xref: /openbmc/linux/arch/arm64/Kconfig (revision 5a158981)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_CLOCKSOURCE_DATA
13	select ARCH_HAS_DEBUG_VIRTUAL
14	select ARCH_HAS_DEVMEM_IS_ALLOWED
15	select ARCH_HAS_DMA_PREP_COHERENT
16	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
17	select ARCH_HAS_FAST_MULTIPLIER
18	select ARCH_HAS_FORTIFY_SOURCE
19	select ARCH_HAS_GCOV_PROFILE_ALL
20	select ARCH_HAS_GIGANTIC_PAGE
21	select ARCH_HAS_KCOV
22	select ARCH_HAS_KEEPINITRD
23	select ARCH_HAS_MEMBARRIER_SYNC_CORE
24	select ARCH_HAS_PTE_DEVMAP
25	select ARCH_HAS_PTE_SPECIAL
26	select ARCH_HAS_SETUP_DMA_OPS
27	select ARCH_HAS_SET_DIRECT_MAP
28	select ARCH_HAS_SET_MEMORY
29	select ARCH_HAS_STRICT_KERNEL_RWX
30	select ARCH_HAS_STRICT_MODULE_RWX
31	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
32	select ARCH_HAS_SYNC_DMA_FOR_CPU
33	select ARCH_HAS_SYSCALL_WRAPPER
34	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
35	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
36	select ARCH_HAVE_NMI_SAFE_CMPXCHG
37	select ARCH_INLINE_READ_LOCK if !PREEMPT
38	select ARCH_INLINE_READ_LOCK_BH if !PREEMPT
39	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPT
40	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPT
41	select ARCH_INLINE_READ_UNLOCK if !PREEMPT
42	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPT
43	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPT
44	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPT
45	select ARCH_INLINE_WRITE_LOCK if !PREEMPT
46	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPT
47	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPT
48	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPT
49	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPT
50	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPT
51	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPT
52	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPT
53	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPT
54	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPT
55	select ARCH_INLINE_SPIN_LOCK if !PREEMPT
56	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPT
57	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPT
58	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPT
59	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPT
60	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPT
61	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPT
62	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPT
63	select ARCH_KEEP_MEMBLOCK
64	select ARCH_USE_CMPXCHG_LOCKREF
65	select ARCH_USE_QUEUED_RWLOCKS
66	select ARCH_USE_QUEUED_SPINLOCKS
67	select ARCH_SUPPORTS_MEMORY_FAILURE
68	select ARCH_SUPPORTS_ATOMIC_RMW
69	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG)
70	select ARCH_SUPPORTS_NUMA_BALANCING
71	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
72	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
73	select ARCH_WANT_FRAME_POINTERS
74	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
75	select ARCH_HAS_UBSAN_SANITIZE_ALL
76	select ARM_AMBA
77	select ARM_ARCH_TIMER
78	select ARM_GIC
79	select AUDIT_ARCH_COMPAT_GENERIC
80	select ARM_GIC_V2M if PCI
81	select ARM_GIC_V3
82	select ARM_GIC_V3_ITS if PCI
83	select ARM_PSCI_FW
84	select BUILDTIME_EXTABLE_SORT
85	select CLONE_BACKWARDS
86	select COMMON_CLK
87	select CPU_PM if (SUSPEND || CPU_IDLE)
88	select CRC32
89	select DCACHE_WORD_ACCESS
90	select DMA_DIRECT_REMAP
91	select EDAC_SUPPORT
92	select FRAME_POINTER
93	select GENERIC_ALLOCATOR
94	select GENERIC_ARCH_TOPOLOGY
95	select GENERIC_CLOCKEVENTS
96	select GENERIC_CLOCKEVENTS_BROADCAST
97	select GENERIC_CPU_AUTOPROBE
98	select GENERIC_CPU_VULNERABILITIES
99	select GENERIC_EARLY_IOREMAP
100	select GENERIC_IDLE_POLL_SETUP
101	select GENERIC_IRQ_MULTI_HANDLER
102	select GENERIC_IRQ_PROBE
103	select GENERIC_IRQ_SHOW
104	select GENERIC_IRQ_SHOW_LEVEL
105	select GENERIC_PCI_IOMAP
106	select GENERIC_SCHED_CLOCK
107	select GENERIC_SMP_IDLE_THREAD
108	select GENERIC_STRNCPY_FROM_USER
109	select GENERIC_STRNLEN_USER
110	select GENERIC_TIME_VSYSCALL
111	select GENERIC_GETTIMEOFDAY
112	select HANDLE_DOMAIN_IRQ
113	select HARDIRQS_SW_RESEND
114	select HAVE_PCI
115	select HAVE_ACPI_APEI if (ACPI && EFI)
116	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
117	select HAVE_ARCH_AUDITSYSCALL
118	select HAVE_ARCH_BITREVERSE
119	select HAVE_ARCH_HUGE_VMAP
120	select HAVE_ARCH_JUMP_LABEL
121	select HAVE_ARCH_JUMP_LABEL_RELATIVE
122	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
123	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
124	select HAVE_ARCH_KGDB
125	select HAVE_ARCH_MMAP_RND_BITS
126	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
127	select HAVE_ARCH_PREL32_RELOCATIONS
128	select HAVE_ARCH_SECCOMP_FILTER
129	select HAVE_ARCH_STACKLEAK
130	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
131	select HAVE_ARCH_TRACEHOOK
132	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
133	select HAVE_ARCH_VMAP_STACK
134	select HAVE_ARM_SMCCC
135	select HAVE_ASM_MODVERSIONS
136	select HAVE_EBPF_JIT
137	select HAVE_C_RECORDMCOUNT
138	select HAVE_CMPXCHG_DOUBLE
139	select HAVE_CMPXCHG_LOCAL
140	select HAVE_CONTEXT_TRACKING
141	select HAVE_COPY_THREAD_TLS
142	select HAVE_DEBUG_BUGVERBOSE
143	select HAVE_DEBUG_KMEMLEAK
144	select HAVE_DMA_CONTIGUOUS
145	select HAVE_DYNAMIC_FTRACE
146	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
147		if $(cc-option,-fpatchable-function-entry=2)
148	select HAVE_EFFICIENT_UNALIGNED_ACCESS
149	select HAVE_FAST_GUP
150	select HAVE_FTRACE_MCOUNT_RECORD
151	select HAVE_FUNCTION_TRACER
152	select HAVE_FUNCTION_ERROR_INJECTION
153	select HAVE_FUNCTION_GRAPH_TRACER
154	select HAVE_GCC_PLUGINS
155	select HAVE_HW_BREAKPOINT if PERF_EVENTS
156	select HAVE_IRQ_TIME_ACCOUNTING
157	select HAVE_MEMBLOCK_NODE_MAP if NUMA
158	select HAVE_NMI
159	select HAVE_PATA_PLATFORM
160	select HAVE_PERF_EVENTS
161	select HAVE_PERF_REGS
162	select HAVE_PERF_USER_STACK_DUMP
163	select HAVE_REGS_AND_STACK_ACCESS_API
164	select HAVE_FUNCTION_ARG_ACCESS_API
165	select HAVE_RCU_TABLE_FREE
166	select HAVE_RSEQ
167	select HAVE_STACKPROTECTOR
168	select HAVE_SYSCALL_TRACEPOINTS
169	select HAVE_KPROBES
170	select HAVE_KRETPROBES
171	select HAVE_GENERIC_VDSO
172	select IOMMU_DMA if IOMMU_SUPPORT
173	select IRQ_DOMAIN
174	select IRQ_FORCED_THREADING
175	select MODULES_USE_ELF_RELA
176	select NEED_DMA_MAP_STATE
177	select NEED_SG_DMA_LENGTH
178	select OF
179	select OF_EARLY_FLATTREE
180	select PCI_DOMAINS_GENERIC if PCI
181	select PCI_ECAM if (ACPI && PCI)
