xref: /openbmc/linux/arch/arm64/Kconfig (revision 47010c04)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_EXTRA_PHDRS
14	select ARCH_BINFMT_ELF_STATE
15	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
16	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
17	select ARCH_ENABLE_MEMORY_HOTPLUG
18	select ARCH_ENABLE_MEMORY_HOTREMOVE
19	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
20	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
21	select ARCH_HAS_CACHE_LINE_SIZE
22	select ARCH_HAS_CURRENT_STACK_POINTER
23	select ARCH_HAS_DEBUG_VIRTUAL
24	select ARCH_HAS_DEBUG_VM_PGTABLE
25	select ARCH_HAS_DMA_PREP_COHERENT
26	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
27	select ARCH_HAS_FAST_MULTIPLIER
28	select ARCH_HAS_FORTIFY_SOURCE
29	select ARCH_HAS_GCOV_PROFILE_ALL
30	select ARCH_HAS_GIGANTIC_PAGE
31	select ARCH_HAS_KCOV
32	select ARCH_HAS_KEEPINITRD
33	select ARCH_HAS_MEMBARRIER_SYNC_CORE
34	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
35	select ARCH_HAS_PTE_DEVMAP
36	select ARCH_HAS_PTE_SPECIAL
37	select ARCH_HAS_SETUP_DMA_OPS
38	select ARCH_HAS_SET_DIRECT_MAP
39	select ARCH_HAS_SET_MEMORY
40	select ARCH_STACKWALK
41	select ARCH_HAS_STRICT_KERNEL_RWX
42	select ARCH_HAS_STRICT_MODULE_RWX
43	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
44	select ARCH_HAS_SYNC_DMA_FOR_CPU
45	select ARCH_HAS_SYSCALL_WRAPPER
46	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
47	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
48	select ARCH_HAS_VM_GET_PAGE_PROT
49	select ARCH_HAS_ZONE_DMA_SET if EXPERT
50	select ARCH_HAVE_ELF_PROT
51	select ARCH_HAVE_NMI_SAFE_CMPXCHG
52	select ARCH_INLINE_READ_LOCK if !PREEMPTION
53	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
54	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
55	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
56	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
57	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
58	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
59	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
60	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
61	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
62	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
63	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
64	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
65	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
66	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
67	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
68	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
69	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
70	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
71	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
72	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
73	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
74	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
75	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
76	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
77	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
78	select ARCH_KEEP_MEMBLOCK
79	select ARCH_USE_CMPXCHG_LOCKREF
80	select ARCH_USE_GNU_PROPERTY
81	select ARCH_USE_MEMTEST
82	select ARCH_USE_QUEUED_RWLOCKS
83	select ARCH_USE_QUEUED_SPINLOCKS
84	select ARCH_USE_SYM_ANNOTATIONS
85	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
86	select ARCH_SUPPORTS_HUGETLBFS
87	select ARCH_SUPPORTS_MEMORY_FAILURE
88	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
89	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
90	select ARCH_SUPPORTS_LTO_CLANG_THIN
91	select ARCH_SUPPORTS_CFI_CLANG
92	select ARCH_SUPPORTS_ATOMIC_RMW
93	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
94	select ARCH_SUPPORTS_NUMA_BALANCING
95	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
96	select ARCH_WANT_DEFAULT_BPF_JIT
97	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
98	select ARCH_WANT_FRAME_POINTERS
99	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
100	select ARCH_WANT_HUGETLB_PAGE_OPTIMIZE_VMEMMAP
101	select ARCH_WANT_LD_ORPHAN_WARN
102	select ARCH_WANTS_NO_INSTR
103	select ARCH_HAS_UBSAN_SANITIZE_ALL
104	select ARM_AMBA
105	select ARM_ARCH_TIMER
106	select ARM_GIC
107	select AUDIT_ARCH_COMPAT_GENERIC
108	select ARM_GIC_V2M if PCI
109	select ARM_GIC_V3
110	select ARM_GIC_V3_ITS if PCI
111	select ARM_PSCI_FW
112	select BUILDTIME_TABLE_SORT
113	select CLONE_BACKWARDS
114	select COMMON_CLK
115	select CPU_PM if (SUSPEND || CPU_IDLE)
116	select CRC32
117	select DCACHE_WORD_ACCESS
118	select DMA_DIRECT_REMAP
119	select EDAC_SUPPORT
120	select FRAME_POINTER
121	select GENERIC_ALLOCATOR
122	select GENERIC_ARCH_TOPOLOGY
123	select GENERIC_CLOCKEVENTS_BROADCAST
124	select GENERIC_CPU_AUTOPROBE
125	select GENERIC_CPU_VULNERABILITIES
126	select GENERIC_EARLY_IOREMAP
127	select GENERIC_IDLE_POLL_SETUP
128	select GENERIC_IRQ_IPI
129	select GENERIC_IRQ_PROBE
130	select GENERIC_IRQ_SHOW
131	select GENERIC_IRQ_SHOW_LEVEL
132	select GENERIC_LIB_DEVMEM_IS_ALLOWED
133	select GENERIC_PCI_IOMAP
134	select GENERIC_PTDUMP
135	select GENERIC_SCHED_CLOCK
136	select GENERIC_SMP_IDLE_THREAD
137	select GENERIC_TIME_VSYSCALL
138	select GENERIC_GETTIMEOFDAY
139	select GENERIC_VDSO_TIME_NS
140	select HARDIRQS_SW_RESEND
141	select HAVE_MOVE_PMD
142	select HAVE_MOVE_PUD
143	select HAVE_PCI
144	select HAVE_ACPI_APEI if (ACPI && EFI)
145	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
146	select HAVE_ARCH_AUDITSYSCALL
147	select HAVE_ARCH_BITREVERSE
