of these helpers can be used
1644	  by ROP (return orientated programming) authors when creating
1645	  exploits.
1646
1647	  If all of the binaries and libraries which run on your platform
1648	  are built specifically for your platform, and make no use of
1649	  these helpers, then you can turn this option off to hinder
1650	  such exploits. However, in that case, if a binary or library
1651	  relying on those helpers is run, it will not function correctly.
1652
1653	  Say N here only if you are absolutely certain that you do not
1654	  need these helpers; otherwise, the safe option is to say Y.
1655
1656config COMPAT_VDSO
1657	bool "Enable vDSO for 32-bit applications"
1658	depends on !CPU_BIG_ENDIAN
1659	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1660	select GENERIC_COMPAT_VDSO
1661	default y
1662	help
1663	  Place in the process address space of 32-bit applications an
1664	  ELF shared object providing fast implementations of gettimeofday
1665	  and clock_gettime.
1666
1667	  You must have a 32-bit build of glibc 2.22 or later for programs
1668	  to seamlessly take advantage of this.
1669
1670config THUMB2_COMPAT_VDSO
1671	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1672	depends on COMPAT_VDSO
1673	default y
1674	help
1675	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1676	  otherwise with '-marm'.
1677
1678config COMPAT_ALIGNMENT_FIXUPS
1679	bool "Fix up misaligned multi-word loads and stores in user space"
1680
1681menuconfig ARMV8_DEPRECATED
1682	bool "Emulate deprecated/obsolete ARMv8 instructions"
1683	depends on SYSCTL
1684	help
1685	  Legacy software support may require certain instructions
1686	  that have been deprecated or obsoleted in the architecture.
1687
1688	  Enable this config to enable selective emulation of these
1689	  features.
1690
1691	  If unsure, say Y
1692
1693if ARMV8_DEPRECATED
1694
1695config SWP_EMULATION
1696	bool "Emulate SWP/SWPB instructions"
1697	help
1698	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1699	  they are always undefined. Say Y here to enable software
1700	  emulation of these instructions for userspace using LDXR/STXR.
1701	  This feature can be controlled at runtime with the abi.swp
1702	  sysctl which is disabled by default.
1703
1704	  In some older versions of glibc [<=2.8] SWP is used during futex
1705	  trylock() operations with the assumption that the code will not
1706	  be preempted. This invalid assumption may be more likely to fail
1707	  with SWP emulation enabled, leading to deadlock of the user
1708	  application.
1709
1710	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1711	  on an external transaction monitoring block called a global
1712	  monitor to maintain update atomicity. If your system does not
1713	  implement a global monitor, this option can cause programs that
1714	  perform SWP operations to uncached memory to deadlock.
1715
1716	  If unsure, say Y
1717
1718config CP15_BARRIER_EMULATION
1719	bool "Emulate CP15 Barrier instructions"
1720	help
1721	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1722	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1723	  strongly recommended to use the ISB, DSB, and DMB
1724	  instructions instead.
1725
1726	  Say Y here to enable software emulation of these
1727	  instructions for AArch32 userspace code. When this option is
1728	  enabled, CP15 barrier usage is traced which can help
1729	  identify software that needs updating. This feature can be
1730	  controlled at runtime with the abi.cp15_barrier sysctl.
1731
1732	  If unsure, say Y
1733
1734config SETEND_EMULATION
1735	bool "Emulate SETEND instruction"
1736	help
1737	  The SETEND instruction alters the data-endianness of the
1738	  AArch32 EL0, and is deprecated in ARMv8.
1739
1740	  Say Y here to enable software emulation of the instruction
1741	  for AArch32 userspace code. This feature can be controlled
1742	  at runtime with the abi.setend sysctl.
1743
1744	  Note: All the cpus on the system must have mixed endian support at EL0
1745	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1746	  endian - is hotplugged in after this feature has been enabled, there could
1747	  be unexpected results in the applications.
1748
1749	  If unsure, say Y
1750endif # ARMV8_DEPRECATED
1751
1752endif # COMPAT
1753
1754menu "ARMv8.1 architectural features"
1755
1756config ARM64_HW_AFDBM
1757	bool "Support for hardware updates of the Access and Dirty page flags"
1758	default y
1759	help
1760	  The ARMv8.1 architecture extensions introduce support for
1761	  hardware updates of the access and dirty information in page
1762	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1763	  capable processors, accesses to pages with PTE_AF cleared will
1764	  set this bit instead of raising an access flag fault.