182	select PCI_SYSCALL if PCI
183	select POWER_RESET
184	select POWER_SUPPLY
185	select SPARSE_IRQ
186	select SWIOTLB
187	select SYSCTL_EXCEPTION_TRACE
188	select THREAD_INFO_IN_TASK
189	help
190	  ARM 64-bit (AArch64) Linux support.
191
192config 64BIT
193	def_bool y
194
195config MMU
196	def_bool y
197
198config ARM64_PAGE_SHIFT
199	int
200	default 16 if ARM64_64K_PAGES
201	default 14 if ARM64_16K_PAGES
202	default 12
203
204config ARM64_CONT_SHIFT
205	int
206	default 5 if ARM64_64K_PAGES
207	default 7 if ARM64_16K_PAGES
208	default 4
209
210config ARCH_MMAP_RND_BITS_MIN
211       default 14 if ARM64_64K_PAGES
212       default 16 if ARM64_16K_PAGES
213       default 18
214
215# max bits determined by the following formula:
216#  VA_BITS - PAGE_SHIFT - 3
217config ARCH_MMAP_RND_BITS_MAX
218       default 19 if ARM64_VA_BITS=36
219       default 24 if ARM64_VA_BITS=39
220       default 27 if ARM64_VA_BITS=42
221       default 30 if ARM64_VA_BITS=47
222       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
223       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
224       default 33 if ARM64_VA_BITS=48
225       default 14 if ARM64_64K_PAGES
226       default 16 if ARM64_16K_PAGES
227       default 18
228
229config ARCH_MMAP_RND_COMPAT_BITS_MIN
230       default 7 if ARM64_64K_PAGES
231       default 9 if ARM64_16K_PAGES
232       default 11
233
234config ARCH_MMAP_RND_COMPAT_BITS_MAX
235       default 16
236
237config NO_IOPORT_MAP
238	def_bool y if !PCI
239
240config STACKTRACE_SUPPORT
241	def_bool y
242
243config ILLEGAL_POINTER_VALUE
244	hex
245	default 0xdead000000000000
246
247config LOCKDEP_SUPPORT
248	def_bool y
249
250config TRACE_IRQFLAGS_SUPPORT
251	def_bool y
252
253config GENERIC_BUG
254	def_bool y
255	depends on BUG
256
257config GENERIC_BUG_RELATIVE_POINTERS
258	def_bool y
259	depends on GENERIC_BUG
260
261config GENERIC_HWEIGHT
262	def_bool y
263
264config GENERIC_CSUM
265        def_bool y
266
267config GENERIC_CALIBRATE_DELAY
268	def_bool y
269
270config ZONE_DMA
271	bool "Support DMA zone" if EXPERT
272	default y
273
274config ZONE_DMA32
275	bool "Support DMA32 zone" if EXPERT
276	default y
277
278config ARCH_ENABLE_MEMORY_HOTPLUG
279	def_bool y
280
281config SMP
282	def_bool y
283
284config KERNEL_MODE_NEON
285	def_bool y
286
287config FIX_EARLYCON_MEM
288	def_bool y
289
290config PGTABLE_LEVELS
291	int
292	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
293	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
294	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
295	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
296	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
297	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
298
299config ARCH_SUPPORTS_UPROBES
300	def_bool y
301
302config ARCH_PROC_KCORE_TEXT
303	def_bool y
304
305config KASAN_SHADOW_OFFSET
306	hex
307	depends on KASAN
308	default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
309	default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
310	default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
311	default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
312	default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
313	default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
314	default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
315	default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
316	default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
317	default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
318	default 0xffffffffffffffff
319
320source "arch/arm64/Kconfig.platforms"
321
322menu "Kernel Features"
323
324menu "ARM errata workarounds via the alternatives framework"
325
326config ARM64_WORKAROUND_CLEAN_CACHE
327	bool
328
329config ARM64_ERRATUM_826319
330	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
331	default y
332	select ARM64_WORKAROUND_CLEAN_CACHE
333	help
334	  This option adds an alternative code sequence to work around ARM
335	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
336	  AXI master interface and an L2 cache.
337
338	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
339	  and is unable to accept a certain write via this interface, it will
340	  not progress on read data presented on the read data channel and the
341	  system can deadlock.
342
343	  The workaround promotes data cache clean instructions to
344	  data cache clean-and-invalidate.
345	  Please note that this does not necessarily enable the workaround,
346	  as it depends on the alternative framework, which will only patch
347	  the kernel if an affected CPU is detected.
348
349	  If unsure, say Y.
350
351config ARM64_ERRATUM_827319
352	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
353	default y
354	select ARM64_WORKAROUND_CLEAN_CACHE
355	help
356	  This option adds an alternative code sequence to work around ARM
357	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
358	  master interface and an L2 cache.
359
360	  Under certain conditions this erratum can cause a clean line eviction
361	  to occur at the same time as another transaction to the same address
362	  on the AMBA 5 CHI interface, which can cause data corruption if the
363	  interconnect reorders the two transactions.
364
365	  The workaround promotes data cache clean instructions to
366	  data cache clean-and-invalidate.
367	  Please note that this does not necessarily enable the workaround,
368	  as it depends on the alternative framework, which will only patch
369	  the kernel if an affected CPU is detected.
370
371	  If unsure, say Y.
372
373config ARM64_ERRATUM_824069
374	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
375	default y
376	select ARM64_WORKAROUND_CLEAN_CACHE
377	help
378	  This option adds an alternative code sequence to work around ARM
379	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
380	  to a coherent interconnect.
381
382	  If a Cortex-A53 processor is executing a store or prefetch for
383	  write instruction at the same time as a processor in another
384	  cluster is executing a cache maintenance operation to the same
385	  address, then this erratum might cause a clean cache line to be
386	  incorrectly marked as dirty.
387
388	  The workaround promotes data cache clean instructions to
389	  data cache clean-and-invalidate.
390	  Please note that this option does not necessarily enable the
391	  workaround, as it depends on the alternative framework, which will
392	  only patch the kernel if an affected CPU is detected.
393
394	  If unsure, say Y.
395
396config ARM64_ERRATUM_819472
397	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
398	default y
399	select ARM64_WORKAROUND_CLEAN_CACHE
400	help
401	  This option adds an alternative code sequence to work around ARM
402	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
403	  present when it is connected to a coherent interconnect.
404
405	  If the processor is executing a load and store exclusive sequence at
406	  the same time as a processor in another cluster is executing a cache
407	  maintenance operation to the same address, then this erratum might
408	  cause data corruption.
409
410	  The workaround promotes data cache clean instructions to
411	  data cache clean-and-invalidate.
412	  Please note that this does not necessarily enable the workaround,
413	  as it depends on the alternative framework, which will only patch
414	  the kernel if an affected CPU is detected.
415
416	  If unsure, say Y.
417
418config ARM64_ERRATUM_832075
419	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
420	default y
421	help
422	  This option adds an alternative code sequence to work around ARM
423	  erratum 832075 on Cortex-A57 parts up to r1p2.