148	select HAVE_ARCH_COMPILER_H
149	select HAVE_ARCH_HUGE_VMAP
150	select HAVE_ARCH_JUMP_LABEL
151	select HAVE_ARCH_JUMP_LABEL_RELATIVE
152	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
153	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
154	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
155	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
156	# Some instrumentation may be unsound, hence EXPERT
157	select HAVE_ARCH_KCSAN if EXPERT
158	select HAVE_ARCH_KFENCE
159	select HAVE_ARCH_KGDB
160	select HAVE_ARCH_MMAP_RND_BITS
161	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
162	select HAVE_ARCH_PREL32_RELOCATIONS
163	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
164	select HAVE_ARCH_SECCOMP_FILTER
165	select HAVE_ARCH_STACKLEAK
166	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
167	select HAVE_ARCH_TRACEHOOK
168	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
169	select HAVE_ARCH_VMAP_STACK
170	select HAVE_ARM_SMCCC
171	select HAVE_ASM_MODVERSIONS
172	select HAVE_EBPF_JIT
173	select HAVE_C_RECORDMCOUNT
174	select HAVE_CMPXCHG_DOUBLE
175	select HAVE_CMPXCHG_LOCAL
176	select HAVE_CONTEXT_TRACKING
177	select HAVE_DEBUG_KMEMLEAK
178	select HAVE_DMA_CONTIGUOUS
179	select HAVE_DYNAMIC_FTRACE
180	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
181		if DYNAMIC_FTRACE_WITH_REGS
182	select HAVE_EFFICIENT_UNALIGNED_ACCESS
183	select HAVE_FAST_GUP
184	select HAVE_FTRACE_MCOUNT_RECORD
185	select HAVE_FUNCTION_TRACER
186	select HAVE_FUNCTION_ERROR_INJECTION
187	select HAVE_FUNCTION_GRAPH_TRACER
188	select HAVE_GCC_PLUGINS
189	select HAVE_HW_BREAKPOINT if PERF_EVENTS
190	select HAVE_IRQ_TIME_ACCOUNTING
191	select HAVE_KVM
192	select HAVE_NMI
193	select HAVE_PATA_PLATFORM
194	select HAVE_PERF_EVENTS
195	select HAVE_PERF_REGS
196	select HAVE_PERF_USER_STACK_DUMP
197	select HAVE_PREEMPT_DYNAMIC_KEY
198	select HAVE_REGS_AND_STACK_ACCESS_API
199	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
200	select HAVE_FUNCTION_ARG_ACCESS_API
201	select MMU_GATHER_RCU_TABLE_FREE
202	select HAVE_RSEQ
203	select HAVE_STACKPROTECTOR
204	select HAVE_SYSCALL_TRACEPOINTS
205	select HAVE_KPROBES
206	select HAVE_KRETPROBES
207	select HAVE_GENERIC_VDSO
208	select IOMMU_DMA if IOMMU_SUPPORT
209	select IRQ_DOMAIN
210	select IRQ_FORCED_THREADING
211	select KASAN_VMALLOC if KASAN
212	select MODULES_USE_ELF_RELA
213	select NEED_DMA_MAP_STATE
214	select NEED_SG_DMA_LENGTH
215	select OF
216	select OF_EARLY_FLATTREE
217	select PCI_DOMAINS_GENERIC if PCI
218	select PCI_ECAM if (ACPI && PCI)
219	select PCI_SYSCALL if PCI
220	select POWER_RESET
221	select POWER_SUPPLY
222	select SPARSE_IRQ
223	select SWIOTLB
224	select SYSCTL_EXCEPTION_TRACE
225	select THREAD_INFO_IN_TASK
226	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
227	select TRACE_IRQFLAGS_SUPPORT
228	help
229	  ARM 64-bit (AArch64) Linux support.
230
231config CLANG_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
232	def_bool CC_IS_CLANG
233	# https://github.com/ClangBuiltLinux/linux/issues/1507
234	depends on AS_IS_GNU || (AS_IS_LLVM && (LD_IS_LLD || LD_VERSION >= 23600))
235	select HAVE_DYNAMIC_FTRACE_WITH_REGS
236
237config GCC_SUPPORTS_DYNAMIC_FTRACE_WITH_REGS
238	def_bool CC_IS_GCC
239	depends on $(cc-option,-fpatchable-function-entry=2)
240	select HAVE_DYNAMIC_FTRACE_WITH_REGS
241
242config 64BIT
243	def_bool y
244
245config MMU
246	def_bool y
247
248config ARM64_PAGE_SHIFT
249	int
250	default 16 if ARM64_64K_PAGES
251	default 14 if ARM64_16K_PAGES
252	default 12
253
254config ARM64_CONT_PTE_SHIFT
255	int
256	default 5 if ARM64_64K_PAGES
257	default 7 if ARM64_16K_PAGES
258	default 4
259
260config ARM64_CONT_PMD_SHIFT
261	int
262	default 5 if ARM64_64K_PAGES
263	default 5 if ARM64_16K_PAGES
264	default 4
265
266config ARCH_MMAP_RND_BITS_MIN
267       default 14 if ARM64_64K_PAGES
268       default 16 if ARM64_16K_PAGES
269       default 18
270
271# max bits determined by the following formula:
272#  VA_BITS - PAGE_SHIFT - 3
273config ARCH_MMAP_RND_BITS_MAX
274       default 19 if ARM64_VA_BITS=36
275       default 24 if ARM64_VA_BITS=39
276       default 27 if ARM64_VA_BITS=42
277       default 30 if ARM64_VA_BITS=47
278       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
279       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
280       default 33 if ARM64_VA_BITS=48
281       default 14 if ARM64_64K_PAGES
282       default 16 if ARM64_16K_PAGES
283       default 18
284
285config ARCH_MMAP_RND_COMPAT_BITS_MIN
286       default 7 if ARM64_64K_PAGES
287       default 9 if ARM64_16K_PAGES
288       default 11
289
290config ARCH_MMAP_RND_COMPAT_BITS_MAX
291       default 16
292
293config NO_IOPORT_MAP
294	def_bool y if !PCI
295
296config STACKTRACE_SUPPORT
297	def_bool y
298
299config ILLEGAL_POINTER_VALUE
300	hex
301	default 0xdead000000000000
302
303config LOCKDEP_SUPPORT
304	def_bool y
305
306config GENERIC_BUG
307	def_bool y
308	depends on BUG
309
310config GENERIC_BUG_RELATIVE_POINTERS
311	def_bool y
312	depends on GENERIC_BUG
313
314config GENERIC_HWEIGHT
315	def_bool y
316
317config GENERIC_CSUM
318        def_bool y
319
320config GENERIC_CALIBRATE_DELAY
321	def_bool y
322
323config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
324	def_bool y
325
326config SMP
327	def_bool y
328
329config KERNEL_MODE_NEON
330	def_bool y
331
332config FIX_EARLYCON_MEM
333	def_bool y
334
335config PGTABLE_LEVELS
336	int
337	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
338	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