1765	  Similarly, writes to read-only pages with the DBM bit set will
1766	  clear the read-only bit (AP[2]) instead of raising a
1767	  permission fault.
1768
1769	  Kernels built with this configuration option enabled continue
1770	  to work on pre-ARMv8.1 hardware and the performance impact is
1771	  minimal. If unsure, say Y.
1772
1773config ARM64_PAN
1774	bool "Enable support for Privileged Access Never (PAN)"
1775	default y
1776	help
1777	  Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1778	  prevents the kernel or hypervisor from accessing user-space (EL0)
1779	  memory directly.
1780
1781	  Choosing this option will cause any unprotected (not using
1782	  copy_to_user et al) memory access to fail with a permission fault.
1783
1784	  The feature is detected at runtime, and will remain as a 'nop'
1785	  instruction if the cpu does not implement the feature.
1786
1787config AS_HAS_LDAPR
1788	def_bool $(as-instr,.arch_extension rcpc)
1789
1790config AS_HAS_LSE_ATOMICS
1791	def_bool $(as-instr,.arch_extension lse)
1792
1793config ARM64_LSE_ATOMICS
1794	bool
1795	default ARM64_USE_LSE_ATOMICS
1796	depends on AS_HAS_LSE_ATOMICS
1797
1798config ARM64_USE_LSE_ATOMICS
1799	bool "Atomic instructions"
1800	default y
1801	help
1802	  As part of the Large System Extensions, ARMv8.1 introduces new
1803	  atomic instructions that are designed specifically to scale in
1804	  very large systems.
1805
1806	  Say Y here to make use of these instructions for the in-kernel
1807	  atomic routines. This incurs a small overhead on CPUs that do
1808	  not support these instructions and requires the kernel to be
1809	  built with binutils >= 2.25 in order for the new instructions
1810	  to be used.
1811
1812endmenu # "ARMv8.1 architectural features"
1813
1814menu "ARMv8.2 architectural features"
1815
1816config AS_HAS_ARMV8_2
1817	def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1818
1819config AS_HAS_SHA3
1820	def_bool $(as-instr,.arch armv8.2-a+sha3)
1821
1822config ARM64_PMEM
1823	bool "Enable support for persistent memory"
1824	select ARCH_HAS_PMEM_API
1825	select ARCH_HAS_UACCESS_FLUSHCACHE
1826	help
1827	  Say Y to enable support for the persistent memory API based on the
1828	  ARMv8.2 DCPoP feature.
1829
1830	  The feature is detected at runtime, and the kernel will use DC CVAC
1831	  operations if DC CVAP is not supported (following the behaviour of
1832	  DC CVAP itself if the system does not define a point of persistence).
1833
1834config ARM64_RAS_EXTN
1835	bool "Enable support for RAS CPU Extensions"
1836	default y
1837	help
1838	  CPUs that support the Reliability, Availability and Serviceability
1839	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1840	  errors, classify them and report them to software.
1841
1842	  On CPUs with these extensions system software can use additional
1843	  barriers to determine if faults are pending and read the
1844	  classification from a new set of registers.
1845
1846	  Selecting this feature will allow the kernel to use these barriers
1847	  and access the new registers if the system supports the extension.
1848	  Platform RAS features may additionally depend on firmware support.
1849
1850config ARM64_CNP
1851	bool "Enable support for Common Not Private (CNP) translations"
1852	default y
1853	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1854	help
1855	  Common Not Private (CNP) allows translation table entries to
1856	  be shared between different PEs in the same inner shareable
1857	  domain, so the hardware can use this fact to optimise the
1858	  caching of such entries in the TLB.
1859
1860	  Selecting this option allows the CNP feature to be detected
1861	  at runtime, and does not affect PEs that do not implement
1862	  this feature.
1863
1864endmenu # "ARMv8.2 architectural features"
1865
1866menu "ARMv8.3 architectural features"
1867
1868config ARM64_PTR_AUTH
1869	bool "Enable support for pointer authentication"
1870	default y
1871	help
1872	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1873	  instructions for signing and authenticating pointers against secret
1874	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1875	  and other attacks.
1876
1877	  This option enables these instructions at EL0 (i.e. for userspace).
1878	  Choosing this option will cause the kernel to initialise secret keys
1879	  for each process at exec() time, with these keys being
1880	  context-switched along with the process.
1881
1882	  The feature is detected at runtime. If the feature is not present in
1883	  hardware it will not be advertised to userspace/KVM guest nor will it
1884	  be enabled.