424
425	  Affected Cortex-A57 parts might deadlock when exclusive load/store
426	  instructions to Write-Back memory are mixed with Device loads.
427
428	  The workaround is to promote device loads to use Load-Acquire
429	  semantics.
430	  Please note that this does not necessarily enable the workaround,
431	  as it depends on the alternative framework, which will only patch
432	  the kernel if an affected CPU is detected.
433
434	  If unsure, say Y.
435
436config ARM64_ERRATUM_834220
437	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
438	depends on KVM
439	default y
440	help
441	  This option adds an alternative code sequence to work around ARM
442	  erratum 834220 on Cortex-A57 parts up to r1p2.
443
444	  Affected Cortex-A57 parts might report a Stage 2 translation
445	  fault as the result of a Stage 1 fault for load crossing a
446	  page boundary when there is a permission or device memory
447	  alignment fault at Stage 1 and a translation fault at Stage 2.
448
449	  The workaround is to verify that the Stage 1 translation
450	  doesn't generate a fault before handling the Stage 2 fault.
451	  Please note that this does not necessarily enable the workaround,
452	  as it depends on the alternative framework, which will only patch
453	  the kernel if an affected CPU is detected.
454
455	  If unsure, say Y.
456
457config ARM64_ERRATUM_845719
458	bool "Cortex-A53: 845719: a load might read incorrect data"
459	depends on COMPAT
460	default y
461	help
462	  This option adds an alternative code sequence to work around ARM
463	  erratum 845719 on Cortex-A53 parts up to r0p4.
464
465	  When running a compat (AArch32) userspace on an affected Cortex-A53
466	  part, a load at EL0 from a virtual address that matches the bottom 32
467	  bits of the virtual address used by a recent load at (AArch64) EL1
468	  might return incorrect data.
469
470	  The workaround is to write the contextidr_el1 register on exception
471	  return to a 32-bit task.
472	  Please note that this does not necessarily enable the workaround,
473	  as it depends on the alternative framework, which will only patch
474	  the kernel if an affected CPU is detected.
475
476	  If unsure, say Y.
477
478config ARM64_ERRATUM_843419
479	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
480	default y
481	select ARM64_MODULE_PLTS if MODULES
482	help
483	  This option links the kernel with '--fix-cortex-a53-843419' and
484	  enables PLT support to replace certain ADRP instructions, which can
485	  cause subsequent memory accesses to use an incorrect address on
486	  Cortex-A53 parts up to r0p4.
487
488	  If unsure, say Y.
489
490config ARM64_ERRATUM_1024718
491	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
492	default y
493	help
494	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
495
496	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect
497	  update of the hardware dirty bit when the DBM/AP bits are updated
498	  without a break-before-make. The workaround is to disable the usage
499	  of hardware DBM locally on the affected cores. CPUs not affected by
500	  this erratum will continue to use the feature.
501
502	  If unsure, say Y.
503
504config ARM64_ERRATUM_1418040
505	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
506	default y
507	depends on COMPAT
508	help
509	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
510	  errata 1188873 and 1418040.
511
512	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
513	  cause register corruption when accessing the timer registers
514	  from AArch32 userspace.
515
516	  If unsure, say Y.
517
518config ARM64_ERRATUM_1165522
519	bool "Cortex-A76: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
520	default y
521	help
522	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
523
524	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
525	  corrupted TLBs by speculating an AT instruction during a guest
526	  context switch.
527
528	  If unsure, say Y.
529
530config ARM64_ERRATUM_1286807
531	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
532	default y
533	select ARM64_WORKAROUND_REPEAT_TLBI
534	help
535	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
536
537	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
538	  address for a cacheable mapping of a location is being
539	  accessed by a core while another core is remapping the virtual
540	  address to a new physical page using the recommended
541	  break-before-make sequence, then under very rare circumstances
542	  TLBI+DSB completes before a read using the translation being
543	  invalidated has been observed by other observers. The
544	  workaround repeats the TLBI+DSB operation.
545
546config ARM64_ERRATUM_1319367
547	bool "Cortex-A57/A72: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
548	default y
549	help
550	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
551	  and A72 erratum 1319367
552
553	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
554	  speculating an AT instruction during a guest context switch.
555
556	  If unsure, say Y.
557
558config ARM64_ERRATUM_1463225
559	bool "Cortex-A76: Software Step might prevent interrupt recognition"
560	default y
561	help
562	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
563
564	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
565	  of a system call instruction (SVC) can prevent recognition of
566	  subsequent interrupts when software stepping is disabled in the
567	  exception handler of the system call and either kernel debugging
568	  is enabled or VHE is in use.
569
570	  Work around the erratum by triggering a dummy step exception
571	  when handling a system call from a task that is being stepped
572	  in a VHE configuration of the kernel.
573
574	  If unsure, say Y.
575
576config ARM64_ERRATUM_1542419
577	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
578	default y
579	help
580	  This option adds a workaround for ARM Neoverse-N1 erratum
581	  1542419.
582
583	  Affected Neoverse-N1 cores could execute a stale instruction when
584	  modified by another CPU. The workaround depends on a firmware
585	  counterpart.
586
587	  Workaround the issue by hiding the DIC feature from EL0. This
588	  forces user-space to perform cache maintenance.
589
590	  If unsure, say Y.
591
592config CAVIUM_ERRATUM_22375
593	bool "Cavium erratum 22375, 24313"
594	default y
595	help
596	  Enable workaround for errata 22375 and 24313.
597
598	  This implements two gicv3-its errata workarounds for ThunderX. Both
599	  with a small impact affecting only ITS table allocation.
600
601	    erratum 22375: only alloc 8MB table size
602	    erratum 24313: ignore memory access type
603
604	  The fixes are in ITS initialization and basically ignore memory access
605	  type and table size provided by the TYPER and BASER registers.
606
607	  If unsure, say Y.
608
609config CAVIUM_ERRATUM_23144
610	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
611	depends on NUMA
612	default y
613	help
614	  ITS SYNC command hang for cross node io and collections/cpu mapping.
615
616	  If unsure, say Y.
617
618config CAVIUM_ERRATUM_23154
619	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
620	default y
621	help
622	  The gicv3 of ThunderX requires a modified version for
623	  reading the IAR status to ensure data synchronization
624	  (access to icc_iar1_el1 is not sync'ed before and after).
625
626	  If unsure, say Y.
627
628config CAVIUM_ERRATUM_27456
629	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
630	default y
631	help
632	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
633	  instructions may cause the icache to become corrupted if it
634	  contains data for a non-current ASID.  The fix is to
635	  invalidate the icache when changing the mm context.
636
637	  If unsure, say Y.
638
639config CAVIUM_ERRATUM_30115
640	bool "Cavium erratum 30115: Guest may disable interrupts in host"
641	default y
642	help
643	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
644	  1.2, and T83 Pass 1.0, KVM guest execution may disable
645	  interrupts in host. Trapping both GICv3 group-0 and group-1
646	  accesses sidesteps the issue.
647
648	  If unsure, say Y.
649
650config CAVIUM_TX2_ERRATUM_219
651	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
652	default y
653	help
654	  On Cavium ThunderX2, a load, store or prefetch instruction between a
655	  TTBR update and the corresponding context synchronizing operation can
656	  cause a spurious Data Abort to be delivered to any hardware thread in
657	  the CPU core.