339	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
340	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
341	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
342	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
343
344config ARCH_SUPPORTS_UPROBES
345	def_bool y
346
347config ARCH_PROC_KCORE_TEXT
348	def_bool y
349
350config BROKEN_GAS_INST
351	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
352
353config KASAN_SHADOW_OFFSET
354	hex
355	depends on KASAN_GENERIC || KASAN_SW_TAGS
356	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
357	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
358	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
359	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
360	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
361	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
362	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
363	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
364	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
365	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
366	default 0xffffffffffffffff
367
368source "arch/arm64/Kconfig.platforms"
369
370menu "Kernel Features"
371
372menu "ARM errata workarounds via the alternatives framework"
373
374config ARM64_WORKAROUND_CLEAN_CACHE
375	bool
376
377config ARM64_ERRATUM_826319
378	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
379	default y
380	select ARM64_WORKAROUND_CLEAN_CACHE
381	help
382	  This option adds an alternative code sequence to work around ARM
383	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
384	  AXI master interface and an L2 cache.
385
386	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
387	  and is unable to accept a certain write via this interface, it will
388	  not progress on read data presented on the read data channel and the
389	  system can deadlock.
390
391	  The workaround promotes data cache clean instructions to
392	  data cache clean-and-invalidate.
393	  Please note that this does not necessarily enable the workaround,
394	  as it depends on the alternative framework, which will only patch
395	  the kernel if an affected CPU is detected.
396
397	  If unsure, say Y.
398
399config ARM64_ERRATUM_827319
400	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
401	default y
402	select ARM64_WORKAROUND_CLEAN_CACHE
403	help
404	  This option adds an alternative code sequence to work around ARM
405	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
406	  master interface and an L2 cache.
407
408	  Under certain conditions this erratum can cause a clean line eviction
409	  to occur at the same time as another transaction to the same address
410	  on the AMBA 5 CHI interface, which can cause data corruption if the
411	  interconnect reorders the two transactions.
412
413	  The workaround promotes data cache clean instructions to
414	  data cache clean-and-invalidate.
415	  Please note that this does not necessarily enable the workaround,
416	  as it depends on the alternative framework, which will only patch
417	  the kernel if an affected CPU is detected.
418
419	  If unsure, say Y.
420
421config ARM64_ERRATUM_824069
422	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
423	default y
424	select ARM64_WORKAROUND_CLEAN_CACHE
425	help
426	  This option adds an alternative code sequence to work around ARM
427	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
428	  to a coherent interconnect.
429
430	  If a Cortex-A53 processor is executing a store or prefetch for
431	  write instruction at the same time as a processor in another
432	  cluster is executing a cache maintenance operation to the same
433	  address, then this erratum might cause a clean cache line to be
434	  incorrectly marked as dirty.
435
436	  The workaround promotes data cache clean instructions to
437	  data cache clean-and-invalidate.
438	  Please note that this option does not necessarily enable the
439	  workaround, as it depends on the alternative framework, which will
440	  only patch the kernel if an affected CPU is detected.
441
442	  If unsure, say Y.
443
444config ARM64_ERRATUM_819472
445	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
446	default y
447	select ARM64_WORKAROUND_CLEAN_CACHE
448	help
449	  This option adds an alternative code sequence to work around ARM
450	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
451	  present when it is connected to a coherent interconnect.
452
453	  If the processor is executing a load and store exclusive sequence at
454	  the same time as a processor in another cluster is executing a cache
455	  maintenance operation to the same address, then this erratum might
456	  cause data corruption.
457
458	  The workaround promotes data cache clean instructions to
459	  data cache clean-and-invalidate.
460	  Please note that this does not necessarily enable the workaround,
461	  as it depends on the alternative framework, which will only patch
462	  the kernel if an affected CPU is detected.
463
464	  If unsure, say Y.
465
466config ARM64_ERRATUM_832075
467	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
468	default y
469	help
470	  This option adds an alternative code sequence to work around ARM
471	  erratum 832075 on Cortex-A57 parts up to r1p2.
472
473	  Affected Cortex-A57 parts might deadlock when exclusive load/store
474	  instructions to Write-Back memory are mixed with Device loads.
475
476	  The workaround is to promote device loads to use Load-Acquire
477	  semantics.