1885
1886	  If the feature is present on the boot CPU but not on a late CPU, then
1887	  the late CPU will be parked. Also, if the boot CPU does not have
1888	  address auth and the late CPU has then the late CPU will still boot
1889	  but with the feature disabled. On such a system, this option should
1890	  not be selected.
1891
1892config ARM64_PTR_AUTH_KERNEL
1893	bool "Use pointer authentication for kernel"
1894	default y
1895	depends on ARM64_PTR_AUTH
1896	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_ARMV8_3
1897	# Modern compilers insert a .note.gnu.property section note for PAC
1898	# which is only understood by binutils starting with version 2.33.1.
1899	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1900	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1901	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
1902	help
1903	  If the compiler supports the -mbranch-protection or
1904	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1905	  will cause the kernel itself to be compiled with return address
1906	  protection. In this case, and if the target hardware is known to
1907	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1908	  disabled with minimal loss of protection.
1909
1910	  This feature works with FUNCTION_GRAPH_TRACER option only if
1911	  DYNAMIC_FTRACE_WITH_ARGS is enabled.
1912
1913config CC_HAS_BRANCH_PROT_PAC_RET
1914	# GCC 9 or later, clang 8 or later
1915	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1916
1917config CC_HAS_SIGN_RETURN_ADDRESS
1918	# GCC 7, 8
1919	def_bool $(cc-option,-msign-return-address=all)
1920
1921config AS_HAS_ARMV8_3
1922	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1923
1924config AS_HAS_CFI_NEGATE_RA_STATE
1925	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1926
1927endmenu # "ARMv8.3 architectural features"
1928
1929menu "ARMv8.4 architectural features"
1930
1931config ARM64_AMU_EXTN
1932	bool "Enable support for the Activity Monitors Unit CPU extension"
1933	default y
1934	help
1935	  The activity monitors extension is an optional extension introduced
1936	  by the ARMv8.4 CPU architecture. This enables support for version 1
1937	  of the activity monitors architecture, AMUv1.
1938
1939	  To enable the use of this extension on CPUs that implement it, say Y.
1940
1941	  Note that for architectural reasons, firmware _must_ implement AMU
1942	  support when running on CPUs that present the activity monitors
1943	  extension. The required support is present in:
1944	    * Version 1.5 and later of the ARM Trusted Firmware
1945
1946	  For kernels that have this configuration enabled but boot with broken
1947	  firmware, you may need to say N here until the firmware is fixed.
1948	  Otherwise you may experience firmware panics or lockups when
1949	  accessing the counter registers. Even if you are not observing these
1950	  symptoms, the values returned by the register reads might not
1951	  correctly reflect reality. Most commonly, the value read will be 0,
1952	  indicating that the counter is not enabled.
1953
1954config AS_HAS_ARMV8_4
1955	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1956
1957config ARM64_TLB_RANGE
1958	bool "Enable support for tlbi range feature"
1959	default y
1960	depends on AS_HAS_ARMV8_4
1961	help
1962	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1963	  range of input addresses.
1964
1965	  The feature introduces new assembly instructions, and they were
1966	  support when binutils >= 2.30.
1967
1968endmenu # "ARMv8.4 architectural features"
1969
1970menu "ARMv8.5 architectural features"
1971
1972config AS_HAS_ARMV8_5
1973	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1974
1975config ARM64_BTI
1976	bool "Branch Target Identification support"
1977	default y
1978	help
1979	  Branch Target Identification (part of the ARMv8.5 Extensions)
1980	  provides a mechanism to limit the set of locations to which computed
1981	  branch instructions such as BR or BLR can jump.
1982
1983	  To make use of BTI on CPUs that support it, say Y.
1984
1985	  BTI is intended to provide complementary protection to other control
1986	  flow integrity protection mechanisms, such as the Pointer
1987	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1988	  For this reason, it does not make sense to enable this option without
1989	  also enabling support for pointer authentication.  Thus, when
1990	  enabling this option you should also select ARM64_PTR_AUTH=y.
1991
1992	  Userspace binaries must also be specifically compiled to make use of
1993	  this mechanism.  If you say N here or the hardware does not support
1994	  BTI, such binaries can still run, but you get no additional
1995	  enforcement of branch destinations.