658
659	  Work around the issue by avoiding the problematic code sequence and
660	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
661	  trap handler performs the corresponding register access, skips the
662	  instruction and ensures context synchronization by virtue of the
663	  exception return.
664
665	  If unsure, say Y.
666
667config QCOM_FALKOR_ERRATUM_1003
668	bool "Falkor E1003: Incorrect translation due to ASID change"
669	default y
670	help
671	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
672	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
673	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
674	  then only for entries in the walk cache, since the leaf translation
675	  is unchanged. Work around the erratum by invalidating the walk cache
676	  entries for the trampoline before entering the kernel proper.
677
678config ARM64_WORKAROUND_REPEAT_TLBI
679	bool
680
681config QCOM_FALKOR_ERRATUM_1009
682	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
683	default y
684	select ARM64_WORKAROUND_REPEAT_TLBI
685	help
686	  On Falkor v1, the CPU may prematurely complete a DSB following a
687	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
688	  one more time to fix the issue.
689
690	  If unsure, say Y.
691
692config QCOM_QDF2400_ERRATUM_0065
693	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
694	default y
695	help
696	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
697	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
698	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
699
700	  If unsure, say Y.
701
702config SOCIONEXT_SYNQUACER_PREITS
703	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
704	default y
705	help
706	  Socionext Synquacer SoCs implement a separate h/w block to generate
707	  MSI doorbell writes with non-zero values for the device ID.
708
709	  If unsure, say Y.
710
711config HISILICON_ERRATUM_161600802
712	bool "Hip07 161600802: Erroneous redistributor VLPI base"
713	default y
714	help
715	  The HiSilicon Hip07 SoC uses the wrong redistributor base
716	  when issued ITS commands such as VMOVP and VMAPP, and requires
717	  a 128kB offset to be applied to the target address in this commands.
718
719	  If unsure, say Y.
720
721config QCOM_FALKOR_ERRATUM_E1041
722	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
723	default y
724	help
725	  Falkor CPU may speculatively fetch instructions from an improper
726	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
727	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
728
729	  If unsure, say Y.
730
731config FUJITSU_ERRATUM_010001
732	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
733	default y
734	help
735	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
736	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
737	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
738	  This fault occurs under a specific hardware condition when a
739	  load/store instruction performs an address translation using:
740	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
741	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
742	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
743	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
744
745	  The workaround is to ensure these bits are clear in TCR_ELx.
746	  The workaround only affects the Fujitsu-A64FX.
747
748	  If unsure, say Y.
749
750endmenu
751
752
753choice
754	prompt "Page size"
755	default ARM64_4K_PAGES
756	help
757	  Page size (translation granule) configuration.
758
759config ARM64_4K_PAGES
760	bool "4KB"
761	help
762	  This feature enables 4KB pages support.
763
764config ARM64_16K_PAGES
765	bool "16KB"
766	help
767	  The system will use 16KB pages support. AArch32 emulation
768	  requires applications compiled with 16K (or a multiple of 16K)
769	  aligned segments.
770
771config ARM64_64K_PAGES
772	bool "64KB"
773	help
774	  This feature enables 64KB pages support (4KB by default)
775	  allowing only two levels of page tables and faster TLB
776	  look-up. AArch32 emulation requires applications compiled
777	  with 64K aligned segments.
778
779endchoice
780
781choice
782	prompt "Virtual address space size"
783	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
784	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
785	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
786	help
787	  Allows choosing one of multiple possible virtual address
788	  space sizes. The level of translation table is determined by
789	  a combination of page size and virtual address space size.
790
791config ARM64_VA_BITS_36
792	bool "36-bit" if EXPERT
793	depends on ARM64_16K_PAGES
794
795config ARM64_VA_BITS_39
796	bool "39-bit"
797	depends on ARM64_4K_PAGES
798
799config ARM64_VA_BITS_42
800	bool "42-bit"
801	depends on ARM64_64K_PAGES
802
803config ARM64_VA_BITS_47
804	bool "47-bit"
805	depends on ARM64_16K_PAGES
806
807config ARM64_VA_BITS_48
808	bool "48-bit"
809
810config ARM64_VA_BITS_52
811	bool "52-bit"
812	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
813	help
814	  Enable 52-bit virtual addressing for userspace when explicitly
815	  requested via a hint to mmap(). The kernel will also use 52-bit
816	  virtual addresses for its own mappings (provided HW support for
817	  this feature is available, otherwise it reverts to 48-bit).
818
819	  NOTE: Enabling 52-bit virtual addressing in conjunction with
820	  ARMv8.3 Pointer Authentication will result in the PAC being
821	  reduced from 7 bits to 3 bits, which may have a significant
822	  impact on its susceptibility to brute-force attacks.
823
824	  If unsure, select 48-bit virtual addressing instead.
825
826endchoice
827
828config ARM64_FORCE_52BIT
829	bool "Force 52-bit virtual addresses for userspace"
830	depends on ARM64_VA_BITS_52 && EXPERT
831	help
832	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
833	  to maintain compatibility with older software by providing 48-bit VAs
834	  unless a hint is supplied to mmap.
835
836	  This configuration option disables the 48-bit compatibility logic, and
837	  forces all userspace addresses to be 52-bit on HW that supports it. One
838	  should only enable this configuration option for stress testing userspace
839	  memory management code. If unsure say N here.
840
841config ARM64_VA_BITS
842	int
843	default 36 if ARM64_VA_BITS_36
844	default 39 if ARM64_VA_BITS_39
845	default 42 if ARM64_VA_BITS_42
846	default 47 if ARM64_VA_BITS_47
847	default 48 if ARM64_VA_BITS_48
848	default 52 if ARM64_VA_BITS_52
849
850choice
851	prompt "Physical address space size"
852	default ARM64_PA_BITS_48
853	help
854	  Choose the maximum physical address range that the kernel will
855	  support.
856
857config ARM64_PA_BITS_48
858	bool "48-bit"
859
860config ARM64_PA_BITS_52
861	bool "52-bit (ARMv8.2)"
862	depends on ARM64_64K_PAGES
863	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
864	help
865	  Enable support for a 52-bit physical address space, introduced as
866	  part of the ARMv8.2-LPA extension.
867
868	  With this enabled, the kernel will also continue to work on CPUs that
869	  do not support ARMv8.2-LPA, but with some added memory overhead (and
870	  minor performance overhead).
871
872endchoice
873
874config ARM64_PA_BITS
875	int
876	default 48 if ARM64_PA_BITS_48
877	default 52 if ARM64_PA_BITS_52
878
879choice
880	prompt "Endianness"
881	default CPU_LITTLE_ENDIAN
882	help
883	  Select the endianness of data accesses performed by the CPU. Userspace
884	  applications will need to be compiled and linked for the endianness
885	  that is selected here.
886
887config CPU_BIG_ENDIAN
888       bool "Build big-endian kernel"
889       help
890	  Say Y if you plan on running a kernel with a big-endian userspace.
891
892config CPU_LITTLE_ENDIAN
893	bool "Build little-endian kernel"
894	help
895	  Say Y if you plan on running a kernel with a little-endian userspace.
896	  This is usually the case for distributions targeting arm64.
897
898endchoice
899
900config SCHED_MC
901	bool "Multi-core scheduler support"
902	help
903	  Multi-core scheduler support improves the CPU scheduler's decision
904	  making when dealing with multi-core CPU chips at a cost of slightly
905	  increased overhead in some places. If unsure say N here.