478	  Please note that this does not necessarily enable the workaround,
479	  as it depends on the alternative framework, which will only patch
480	  the kernel if an affected CPU is detected.
481
482	  If unsure, say Y.
483
484config ARM64_ERRATUM_834220
485	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
486	depends on KVM
487	default y
488	help
489	  This option adds an alternative code sequence to work around ARM
490	  erratum 834220 on Cortex-A57 parts up to r1p2.
491
492	  Affected Cortex-A57 parts might report a Stage 2 translation
493	  fault as the result of a Stage 1 fault for load crossing a
494	  page boundary when there is a permission or device memory
495	  alignment fault at Stage 1 and a translation fault at Stage 2.
496
497	  The workaround is to verify that the Stage 1 translation
498	  doesn't generate a fault before handling the Stage 2 fault.
499	  Please note that this does not necessarily enable the workaround,
500	  as it depends on the alternative framework, which will only patch
501	  the kernel if an affected CPU is detected.
502
503	  If unsure, say Y.
504
505config ARM64_ERRATUM_845719
506	bool "Cortex-A53: 845719: a load might read incorrect data"
507	depends on COMPAT
508	default y
509	help
510	  This option adds an alternative code sequence to work around ARM
511	  erratum 845719 on Cortex-A53 parts up to r0p4.
512
513	  When running a compat (AArch32) userspace on an affected Cortex-A53
514	  part, a load at EL0 from a virtual address that matches the bottom 32
515	  bits of the virtual address used by a recent load at (AArch64) EL1
516	  might return incorrect data.
517
518	  The workaround is to write the contextidr_el1 register on exception
519	  return to a 32-bit task.
520	  Please note that this does not necessarily enable the workaround,
521	  as it depends on the alternative framework, which will only patch
522	  the kernel if an affected CPU is detected.
523
524	  If unsure, say Y.
525
526config ARM64_ERRATUM_843419
527	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
528	default y
529	select ARM64_MODULE_PLTS if MODULES
530	help
531	  This option links the kernel with '--fix-cortex-a53-843419' and
532	  enables PLT support to replace certain ADRP instructions, which can
533	  cause subsequent memory accesses to use an incorrect address on
534	  Cortex-A53 parts up to r0p4.
535
536	  If unsure, say Y.
537
538config ARM64_LD_HAS_FIX_ERRATUM_843419
539	def_bool $(ld-option,--fix-cortex-a53-843419)
540
541config ARM64_ERRATUM_1024718
542	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
543	default y
544	help
545	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
546
547	  Affected Cortex-A55 cores (all revisions) could cause incorrect
548	  update of the hardware dirty bit when the DBM/AP bits are updated
549	  without a break-before-make. The workaround is to disable the usage
550	  of hardware DBM locally on the affected cores. CPUs not affected by
551	  this erratum will continue to use the feature.
552
553	  If unsure, say Y.
554
555config ARM64_ERRATUM_1418040
556	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
557	default y
558	depends on COMPAT
559	help
560	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
561	  errata 1188873 and 1418040.
562
563	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
564	  cause register corruption when accessing the timer registers
565	  from AArch32 userspace.
566
567	  If unsure, say Y.
568
569config ARM64_WORKAROUND_SPECULATIVE_AT
570	bool
571
572config ARM64_ERRATUM_1165522
573	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
574	default y
575	select ARM64_WORKAROUND_SPECULATIVE_AT
576	help
577	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
578
579	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
580	  corrupted TLBs by speculating an AT instruction during a guest
581	  context switch.
582
583	  If unsure, say Y.
584
585config ARM64_ERRATUM_1319367
586	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
587	default y
588	select ARM64_WORKAROUND_SPECULATIVE_AT
589	help
590	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
591	  and A72 erratum 1319367
592
593	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
594	  speculating an AT instruction during a guest context switch.
595
596	  If unsure, say Y.
597
598config ARM64_ERRATUM_1530923
599	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
600	default y
601	select ARM64_WORKAROUND_SPECULATIVE_AT
602	help
603	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
604
605	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
606	  corrupted TLBs by speculating an AT instruction during a guest
607	  context switch.
608
609	  If unsure, say Y.
610
611config ARM64_WORKAROUND_REPEAT_TLBI
612	bool
613
614config ARM64_ERRATUM_1286807
615	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
616	default y
617	select ARM64_WORKAROUND_REPEAT_TLBI
618	help
619	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
620
621	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
622	  address for a cacheable mapping of a location is being
623	  accessed by a core while another core is remapping the virtual
624	  address to a new physical page using the recommended
625	  break-before-make sequence, then under very rare circumstances
626	  TLBI+DSB completes before a read using the translation being
627	  invalidated has been observed by other observers. The
628	  workaround repeats the TLBI+DSB operation.
629
630config ARM64_ERRATUM_1463225
631	bool "Cortex-A76: Software Step might prevent interrupt recognition"
632	default y
633	help
634	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
635
636	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
637	  of a system call instruction (SVC) can prevent recognition of
638	  subsequent interrupts when software stepping is disabled in the
639	  exception handler of the system call and either kernel debugging
640	  is enabled or VHE is in use.
641
642	  Work around the erratum by triggering a dummy step exception
643	  when handling a system call from a task that is being stepped
644	  in a VHE configuration of the kernel.
645
646	  If unsure, say Y.
647
648config ARM64_ERRATUM_1542419
649	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
650	default y
651	help
652	  This option adds a workaround for ARM Neoverse-N1 erratum
653	  1542419.
654
655	  Affected Neoverse-N1 cores could execute a stale instruction when
656	  modified by another CPU. The workaround depends on a firmware
657	  counterpart.
658
659	  Workaround the issue by hiding the DIC feature from EL0. This
660	  forces user-space to perform cache maintenance.