1996
1997config ARM64_BTI_KERNEL
1998	bool "Use Branch Target Identification for kernel"
1999	default y
2000	depends on ARM64_BTI
2001	depends on ARM64_PTR_AUTH_KERNEL
2002	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
2003	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
2004	depends on !CC_IS_GCC || GCC_VERSION >= 100100
2005	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=106671
2006	depends on !CC_IS_GCC
2007	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
2008	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
2009	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_ARGS)
2010	help
2011	  Build the kernel with Branch Target Identification annotations
2012	  and enable enforcement of this for kernel code. When this option
2013	  is enabled and the system supports BTI all kernel code including
2014	  modular code must have BTI enabled.
2015
2016config CC_HAS_BRANCH_PROT_PAC_RET_BTI
2017	# GCC 9 or later, clang 8 or later
2018	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
2019
2020config ARM64_E0PD
2021	bool "Enable support for E0PD"
2022	default y
2023	help
2024	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
2025	  that EL0 accesses made via TTBR1 always fault in constant time,
2026	  providing similar benefits to KASLR as those provided by KPTI, but
2027	  with lower overhead and without disrupting legitimate access to
2028	  kernel memory such as SPE.
2029
2030	  This option enables E0PD for TTBR1 where available.
2031
2032config ARM64_AS_HAS_MTE
2033	# Initial support for MTE went in binutils 2.32.0, checked with
2034	# ".arch armv8.5-a+memtag" below. However, this was incomplete
2035	# as a late addition to the final architecture spec (LDGM/STGM)
2036	# is only supported in the newer 2.32.x and 2.33 binutils
2037	# versions, hence the extra "stgm" instruction check below.
2038	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
2039
2040config ARM64_MTE
2041	bool "Memory Tagging Extension support"
2042	default y
2043	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
2044	depends on AS_HAS_ARMV8_5
2045	depends on AS_HAS_LSE_ATOMICS
2046	# Required for tag checking in the uaccess routines
2047	depends on ARM64_PAN
2048	select ARCH_HAS_SUBPAGE_FAULTS
2049	select ARCH_USES_HIGH_VMA_FLAGS
2050	select ARCH_USES_PG_ARCH_X
2051	help
2052	  Memory Tagging (part of the ARMv8.5 Extensions) provides
2053	  architectural support for run-time, always-on detection of
2054	  various classes of memory error to aid with software debugging
2055	  to eliminate vulnerabilities arising from memory-unsafe
2056	  languages.
2057
2058	  This option enables the support for the Memory Tagging
2059	  Extension at EL0 (i.e. for userspace).
2060
2061	  Selecting this option allows the feature to be detected at
2062	  runtime. Any secondary CPU not implementing this feature will
2063	  not be allowed a late bring-up.
2064
2065	  Userspace binaries that want to use this feature must
2066	  explicitly opt in. The mechanism for the userspace is
2067	  described in:
2068
2069	  Documentation/arm64/memory-tagging-extension.rst.
2070
2071endmenu # "ARMv8.5 architectural features"
2072
2073menu "ARMv8.7 architectural features"
2074
2075config ARM64_EPAN
2076	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
2077	default y
2078	depends on ARM64_PAN
2079	help
2080	  Enhanced Privileged Access Never (EPAN) allows Privileged
2081	  Access Never to be used with Execute-only mappings.
2082
2083	  The feature is detected at runtime, and will remain disabled
2084	  if the cpu does not implement the feature.
2085endmenu # "ARMv8.7 architectural features"
2086
2087config ARM64_SVE
2088	bool "ARM Scalable Vector Extension support"
2089	default y
2090	help
2091	  The Scalable Vector Extension (SVE) is an extension to the AArch64
2092	  execution state which complements and extends the SIMD functionality
2093	  of the base architecture to support much larger vectors and to enable
2094	  additional vectorisation opportunities.
2095
2096	  To enable use of this extension on CPUs that implement it, say Y.
2097
2098	  On CPUs that support the SVE2 extensions, this option will enable
2099	  those too.
2100
2101	  Note that for architectural reasons, firmware _must_ implement SVE
2102	  support when running on SVE capable hardware.  The required support
2103	  is present in:
2104
2105	    * version 1.5 and later of the ARM Trusted Firmware
2106	    * the AArch64 boot wrapper since commit 5e1261e08abf
2107	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
2108
2109	  For other firmware implementations, consult the firmware documentation
2110	  or vendor.
2111
2112	  If you need the kernel to boot on SVE-capable hardware with broken
2113	  firmware, you may need to say N here until you get your firmware
2114	  fixed.  Otherwise, you may experience firmware panics or lockups when
2115	  booting the kernel.  If unsure and you are not observing these
2116	  symptoms, you should assume that it is safe to say Y.