906
907config SCHED_SMT
908	bool "SMT scheduler support"
909	help
910	  Improves the CPU scheduler's decision making when dealing with
911	  MultiThreading at a cost of slightly increased overhead in some
912	  places. If unsure say N here.
913
914config NR_CPUS
915	int "Maximum number of CPUs (2-4096)"
916	range 2 4096
917	default "256"
918
919config HOTPLUG_CPU
920	bool "Support for hot-pluggable CPUs"
921	select GENERIC_IRQ_MIGRATION
922	help
923	  Say Y here to experiment with turning CPUs off and on.  CPUs
924	  can be controlled through /sys/devices/system/cpu.
925
926# Common NUMA Features
927config NUMA
928	bool "Numa Memory Allocation and Scheduler Support"
929	select ACPI_NUMA if ACPI
930	select OF_NUMA
931	help
932	  Enable NUMA (Non Uniform Memory Access) support.
933
934	  The kernel will try to allocate memory used by a CPU on the
935	  local memory of the CPU and add some more
936	  NUMA awareness to the kernel.
937
938config NODES_SHIFT
939	int "Maximum NUMA Nodes (as a power of 2)"
940	range 1 10
941	default "2"
942	depends on NEED_MULTIPLE_NODES
943	help
944	  Specify the maximum number of NUMA Nodes available on the target
945	  system.  Increases memory reserved to accommodate various tables.
946
947config USE_PERCPU_NUMA_NODE_ID
948	def_bool y
949	depends on NUMA
950
951config HAVE_SETUP_PER_CPU_AREA
952	def_bool y
953	depends on NUMA
954
955config NEED_PER_CPU_EMBED_FIRST_CHUNK
956	def_bool y
957	depends on NUMA
958
959config HOLES_IN_ZONE
960	def_bool y
961
962source "kernel/Kconfig.hz"
963
964config ARCH_SUPPORTS_DEBUG_PAGEALLOC
965	def_bool y
966
967config ARCH_SPARSEMEM_ENABLE
968	def_bool y
969	select SPARSEMEM_VMEMMAP_ENABLE
970
971config ARCH_SPARSEMEM_DEFAULT
972	def_bool ARCH_SPARSEMEM_ENABLE
973
974config ARCH_SELECT_MEMORY_MODEL
975	def_bool ARCH_SPARSEMEM_ENABLE
976
977config ARCH_FLATMEM_ENABLE
978	def_bool !NUMA
979
980config HAVE_ARCH_PFN_VALID
981	def_bool y
982
983config HW_PERF_EVENTS
984	def_bool y
985	depends on ARM_PMU
986
987config SYS_SUPPORTS_HUGETLBFS
988	def_bool y
989
990config ARCH_WANT_HUGE_PMD_SHARE
991
992config ARCH_HAS_CACHE_LINE_SIZE
993	def_bool y
994
995config ARCH_ENABLE_SPLIT_PMD_PTLOCK
996	def_bool y if PGTABLE_LEVELS > 2
997
998config SECCOMP
999	bool "Enable seccomp to safely compute untrusted bytecode"
1000	---help---
1001	  This kernel feature is useful for number crunching applications
1002	  that may need to compute untrusted bytecode during their
1003	  execution. By using pipes or other transports made available to
1004	  the process as file descriptors supporting the read/write
1005	  syscalls, it's possible to isolate those applications in
1006	  their own address space using seccomp. Once seccomp is
1007	  enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1008	  and the task is only allowed to execute a few safe syscalls
1009	  defined by each seccomp mode.
1010
1011config PARAVIRT
1012	bool "Enable paravirtualization code"
1013	help
1014	  This changes the kernel so it can modify itself when it is run
1015	  under a hypervisor, potentially improving performance significantly
1016	  over full virtualization.
1017
1018config PARAVIRT_TIME_ACCOUNTING
1019	bool "Paravirtual steal time accounting"
1020	select PARAVIRT
1021	help
1022	  Select this option to enable fine granularity task steal time
1023	  accounting. Time spent executing other tasks in parallel with
1024	  the current vCPU is discounted from the vCPU power. To account for
1025	  that, there can be a small performance impact.
1026
1027	  If in doubt, say N here.
1028
1029config KEXEC
1030	depends on PM_SLEEP_SMP
1031	select KEXEC_CORE
1032	bool "kexec system call"
1033	---help---
1034	  kexec is a system call that implements the ability to shutdown your
1035	  current kernel, and to start another kernel.  It is like a reboot
1036	  but it is independent of the system firmware.   And like a reboot
1037	  you can start any kernel with it, not just Linux.
1038
1039config KEXEC_FILE
1040	bool "kexec file based system call"
1041	select KEXEC_CORE
1042	help
1043	  This is new version of kexec system call. This system call is
1044	  file based and takes file descriptors as system call argument
1045	  for kernel and initramfs as opposed to list of segments as
1046	  accepted by previous system call.
1047
1048config KEXEC_SIG
1049	bool "Verify kernel signature during kexec_file_load() syscall"
1050	depends on KEXEC_FILE
1051	help
1052	  Select this option to verify a signature with loaded kernel
1053	  image. If configured, any attempt of loading a image without
1054	  valid signature will fail.
1055
1056	  In addition to that option, you need to enable signature
1057	  verification for the corresponding kernel image type being
1058	  loaded in order for this to work.
1059
1060config KEXEC_IMAGE_VERIFY_SIG
1061	bool "Enable Image signature verification support"
1062	default y
1063	depends on KEXEC_SIG
1064	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1065	help
1066	  Enable Image signature verification support.
1067
1068comment "Support for PE file signature verification disabled"
1069	depends on KEXEC_SIG
1070	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1071
1072config CRASH_DUMP
1073	bool "Build kdump crash kernel"
1074	help
1075	  Generate crash dump after being started by kexec. This should
1076	  be normally only set in special crash dump kernels which are
1077	  loaded in the main kernel with kexec-tools into a specially
1078	  reserved region and then later executed after a crash by
1079	  kdump/kexec.
1080
1081	  For more details see Documentation/admin-guide/kdump/kdump.rst
1082
1083config XEN_DOM0
1084	def_bool y
1085	depends on XEN
1086
1087config XEN
1088	bool "Xen guest support on ARM64"
1089	depends on ARM64 && OF
1090	select SWIOTLB_XEN
1091	select PARAVIRT
1092	help
1093	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1094
1095config FORCE_MAX_ZONEORDER
1096	int
1097	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
1098	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
1099	default "11"
1100	help
1101	  The kernel memory allocator divides physically contiguous memory
1102	  blocks into "zones", where each zone is a power of two number of
1103	  pages.  This option selects the largest power of two that the kernel
1104	  keeps in the memory allocator.  If you need to allocate very large
1105	  blocks of physically contiguous memory, then you may need to
1106	  increase this value.
1107
1108	  This config option is actually maximum order plus one. For example,
1109	  a value of 11 means that the largest free memory block is 2^10 pages.
1110
1111	  We make sure that we can allocate upto a HugePage size for each configuration.
1112	  Hence we have :
1113		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1114
1115	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1116	  4M allocations matching the default size used by generic code.
1117
1118config UNMAP_KERNEL_AT_EL0
1119	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1120	default y
1121	help
1122	  Speculation attacks against some high-performance processors can
1123	  be used to bypass MMU permission checks and leak kernel data to
1124	  userspace. This can be defended against by unmapping the kernel
1125	  when running in userspace, mapping it back in on exception entry
1126	  via a trampoline page in the vector table.