661
662	  If unsure, say Y.
663
664config ARM64_ERRATUM_1508412
665	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
666	default y
667	help
668	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
669
670	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
671	  of a store-exclusive or read of PAR_EL1 and a load with device or
672	  non-cacheable memory attributes. The workaround depends on a firmware
673	  counterpart.
674
675	  KVM guests must also have the workaround implemented or they can
676	  deadlock the system.
677
678	  Work around the issue by inserting DMB SY barriers around PAR_EL1
679	  register reads and warning KVM users. The DMB barrier is sufficient
680	  to prevent a speculative PAR_EL1 read.
681
682	  If unsure, say Y.
683
684config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
685	bool
686
687config ARM64_ERRATUM_2051678
688	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
689	default y
690	help
691	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
692	  Affected Cortex-A510 might not respect the ordering rules for
693	  hardware update of the page table's dirty bit. The workaround
694	  is to not enable the feature on affected CPUs.
695
696	  If unsure, say Y.
697
698config ARM64_ERRATUM_2077057
699	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
700	default y
701	help
702	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
703	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
704	  expected, but a Pointer Authentication trap is taken instead. The
705	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
706	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
707
708	  This can only happen when EL2 is stepping EL1.
709
710	  When these conditions occur, the SPSR_EL2 value is unchanged from the
711	  previous guest entry, and can be restored from the in-memory copy.
712
713	  If unsure, say Y.
714
715config ARM64_ERRATUM_2119858
716	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
717	default y
718	depends on CORESIGHT_TRBE
719	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
720	help
721	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
722
723	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
724	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
725	  the event of a WRAP event.
726
727	  Work around the issue by always making sure we move the TRBPTR_EL1 by
728	  256 bytes before enabling the buffer and filling the first 256 bytes of
729	  the buffer with ETM ignore packets upon disabling.
730
731	  If unsure, say Y.
732
733config ARM64_ERRATUM_2139208
734	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
735	default y
736	depends on CORESIGHT_TRBE
737	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
738	help
739	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
740
741	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
742	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
743	  the event of a WRAP event.
744
745	  Work around the issue by always making sure we move the TRBPTR_EL1 by
746	  256 bytes before enabling the buffer and filling the first 256 bytes of
747	  the buffer with ETM ignore packets upon disabling.
748
749	  If unsure, say Y.
750
751config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
752	bool
753
754config ARM64_ERRATUM_2054223
755	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
756	default y
757	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
758	help
759	  Enable workaround for ARM Cortex-A710 erratum 2054223
760
761	  Affected cores may fail to flush the trace data on a TSB instruction, when
762	  the PE is in trace prohibited state. This will cause losing a few bytes
763	  of the trace cached.
764
765	  Workaround is to issue two TSB consecutively on affected cores.
766
767	  If unsure, say Y.
768
769config ARM64_ERRATUM_2067961
770	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
771	default y
772	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
773	help
774	  Enable workaround for ARM Neoverse-N2 erratum 2067961
775
776	  Affected cores may fail to flush the trace data on a TSB instruction, when
777	  the PE is in trace prohibited state. This will cause losing a few bytes
778	  of the trace cached.
779
780	  Workaround is to issue two TSB consecutively on affected cores.
781
782	  If unsure, say Y.
783
784config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
785	bool
786
787config ARM64_ERRATUM_2253138
788	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
789	depends on CORESIGHT_TRBE
790	default y
791	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
792	help
793	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
794
795	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
796	  for TRBE. Under some conditions, the TRBE might generate a write to the next
797	  virtually addressed page following the last page of the TRBE address space
798	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
799
800	  Work around this in the driver by always making sure that there is a
801	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
802
803	  If unsure, say Y.
804
805config ARM64_ERRATUM_2224489
806	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
807	depends on CORESIGHT_TRBE
808	default y
809	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
810	help
811	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
812
813	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
814	  for TRBE. Under some conditions, the TRBE might generate a write to the next
815	  virtually addressed page following the last page of the TRBE address space
816	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
817
818	  Work around this in the driver by always making sure that there is a
819	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
820
821	  If unsure, say Y.
822
823config ARM64_ERRATUM_2064142
824	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
825	depends on CORESIGHT_TRBE
826	default y
827	help
828	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
829
830	  Affected Cortex-A510 core might fail to write into system registers after the
831	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
832	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
833	  and TRBTRG_EL1 will be ignored and will not be effected.
834
835	  Work around this in the driver by executing TSB CSYNC and DSB after collection
836	  is stopped and before performing a system register write to one of the affected
837	  registers.
838
839	  If unsure, say Y.
840
841config ARM64_ERRATUM_2038923
842	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
843	depends on CORESIGHT_TRBE
844	default y
845	help
846	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
847
848	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
849	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
850	  might be corrupted. This happens after TRBE buffer has been enabled by setting
851	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
852	  execution changes from a context, in which trace is prohibited to one where it
853	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
854	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
855	  the trace buffer state might be corrupted.
856
857	  Work around this in the driver by preventing an inconsistent view of whether the
858	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
859	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
860	  two ISB instructions if no ERET is to take place.
861
862	  If unsure, say Y.
863
864config ARM64_ERRATUM_1902691
865	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
866	depends on CORESIGHT_TRBE
867	default y
868	help
869	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
870
871	  Affected Cortex-A510 core might cause trace data corruption, when being written
872	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
873	  trace data.
874
875	  Work around this problem in the driver by just preventing TRBE initialization on
876	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
877	  on such implementations. This will cover the kernel for any firmware that doesn't
878	  do this already.