2117
2118config ARM64_SME
2119	bool "ARM Scalable Matrix Extension support"
2120	default y
2121	depends on ARM64_SVE
2122	help
2123	  The Scalable Matrix Extension (SME) is an extension to the AArch64
2124	  execution state which utilises a substantial subset of the SVE
2125	  instruction set, together with the addition of new architectural
2126	  register state capable of holding two dimensional matrix tiles to
2127	  enable various matrix operations.
2128
2129config ARM64_MODULE_PLTS
2130	bool "Use PLTs to allow module memory to spill over into vmalloc area"
2131	depends on MODULES
2132	select HAVE_MOD_ARCH_SPECIFIC
2133	help
2134	  Allocate PLTs when loading modules so that jumps and calls whose
2135	  targets are too far away for their relative offsets to be encoded
2136	  in the instructions themselves can be bounced via veneers in the
2137	  module's PLT. This allows modules to be allocated in the generic
2138	  vmalloc area after the dedicated module memory area has been
2139	  exhausted.
2140
2141	  When running with address space randomization (KASLR), the module
2142	  region itself may be too far away for ordinary relative jumps and
2143	  calls, and so in that case, module PLTs are required and cannot be
2144	  disabled.
2145
2146	  Specific errata workaround(s) might also force module PLTs to be
2147	  enabled (ARM64_ERRATUM_843419).
2148
2149config ARM64_PSEUDO_NMI
2150	bool "Support for NMI-like interrupts"
2151	select ARM_GIC_V3
2152	help
2153	  Adds support for mimicking Non-Maskable Interrupts through the use of
2154	  GIC interrupt priority. This support requires version 3 or later of
2155	  ARM GIC.
2156
2157	  This high priority configuration for interrupts needs to be
2158	  explicitly enabled by setting the kernel parameter
2159	  "irqchip.gicv3_pseudo_nmi" to 1.
2160
2161	  If unsure, say N
2162
2163if ARM64_PSEUDO_NMI
2164config ARM64_DEBUG_PRIORITY_MASKING
2165	bool "Debug interrupt priority masking"
2166	help
2167	  This adds runtime checks to functions enabling/disabling
2168	  interrupts when using priority masking. The additional checks verify
2169	  the validity of ICC_PMR_EL1 when calling concerned functions.
2170
2171	  If unsure, say N
2172endif # ARM64_PSEUDO_NMI
2173
2174config RELOCATABLE
2175	bool "Build a relocatable kernel image" if EXPERT
2176	select ARCH_HAS_RELR
2177	default y
2178	help
2179	  This builds the kernel as a Position Independent Executable (PIE),
2180	  which retains all relocation metadata required to relocate the
2181	  kernel binary at runtime to a different virtual address than the
2182	  address it was linked at.
2183	  Since AArch64 uses the RELA relocation format, this requires a
2184	  relocation pass at runtime even if the kernel is loaded at the
2185	  same address it was linked at.
2186
2187config RANDOMIZE_BASE
2188	bool "Randomize the address of the kernel image"
2189	select ARM64_MODULE_PLTS if MODULES
2190	select RELOCATABLE
2191	help
2192	  Randomizes the virtual address at which the kernel image is
2193	  loaded, as a security feature that deters exploit attempts
2194	  relying on knowledge of the location of kernel internals.
2195
2196	  It is the bootloader's job to provide entropy, by passing a
2197	  random u64 value in /chosen/kaslr-seed at kernel entry.
2198
2199	  When booting via the UEFI stub, it will invoke the firmware's
2200	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2201	  to the kernel proper. In addition, it will randomise the physical
2202	  location of the kernel Image as well.
2203
2204	  If unsure, say N.
2205
2206config RANDOMIZE_MODULE_REGION_FULL
2207	bool "Randomize the module region over a 2 GB range"
2208	depends on RANDOMIZE_BASE
2209	default y
2210	help
2211	  Randomizes the location of the module region inside a 2 GB window
2212	  covering the core kernel. This way, it is less likely for modules
2213	  to leak information about the location of core kernel data structures
2214	  but it does imply that function calls between modules and the core
2215	  kernel will need to be resolved via veneers in the module PLT.
2216
2217	  When this option is not set, the module region will be randomized over
2218	  a limited range that contains the [_stext, _etext] interval of the
2219	  core kernel, so branch relocations are almost always in range unless
2220	  ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
2221	  particular case of region exhaustion, modules might be able to fall
2222	  back to a larger 2GB area.