1127
1128	  If unsure, say Y.
1129
1130config HARDEN_BRANCH_PREDICTOR
1131	bool "Harden the branch predictor against aliasing attacks" if EXPERT
1132	default y
1133	help
1134	  Speculation attacks against some high-performance processors rely on
1135	  being able to manipulate the branch predictor for a victim context by
1136	  executing aliasing branches in the attacker context.  Such attacks
1137	  can be partially mitigated against by clearing internal branch
1138	  predictor state and limiting the prediction logic in some situations.
1139
1140	  This config option will take CPU-specific actions to harden the
1141	  branch predictor against aliasing attacks and may rely on specific
1142	  instruction sequences or control bits being set by the system
1143	  firmware.
1144
1145	  If unsure, say Y.
1146
1147config HARDEN_EL2_VECTORS
1148	bool "Harden EL2 vector mapping against system register leak" if EXPERT
1149	default y
1150	help
1151	  Speculation attacks against some high-performance processors can
1152	  be used to leak privileged information such as the vector base
1153	  register, resulting in a potential defeat of the EL2 layout
1154	  randomization.
1155
1156	  This config option will map the vectors to a fixed location,
1157	  independent of the EL2 code mapping, so that revealing VBAR_EL2
1158	  to an attacker does not give away any extra information. This
1159	  only gets enabled on affected CPUs.
1160
1161	  If unsure, say Y.
1162
1163config ARM64_SSBD
1164	bool "Speculative Store Bypass Disable" if EXPERT
1165	default y
1166	help
1167	  This enables mitigation of the bypassing of previous stores
1168	  by speculative loads.
1169
1170	  If unsure, say Y.
1171
1172config RODATA_FULL_DEFAULT_ENABLED
1173	bool "Apply r/o permissions of VM areas also to their linear aliases"
1174	default y
1175	help
1176	  Apply read-only attributes of VM areas to the linear alias of
1177	  the backing pages as well. This prevents code or read-only data
1178	  from being modified (inadvertently or intentionally) via another
1179	  mapping of the same memory page. This additional enhancement can
1180	  be turned off at runtime by passing rodata=[off|on] (and turned on
1181	  with rodata=full if this option is set to 'n')
1182
1183	  This requires the linear region to be mapped down to pages,
1184	  which may adversely affect performance in some cases.
1185
1186config ARM64_SW_TTBR0_PAN
1187	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1188	help
1189	  Enabling this option prevents the kernel from accessing
1190	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1191	  zeroed area and reserved ASID. The user access routines
1192	  restore the valid TTBR0_EL1 temporarily.
1193
1194config ARM64_TAGGED_ADDR_ABI
1195	bool "Enable the tagged user addresses syscall ABI"
1196	default y
1197	help
1198	  When this option is enabled, user applications can opt in to a
1199	  relaxed ABI via prctl() allowing tagged addresses to be passed
1200	  to system calls as pointer arguments. For details, see
1201	  Documentation/arm64/tagged-address-abi.rst.
1202
1203menuconfig COMPAT
1204	bool "Kernel support for 32-bit EL0"
1205	depends on ARM64_4K_PAGES || EXPERT
1206	select COMPAT_BINFMT_ELF if BINFMT_ELF
1207	select HAVE_UID16
1208	select OLD_SIGSUSPEND3
1209	select COMPAT_OLD_SIGACTION
1210	help
1211	  This option enables support for a 32-bit EL0 running under a 64-bit
1212	  kernel at EL1. AArch32-specific components such as system calls,
1213	  the user helper functions, VFP support and the ptrace interface are
1214	  handled appropriately by the kernel.
1215
1216	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1217	  that you will only be able to execute AArch32 binaries that were compiled
1218	  with page size aligned segments.
1219
1220	  If you want to execute 32-bit userspace applications, say Y.
1221
1222if COMPAT
1223
1224config KUSER_HELPERS
1225	bool "Enable kuser helpers page for 32-bit applications"
1226	default y
1227	help
1228	  Warning: disabling this option may break 32-bit user programs.
1229
1230	  Provide kuser helpers to compat tasks. The kernel provides
1231	  helper code to userspace in read only form at a fixed location
1232	  to allow userspace to be independent of the CPU type fitted to
1233	  the system. This permits binaries to be run on ARMv4 through
1234	  to ARMv8 without modification.
1235
1236	  See Documentation/arm/kernel_user_helpers.rst for details.
1237
1238	  However, the fixed address nature of these helpers can be used
1239	  by ROP (return orientated programming) authors when creating
1240	  exploits.
1241
1242	  If all of the binaries and libraries which run on your platform
1243	  are built specifically for your platform, and make no use of
1244	  these helpers, then you can turn this option off to hinder
1245	  such exploits. However, in that case, if a binary or library
1246	  relying on those helpers is run, it will not function correctly.
1247
1248	  Say N here only if you are absolutely certain that you do not
1249	  need these helpers; otherwise, the safe option is to say Y.
1250
1251config COMPAT_VDSO
1252	bool "Enable vDSO for 32-bit applications"
1253	depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
1254	select GENERIC_COMPAT_VDSO
1255	default y
1256	help
1257	  Place in the process address space of 32-bit applications an
1258	  ELF shared object providing fast implementations of gettimeofday
1259	  and clock_gettime.
1260
1261	  You must have a 32-bit build of glibc 2.22 or later for programs
1262	  to seamlessly take advantage of this.
1263
1264menuconfig ARMV8_DEPRECATED
1265	bool "Emulate deprecated/obsolete ARMv8 instructions"
1266	depends on SYSCTL
1267	help
1268	  Legacy software support may require certain instructions
1269	  that have been deprecated or obsoleted in the architecture.
1270
1271	  Enable this config to enable selective emulation of these
1272	  features.
1273
1274	  If unsure, say Y
1275
1276if ARMV8_DEPRECATED
1277
1278config SWP_EMULATION
1279	bool "Emulate SWP/SWPB instructions"
1280	help
1281	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1282	  they are always undefined. Say Y here to enable software
1283	  emulation of these instructions for userspace using LDXR/STXR.
1284
1285	  In some older versions of glibc [<=2.8] SWP is used during futex
1286	  trylock() operations with the assumption that the code will not
1287	  be preempted. This invalid assumption may be more likely to fail
1288	  with SWP emulation enabled, leading to deadlock of the user
1289	  application.
1290
1291	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1292	  on an external transaction monitoring block called a global
1293	  monitor to maintain update atomicity. If your system does not
1294	  implement a global monitor, this option can cause programs that
1295	  perform SWP operations to uncached memory to deadlock.
1296
1297	  If unsure, say Y
1298
1299config CP15_BARRIER_EMULATION
1300	bool "Emulate CP15 Barrier instructions"
1301	help
1302	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1303	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1304	  strongly recommended to use the ISB, DSB, and DMB
1305	  instructions instead.
1306
1307	  Say Y here to enable software emulation of these
1308	  instructions for AArch32 userspace code. When this option is
1309	  enabled, CP15 barrier usage is traced which can help
1310	  identify software that needs updating.
1311
1312	  If unsure, say Y
1313
1314config SETEND_EMULATION
1315	bool "Emulate SETEND instruction"
1316	help
1317	  The SETEND instruction alters the data-endianness of the
1318	  AArch32 EL0, and is deprecated in ARMv8.
1319
1320	  Say Y here to enable software emulation of the instruction
1321	  for AArch32 userspace code.