879
880	  If unsure, say Y.
881
882config CAVIUM_ERRATUM_22375
883	bool "Cavium erratum 22375, 24313"
884	default y
885	help
886	  Enable workaround for errata 22375 and 24313.
887
888	  This implements two gicv3-its errata workarounds for ThunderX. Both
889	  with a small impact affecting only ITS table allocation.
890
891	    erratum 22375: only alloc 8MB table size
892	    erratum 24313: ignore memory access type
893
894	  The fixes are in ITS initialization and basically ignore memory access
895	  type and table size provided by the TYPER and BASER registers.
896
897	  If unsure, say Y.
898
899config CAVIUM_ERRATUM_23144
900	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
901	depends on NUMA
902	default y
903	help
904	  ITS SYNC command hang for cross node io and collections/cpu mapping.
905
906	  If unsure, say Y.
907
908config CAVIUM_ERRATUM_23154
909	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
910	default y
911	help
912	  The ThunderX GICv3 implementation requires a modified version for
913	  reading the IAR status to ensure data synchronization
914	  (access to icc_iar1_el1 is not sync'ed before and after).
915
916	  It also suffers from erratum 38545 (also present on Marvell's
917	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
918	  spuriously presented to the CPU interface.
919
920	  If unsure, say Y.
921
922config CAVIUM_ERRATUM_27456
923	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
924	default y
925	help
926	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
927	  instructions may cause the icache to become corrupted if it
928	  contains data for a non-current ASID.  The fix is to
929	  invalidate the icache when changing the mm context.
930
931	  If unsure, say Y.
932
933config CAVIUM_ERRATUM_30115
934	bool "Cavium erratum 30115: Guest may disable interrupts in host"
935	default y
936	help
937	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
938	  1.2, and T83 Pass 1.0, KVM guest execution may disable
939	  interrupts in host. Trapping both GICv3 group-0 and group-1
940	  accesses sidesteps the issue.
941
942	  If unsure, say Y.
943
944config CAVIUM_TX2_ERRATUM_219
945	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
946	default y
947	help
948	  On Cavium ThunderX2, a load, store or prefetch instruction between a
949	  TTBR update and the corresponding context synchronizing operation can
950	  cause a spurious Data Abort to be delivered to any hardware thread in
951	  the CPU core.
952
953	  Work around the issue by avoiding the problematic code sequence and
954	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
955	  trap handler performs the corresponding register access, skips the
956	  instruction and ensures context synchronization by virtue of the
957	  exception return.
958
959	  If unsure, say Y.
960
961config FUJITSU_ERRATUM_010001
962	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
963	default y
964	help
965	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
966	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
967	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
968	  This fault occurs under a specific hardware condition when a
969	  load/store instruction performs an address translation using:
970	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
971	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
972	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
973	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
974
975	  The workaround is to ensure these bits are clear in TCR_ELx.
976	  The workaround only affects the Fujitsu-A64FX.
977
978	  If unsure, say Y.
979
980config HISILICON_ERRATUM_161600802
981	bool "Hip07 161600802: Erroneous redistributor VLPI base"
982	default y
983	help
984	  The HiSilicon Hip07 SoC uses the wrong redistributor base
985	  when issued ITS commands such as VMOVP and VMAPP, and requires
986	  a 128kB offset to be applied to the target address in this commands.
987
988	  If unsure, say Y.
989
990config QCOM_FALKOR_ERRATUM_1003
991	bool "Falkor E1003: Incorrect translation due to ASID change"
992	default y
993	help
994	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
995	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
996	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
997	  then only for entries in the walk cache, since the leaf translation
998	  is unchanged. Work around the erratum by invalidating the walk cache
999	  entries for the trampoline before entering the kernel proper.
1000
1001config QCOM_FALKOR_ERRATUM_1009
1002	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
1003	default y
1004	select ARM64_WORKAROUND_REPEAT_TLBI
1005	help
1006	  On Falkor v1, the CPU may prematurely complete a DSB following a
1007	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
1008	  one more time to fix the issue.
1009
1010	  If unsure, say Y.
1011
1012config QCOM_QDF2400_ERRATUM_0065
1013	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1014	default y
1015	help
1016	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1017	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1018	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1019
1020	  If unsure, say Y.
1021
1022config QCOM_FALKOR_ERRATUM_E1041
1023	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1024	default y
1025	help
1026	  Falkor CPU may speculatively fetch instructions from an improper
1027	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1028	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1029
1030	  If unsure, say Y.
1031
1032config NVIDIA_CARMEL_CNP_ERRATUM
1033	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1034	default y
1035	help
1036	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1037	  invalidate shared TLB entries installed by a different core, as it would
1038	  on standard ARM cores.
1039
1040	  If unsure, say Y.
1041
1042config SOCIONEXT_SYNQUACER_PREITS
1043	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1044	default y
1045	help
1046	  Socionext Synquacer SoCs implement a separate h/w block to generate
1047	  MSI doorbell writes with non-zero values for the device ID.
1048
1049	  If unsure, say Y.
1050
1051endmenu
1052
1053
1054choice
1055	prompt "Page size"
1056	default ARM64_4K_PAGES
1057	help
1058	  Page size (translation granule) configuration.
1059
1060config ARM64_4K_PAGES
1061	bool "4KB"
1062	help
1063	  This feature enables 4KB pages support.
1064
1065config ARM64_16K_PAGES
1066	bool "16KB"
1067	help
1068	  The system will use 16KB pages support. AArch32 emulation
1069	  requires applications compiled with 16K (or a multiple of 16K)
1070	  aligned segments.
1071
1072config ARM64_64K_PAGES
1073	bool "64KB"
1074	help
1075	  This feature enables 64KB pages support (4KB by default)
1076	  allowing only two levels of page tables and faster TLB
1077	  look-up. AArch32 emulation requires applications compiled
1078	  with 64K aligned segments.