2223
2224config CC_HAVE_STACKPROTECTOR_SYSREG
2225	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2226
2227config STACKPROTECTOR_PER_TASK
2228	def_bool y
2229	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2230
2231config UNWIND_PATCH_PAC_INTO_SCS
2232	bool "Enable shadow call stack dynamically using code patching"
2233	# needs Clang with https://reviews.llvm.org/D111780 incorporated
2234	depends on CC_IS_CLANG && CLANG_VERSION >= 150000
2235	depends on ARM64_PTR_AUTH_KERNEL && CC_HAS_BRANCH_PROT_PAC_RET
2236	depends on SHADOW_CALL_STACK
2237	select UNWIND_TABLES
2238	select DYNAMIC_SCS
2239
2240endmenu # "Kernel Features"
2241
2242menu "Boot options"
2243
2244config ARM64_ACPI_PARKING_PROTOCOL
2245	bool "Enable support for the ARM64 ACPI parking protocol"
2246	depends on ACPI
2247	help
2248	  Enable support for the ARM64 ACPI parking protocol. If disabled
2249	  the kernel will not allow booting through the ARM64 ACPI parking
2250	  protocol even if the corresponding data is present in the ACPI
2251	  MADT table.
2252
2253config CMDLINE
2254	string "Default kernel command string"
2255	default ""
2256	help
2257	  Provide a set of default command-line options at build time by
2258	  entering them here. As a minimum, you should specify the the
2259	  root device (e.g. root=/dev/nfs).
2260
2261choice
2262	prompt "Kernel command line type" if CMDLINE != ""
2263	default CMDLINE_FROM_BOOTLOADER
2264	help
2265	  Choose how the kernel will handle the provided default kernel
2266	  command line string.
2267
2268config CMDLINE_FROM_BOOTLOADER
2269	bool "Use bootloader kernel arguments if available"
2270	help
2271	  Uses the command-line options passed by the boot loader. If
2272	  the boot loader doesn't provide any, the default kernel command
2273	  string provided in CMDLINE will be used.
2274
2275config CMDLINE_FORCE
2276	bool "Always use the default kernel command string"
2277	help
2278	  Always use the default kernel command string, even if the boot
2279	  loader passes other arguments to the kernel.
2280	  This is useful if you cannot or don't want to change the
2281	  command-line options your boot loader passes to the kernel.
2282
2283endchoice
2284
2285config EFI_STUB
2286	bool
2287
2288config EFI
2289	bool "UEFI runtime support"
2290	depends on OF && !CPU_BIG_ENDIAN
2291	depends on KERNEL_MODE_NEON
2292	select ARCH_SUPPORTS_ACPI
2293	select LIBFDT
2294	select UCS2_STRING
2295	select EFI_PARAMS_FROM_FDT
2296	select EFI_RUNTIME_WRAPPERS
2297	select EFI_STUB
2298	select EFI_GENERIC_STUB
2299	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2300	default y
2301	help
2302	  This option provides support for runtime services provided
2303	  by UEFI firmware (such as non-volatile variables, realtime
2304	  clock, and platform reset). A UEFI stub is also provided to
2305	  allow the kernel to be booted as an EFI application. This
2306	  is only useful on systems that have UEFI firmware.
2307
2308config DMI
2309	bool "Enable support for SMBIOS (DMI) tables"
2310	depends on EFI
2311	default y
2312	help
2313	  This enables SMBIOS/DMI feature for systems.
2314
2315	  This option is only useful on systems that have UEFI firmware.
2316	  However, even with this option, the resultant kernel should
2317	  continue to boot on existing non-UEFI platforms.
2318
2319endmenu # "Boot options"
2320
2321menu "Power management options"
2322
2323source "kernel/power/Kconfig"
2324
2325config ARCH_HIBERNATION_POSSIBLE
2326	def_bool y
2327	depends on CPU_PM
2328
2329config ARCH_HIBERNATION_HEADER
2330	def_bool y
2331	depends on HIBERNATION
2332
2333config ARCH_SUSPEND_POSSIBLE
2334	def_bool y
2335
2336endmenu # "Power management options"
2337
2338menu "CPU Power Management"
2339
2340source "drivers/cpuidle/Kconfig"
2341
2342source "drivers/cpufreq/Kconfig"
2343
2344endmenu # "CPU Power Management"
2345
2346source "drivers/acpi/Kconfig"
2347
2348source "arch/arm64/kvm/Kconfig"
2349
2350