1322
1323	  Note: All the cpus on the system must have mixed endian support at EL0
1324	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1325	  endian - is hotplugged in after this feature has been enabled, there could
1326	  be unexpected results in the applications.
1327
1328	  If unsure, say Y
1329endif
1330
1331endif
1332
1333menu "ARMv8.1 architectural features"
1334
1335config ARM64_HW_AFDBM
1336	bool "Support for hardware updates of the Access and Dirty page flags"
1337	default y
1338	help
1339	  The ARMv8.1 architecture extensions introduce support for
1340	  hardware updates of the access and dirty information in page
1341	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1342	  capable processors, accesses to pages with PTE_AF cleared will
1343	  set this bit instead of raising an access flag fault.
1344	  Similarly, writes to read-only pages with the DBM bit set will
1345	  clear the read-only bit (AP[2]) instead of raising a
1346	  permission fault.
1347
1348	  Kernels built with this configuration option enabled continue
1349	  to work on pre-ARMv8.1 hardware and the performance impact is
1350	  minimal. If unsure, say Y.
1351
1352config ARM64_PAN
1353	bool "Enable support for Privileged Access Never (PAN)"
1354	default y
1355	help
1356	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1357	 prevents the kernel or hypervisor from accessing user-space (EL0)
1358	 memory directly.
1359
1360	 Choosing this option will cause any unprotected (not using
1361	 copy_to_user et al) memory access to fail with a permission fault.
1362
1363	 The feature is detected at runtime, and will remain as a 'nop'
1364	 instruction if the cpu does not implement the feature.
1365
1366config ARM64_LSE_ATOMICS
1367	bool "Atomic instructions"
1368	depends on JUMP_LABEL
1369	default y
1370	help
1371	  As part of the Large System Extensions, ARMv8.1 introduces new
1372	  atomic instructions that are designed specifically to scale in
1373	  very large systems.
1374
1375	  Say Y here to make use of these instructions for the in-kernel
1376	  atomic routines. This incurs a small overhead on CPUs that do
1377	  not support these instructions and requires the kernel to be
1378	  built with binutils >= 2.25 in order for the new instructions
1379	  to be used.
1380
1381config ARM64_VHE
1382	bool "Enable support for Virtualization Host Extensions (VHE)"
1383	default y
1384	help
1385	  Virtualization Host Extensions (VHE) allow the kernel to run
1386	  directly at EL2 (instead of EL1) on processors that support
1387	  it. This leads to better performance for KVM, as they reduce
1388	  the cost of the world switch.
1389
1390	  Selecting this option allows the VHE feature to be detected
1391	  at runtime, and does not affect processors that do not
1392	  implement this feature.
1393
1394endmenu
1395
1396menu "ARMv8.2 architectural features"
1397
1398config ARM64_UAO
1399	bool "Enable support for User Access Override (UAO)"
1400	default y
1401	help
1402	  User Access Override (UAO; part of the ARMv8.2 Extensions)
1403	  causes the 'unprivileged' variant of the load/store instructions to
1404	  be overridden to be privileged.
1405
1406	  This option changes get_user() and friends to use the 'unprivileged'
1407	  variant of the load/store instructions. This ensures that user-space
1408	  really did have access to the supplied memory. When addr_limit is
1409	  set to kernel memory the UAO bit will be set, allowing privileged
1410	  access to kernel memory.
1411
1412	  Choosing this option will cause copy_to_user() et al to use user-space
1413	  memory permissions.
1414
1415	  The feature is detected at runtime, the kernel will use the
1416	  regular load/store instructions if the cpu does not implement the
1417	  feature.
1418
1419config ARM64_PMEM
1420	bool "Enable support for persistent memory"
1421	select ARCH_HAS_PMEM_API
1422	select ARCH_HAS_UACCESS_FLUSHCACHE
1423	help
1424	  Say Y to enable support for the persistent memory API based on the
1425	  ARMv8.2 DCPoP feature.
1426
1427	  The feature is detected at runtime, and the kernel will use DC CVAC
1428	  operations if DC CVAP is not supported (following the behaviour of
1429	  DC CVAP itself if the system does not define a point of persistence).
1430
1431config ARM64_RAS_EXTN
1432	bool "Enable support for RAS CPU Extensions"
1433	default y
1434	help
1435	  CPUs that support the Reliability, Availability and Serviceability
1436	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1437	  errors, classify them and report them to software.
1438
1439	  On CPUs with these extensions system software can use additional
1440	  barriers to determine if faults are pending and read the
1441	  classification from a new set of registers.
1442
1443	  Selecting this feature will allow the kernel to use these barriers
1444	  and access the new registers if the system supports the extension.
1445	  Platform RAS features may additionally depend on firmware support.
1446
1447config ARM64_CNP
1448	bool "Enable support for Common Not Private (CNP) translations"
1449	default y
1450	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1451	help
1452	  Common Not Private (CNP) allows translation table entries to
1453	  be shared between different PEs in the same inner shareable
1454	  domain, so the hardware can use this fact to optimise the
1455	  caching of such entries in the TLB.
1456
1457	  Selecting this option allows the CNP feature to be detected
1458	  at runtime, and does not affect PEs that do not implement
1459	  this feature.
1460
1461endmenu
1462
1463menu "ARMv8.3 architectural features"
1464
1465config ARM64_PTR_AUTH
1466	bool "Enable support for pointer authentication"
1467	default y
1468	depends on !KVM || ARM64_VHE
1469	help
1470	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1471	  instructions for signing and authenticating pointers against secret
1472	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1473	  and other attacks.
1474
1475	  This option enables these instructions at EL0 (i.e. for userspace).
1476
1477	  Choosing this option will cause the kernel to initialise secret keys
1478	  for each process at exec() time, with these keys being
1479	  context-switched along with the process.
1480
1481	  The feature is detected at runtime. If the feature is not present in
1482	  hardware it will not be advertised to userspace/KVM guest nor will it
1483	  be enabled. However, KVM guest also require VHE mode and hence
1484	  CONFIG_ARM64_VHE=y option to use this feature.
1485
1486endmenu
1487
1488config ARM64_SVE
1489	bool "ARM Scalable Vector Extension support"
1490	default y
1491	depends on !KVM || ARM64_VHE
1492	help
1493	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1494	  execution state which complements and extends the SIMD functionality
1495	  of the base architecture to support much larger vectors and to enable
1496	  additional vectorisation opportunities.
1497
1498	  To enable use of this extension on CPUs that implement it, say Y.
1499
1500	  On CPUs that support the SVE2 extensions, this option will enable
1501	  those too.
1502
1503	  Note that for architectural reasons, firmware _must_ implement SVE
1504	  support when running on SVE capable hardware.  The required support
1505	  is present in:
1506
1507	    * version 1.5 and later of the ARM Trusted Firmware
1508	    * the AArch64 boot wrapper since commit 5e1261e08abf
1509	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1510
1511	  For other firmware implementations, consult the firmware documentation
1512	  or vendor.
1513
1514	  If you need the kernel to boot on SVE-capable hardware with broken
1515	  firmware, you may need to say N here until you get your firmware
1516	  fixed.  Otherwise, you may experience firmware panics or lockups when
1517	  booting the kernel.  If unsure and you are not observing these
1518	  symptoms, you should assume that it is safe to say Y.
1519
1520	  CPUs that support SVE are architecturally required to support the
1521	  Virtualization Host Extensions (VHE), so the kernel makes no
1522	  provision for supporting SVE alongside KVM without VHE enabled.