1079
1080endchoice
1081
1082choice
1083	prompt "Virtual address space size"
1084	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1085	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1086	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1087	help
1088	  Allows choosing one of multiple possible virtual address
1089	  space sizes. The level of translation table is determined by
1090	  a combination of page size and virtual address space size.
1091
1092config ARM64_VA_BITS_36
1093	bool "36-bit" if EXPERT
1094	depends on ARM64_16K_PAGES
1095
1096config ARM64_VA_BITS_39
1097	bool "39-bit"
1098	depends on ARM64_4K_PAGES
1099
1100config ARM64_VA_BITS_42
1101	bool "42-bit"
1102	depends on ARM64_64K_PAGES
1103
1104config ARM64_VA_BITS_47
1105	bool "47-bit"
1106	depends on ARM64_16K_PAGES
1107
1108config ARM64_VA_BITS_48
1109	bool "48-bit"
1110
1111config ARM64_VA_BITS_52
1112	bool "52-bit"
1113	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1114	help
1115	  Enable 52-bit virtual addressing for userspace when explicitly
1116	  requested via a hint to mmap(). The kernel will also use 52-bit
1117	  virtual addresses for its own mappings (provided HW support for
1118	  this feature is available, otherwise it reverts to 48-bit).
1119
1120	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1121	  ARMv8.3 Pointer Authentication will result in the PAC being
1122	  reduced from 7 bits to 3 bits, which may have a significant
1123	  impact on its susceptibility to brute-force attacks.
1124
1125	  If unsure, select 48-bit virtual addressing instead.
1126
1127endchoice
1128
1129config ARM64_FORCE_52BIT
1130	bool "Force 52-bit virtual addresses for userspace"
1131	depends on ARM64_VA_BITS_52 && EXPERT
1132	help
1133	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1134	  to maintain compatibility with older software by providing 48-bit VAs
1135	  unless a hint is supplied to mmap.
1136
1137	  This configuration option disables the 48-bit compatibility logic, and
1138	  forces all userspace addresses to be 52-bit on HW that supports it. One
1139	  should only enable this configuration option for stress testing userspace
1140	  memory management code. If unsure say N here.
1141
1142config ARM64_VA_BITS
1143	int
1144	default 36 if ARM64_VA_BITS_36
1145	default 39 if ARM64_VA_BITS_39
1146	default 42 if ARM64_VA_BITS_42
1147	default 47 if ARM64_VA_BITS_47
1148	default 48 if ARM64_VA_BITS_48
1149	default 52 if ARM64_VA_BITS_52
1150
1151choice
1152	prompt "Physical address space size"
1153	default ARM64_PA_BITS_48
1154	help
1155	  Choose the maximum physical address range that the kernel will
1156	  support.
1157
1158config ARM64_PA_BITS_48
1159	bool "48-bit"
1160
1161config ARM64_PA_BITS_52
1162	bool "52-bit (ARMv8.2)"
1163	depends on ARM64_64K_PAGES
1164	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1165	help
1166	  Enable support for a 52-bit physical address space, introduced as
1167	  part of the ARMv8.2-LPA extension.
1168
1169	  With this enabled, the kernel will also continue to work on CPUs that
1170	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1171	  minor performance overhead).
1172
1173endchoice
1174
1175config ARM64_PA_BITS
1176	int
1177	default 48 if ARM64_PA_BITS_48
1178	default 52 if ARM64_PA_BITS_52
1179
1180choice
1181	prompt "Endianness"
1182	default CPU_LITTLE_ENDIAN
1183	help
1184	  Select the endianness of data accesses performed by the CPU. Userspace
1185	  applications will need to be compiled and linked for the endianness
1186	  that is selected here.
1187
1188config CPU_BIG_ENDIAN
1189	bool "Build big-endian kernel"
1190	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1191	help
1192	  Say Y if you plan on running a kernel with a big-endian userspace.
1193
1194config CPU_LITTLE_ENDIAN
1195	bool "Build little-endian kernel"
1196	help
1197	  Say Y if you plan on running a kernel with a little-endian userspace.
1198	  This is usually the case for distributions targeting arm64.
1199
1200endchoice
1201
1202config SCHED_MC
1203	bool "Multi-core scheduler support"
1204	help
1205	  Multi-core scheduler support improves the CPU scheduler's decision
1206	  making when dealing with multi-core CPU chips at a cost of slightly
1207	  increased overhead in some places. If unsure say N here.
1208
1209config SCHED_CLUSTER
1210	bool "Cluster scheduler support"
1211	help
1212	  Cluster scheduler support improves the CPU scheduler's decision
1213	  making when dealing with machines that have clusters of CPUs.
1214	  Cluster usually means a couple of CPUs which are placed closely
1215	  by sharing mid-level caches, last-level cache tags or internal
1216	  busses.
1217
1218config SCHED_SMT
1219	bool "SMT scheduler support"
1220	help
1221	  Improves the CPU scheduler's decision making when dealing with
1222	  MultiThreading at a cost of slightly increased overhead in some
1223	  places. If unsure say N here.
1224
1225config NR_CPUS
1226	int "Maximum number of CPUs (2-4096)"
1227	range 2 4096
1228	default "256"
1229
1230config HOTPLUG_CPU
1231	bool "Support for hot-pluggable CPUs"
1232	select GENERIC_IRQ_MIGRATION
1233	help
1234	  Say Y here to experiment with turning CPUs off and on.  CPUs
1235	  can be controlled through /sys/devices/system/cpu.