1523	  Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
1524	  KVM in the same kernel image.
1525
1526config ARM64_MODULE_PLTS
1527	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1528	depends on MODULES
1529	select HAVE_MOD_ARCH_SPECIFIC
1530	help
1531	  Allocate PLTs when loading modules so that jumps and calls whose
1532	  targets are too far away for their relative offsets to be encoded
1533	  in the instructions themselves can be bounced via veneers in the
1534	  module's PLT. This allows modules to be allocated in the generic
1535	  vmalloc area after the dedicated module memory area has been
1536	  exhausted.
1537
1538	  When running with address space randomization (KASLR), the module
1539	  region itself may be too far away for ordinary relative jumps and
1540	  calls, and so in that case, module PLTs are required and cannot be
1541	  disabled.
1542
1543	  Specific errata workaround(s) might also force module PLTs to be
1544	  enabled (ARM64_ERRATUM_843419).
1545
1546config ARM64_PSEUDO_NMI
1547	bool "Support for NMI-like interrupts"
1548	select CONFIG_ARM_GIC_V3
1549	help
1550	  Adds support for mimicking Non-Maskable Interrupts through the use of
1551	  GIC interrupt priority. This support requires version 3 or later of
1552	  ARM GIC.
1553
1554	  This high priority configuration for interrupts needs to be
1555	  explicitly enabled by setting the kernel parameter
1556	  "irqchip.gicv3_pseudo_nmi" to 1.
1557
1558	  If unsure, say N
1559
1560if ARM64_PSEUDO_NMI
1561config ARM64_DEBUG_PRIORITY_MASKING
1562	bool "Debug interrupt priority masking"
1563	help
1564	  This adds runtime checks to functions enabling/disabling
1565	  interrupts when using priority masking. The additional checks verify
1566	  the validity of ICC_PMR_EL1 when calling concerned functions.
1567
1568	  If unsure, say N
1569endif
1570
1571config RELOCATABLE
1572	bool
1573	select ARCH_HAS_RELR
1574	help
1575	  This builds the kernel as a Position Independent Executable (PIE),
1576	  which retains all relocation metadata required to relocate the
1577	  kernel binary at runtime to a different virtual address than the
1578	  address it was linked at.
1579	  Since AArch64 uses the RELA relocation format, this requires a
1580	  relocation pass at runtime even if the kernel is loaded at the
1581	  same address it was linked at.
1582
1583config RANDOMIZE_BASE
1584	bool "Randomize the address of the kernel image"
1585	select ARM64_MODULE_PLTS if MODULES
1586	select RELOCATABLE
1587	help
1588	  Randomizes the virtual address at which the kernel image is
1589	  loaded, as a security feature that deters exploit attempts
1590	  relying on knowledge of the location of kernel internals.
1591
1592	  It is the bootloader's job to provide entropy, by passing a
1593	  random u64 value in /chosen/kaslr-seed at kernel entry.
1594
1595	  When booting via the UEFI stub, it will invoke the firmware's
1596	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1597	  to the kernel proper. In addition, it will randomise the physical
1598	  location of the kernel Image as well.
1599
1600	  If unsure, say N.
1601
1602config RANDOMIZE_MODULE_REGION_FULL
1603	bool "Randomize the module region over a 4 GB range"
1604	depends on RANDOMIZE_BASE
1605	default y
1606	help
1607	  Randomizes the location of the module region inside a 4 GB window
1608	  covering the core kernel. This way, it is less likely for modules
1609	  to leak information about the location of core kernel data structures
1610	  but it does imply that function calls between modules and the core
1611	  kernel will need to be resolved via veneers in the module PLT.
1612
1613	  When this option is not set, the module region will be randomized over
1614	  a limited range that contains the [_stext, _etext] interval of the
1615	  core kernel, so branch relocations are always in range.
1616
1617config CC_HAVE_STACKPROTECTOR_SYSREG
1618	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1619
1620config STACKPROTECTOR_PER_TASK
1621	def_bool y
1622	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1623
1624endmenu
1625
1626menu "Boot options"
1627
1628config ARM64_ACPI_PARKING_PROTOCOL
1629	bool "Enable support for the ARM64 ACPI parking protocol"
1630	depends on ACPI
1631	help
1632	  Enable support for the ARM64 ACPI parking protocol. If disabled
1633	  the kernel will not allow booting through the ARM64 ACPI parking
1634	  protocol even if the corresponding data is present in the ACPI
1635	  MADT table.
1636
1637config CMDLINE
1638	string "Default kernel command string"
1639	default ""
1640	help
1641	  Provide a set of default command-line options at build time by
1642	  entering them here. As a minimum, you should specify the the
1643	  root device (e.g. root=/dev/nfs).
1644
1645config CMDLINE_FORCE
1646	bool "Always use the default kernel command string"
1647	depends on CMDLINE != ""
1648	help
1649	  Always use the default kernel command string, even if the boot
1650	  loader passes other arguments to the kernel.
1651	  This is useful if you cannot or don't want to change the
1652	  command-line options your boot loader passes to the kernel.
1653
1654config EFI_STUB
1655	bool
1656
1657config EFI
1658	bool "UEFI runtime support"
1659	depends on OF && !CPU_BIG_ENDIAN
1660	depends on KERNEL_MODE_NEON
1661	select ARCH_SUPPORTS_ACPI
1662	select LIBFDT
1663	select UCS2_STRING
1664	select EFI_PARAMS_FROM_FDT
1665	select EFI_RUNTIME_WRAPPERS
1666	select EFI_STUB
1667	select EFI_ARMSTUB
1668	default y
1669	help
1670	  This option provides support for runtime services provided
1671	  by UEFI firmware (such as non-volatile variables, realtime
1672          clock, and platform reset). A UEFI stub is also provided to
1673	  allow the kernel to be booted as an EFI application. This
1674	  is only useful on systems that have UEFI firmware.
1675
1676config DMI
1677	bool "Enable support for SMBIOS (DMI) tables"
1678	depends on EFI
1679	default y
1680	help
1681	  This enables SMBIOS/DMI feature for systems.
1682
1683	  This option is only useful on systems that have UEFI firmware.
1684	  However, even with this option, the resultant kernel should
1685	  continue to boot on existing non-UEFI platforms.
1686
1687endmenu
1688
1689config SYSVIPC_COMPAT
1690	def_bool y
1691	depends on COMPAT && SYSVIPC
1692
1693config ARCH_ENABLE_HUGEPAGE_MIGRATION
1694	def_bool y
1695	depends on HUGETLB_PAGE && MIGRATION
1696
1697menu "Power management options"
1698
1699source "kernel/power/Kconfig"
1700
1701config ARCH_HIBERNATION_POSSIBLE
1702	def_bool y
1703	depends on CPU_PM
1704
1705config ARCH_HIBERNATION_HEADER
1706	def_bool y
1707	depends on HIBERNATION
1708
1709config ARCH_SUSPEND_POSSIBLE
1710	def_bool y
1711
1712endmenu
1713
1714menu "CPU Power Management"
1715
1716source "drivers/cpuidle/Kconfig"
1717
1718source "drivers/cpufreq/Kconfig"
1719
1720endmenu
1721
1722source "drivers/firmware/Kconfig"
1723
1724source "drivers/acpi/Kconfig"
1725
1726source "arch/arm64/kvm/Kconfig"
1727
1728if CRYPTO
1729source "arch/arm64/crypto/Kconfig"
1730endif
1731