1236
1237# Common NUMA Features
1238config NUMA
1239	bool "NUMA Memory Allocation and Scheduler Support"
1240	select GENERIC_ARCH_NUMA
1241	select ACPI_NUMA if ACPI
1242	select OF_NUMA
1243	select HAVE_SETUP_PER_CPU_AREA
1244	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1245	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1246	select USE_PERCPU_NUMA_NODE_ID
1247	help
1248	  Enable NUMA (Non-Uniform Memory Access) support.
1249
1250	  The kernel will try to allocate memory used by a CPU on the
1251	  local memory of the CPU and add some more
1252	  NUMA awareness to the kernel.
1253
1254config NODES_SHIFT
1255	int "Maximum NUMA Nodes (as a power of 2)"
1256	range 1 10
1257	default "4"
1258	depends on NUMA
1259	help
1260	  Specify the maximum number of NUMA Nodes available on the target
1261	  system.  Increases memory reserved to accommodate various tables.
1262
1263source "kernel/Kconfig.hz"
1264
1265config ARCH_SPARSEMEM_ENABLE
1266	def_bool y
1267	select SPARSEMEM_VMEMMAP_ENABLE
1268	select SPARSEMEM_VMEMMAP
1269
1270config HW_PERF_EVENTS
1271	def_bool y
1272	depends on ARM_PMU
1273
1274# Supported by clang >= 7.0 or GCC >= 12.0.0
1275config CC_HAVE_SHADOW_CALL_STACK
1276	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1277
1278config PARAVIRT
1279	bool "Enable paravirtualization code"
1280	help
1281	  This changes the kernel so it can modify itself when it is run
1282	  under a hypervisor, potentially improving performance significantly
1283	  over full virtualization.
1284
1285config PARAVIRT_TIME_ACCOUNTING
1286	bool "Paravirtual steal time accounting"
1287	select PARAVIRT
1288	help
1289	  Select this option to enable fine granularity task steal time
1290	  accounting. Time spent executing other tasks in parallel with
1291	  the current vCPU is discounted from the vCPU power. To account for
1292	  that, there can be a small performance impact.
1293
1294	  If in doubt, say N here.
1295
1296config KEXEC
1297	depends on PM_SLEEP_SMP
1298	select KEXEC_CORE
1299	bool "kexec system call"
1300	help
1301	  kexec is a system call that implements the ability to shutdown your
1302	  current kernel, and to start another kernel.  It is like a reboot
1303	  but it is independent of the system firmware.   And like a reboot
1304	  you can start any kernel with it, not just Linux.
1305
1306config KEXEC_FILE
1307	bool "kexec file based system call"
1308	select KEXEC_CORE
1309	select HAVE_IMA_KEXEC if IMA
1310	help
1311	  This is new version of kexec system call. This system call is
1312	  file based and takes file descriptors as system call argument
1313	  for kernel and initramfs as opposed to list of segments as
1314	  accepted by previous system call.
1315
1316config KEXEC_SIG
1317	bool "Verify kernel signature during kexec_file_load() syscall"
1318	depends on KEXEC_FILE
1319	help
1320	  Select this option to verify a signature with loaded kernel
1321	  image. If configured, any attempt of loading a image without
1322	  valid signature will fail.
1323
1324	  In addition to that option, you need to enable signature
1325	  verification for the corresponding kernel image type being
1326	  loaded in order for this to work.
1327
1328config KEXEC_IMAGE_VERIFY_SIG
1329	bool "Enable Image signature verification support"
1330	default y
1331	depends on KEXEC_SIG
1332	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1333	help
1334	  Enable Image signature verification support.
1335
1336comment "Support for PE file signature verification disabled"
1337	depends on KEXEC_SIG
1338	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1339
1340config CRASH_DUMP
1341	bool "Build kdump crash kernel"
1342	help
1343	  Generate crash dump after being started by kexec. This should
1344	  be normally only set in special crash dump kernels which are
1345	  loaded in the main kernel with kexec-tools into a specially
1346	  reserved region and then later executed after a crash by
1347	  kdump/kexec.
1348
1349	  For more details see Documentation/admin-guide/kdump/kdump.rst
1350
1351config TRANS_TABLE
1352	def_bool y
1353	depends on HIBERNATION || KEXEC_CORE
1354
1355config XEN_DOM0
1356	def_bool y
1357	depends on XEN
1358
1359config XEN
1360	bool "Xen guest support on ARM64"
1361	depends on ARM64 && OF
1362	select SWIOTLB_XEN
1363	select PARAVIRT
1364	help
1365	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1366
1367config FORCE_MAX_ZONEORDER
1368	int
1369	default "14" if ARM64_64K_PAGES
1370	default "12" if ARM64_16K_PAGES
1371	default "11"
1372	help
1373	  The kernel memory allocator divides physically contiguous memory
1374	  blocks into "zones", where each zone is a power of two number of
1375	  pages.  This option selects the largest power of two that the kernel
1376	  keeps in the memory allocator.  If you need to allocate very large
1377	  blocks of physically contiguous memory, then you may need to
1378	  increase this value.
1379
1380	  This config option is actually maximum order plus one. For example,
1381	  a value of 11 means that the largest free memory block is 2^10 pages.
1382
1383	  We make sure that we can allocate upto a HugePage size for each configuration.
1384	  Hence we have :
1385		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1386
1387	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1388	  4M allocations matching the default size used by generic code.
1389
1390config UNMAP_KERNEL_AT_EL0
1391	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1392	default y
1393	help
1394	  Speculation attacks against some high-performance processors can
1395	  be used to bypass MMU permission checks and leak kernel data to
1396	  userspace. This can be defended against by unmapping the kernel
1397	  when running in userspace, mapping it back in on exception entry
1398	  via a trampoline page in the vector table.
1399
1400	  If unsure, say Y.
1401
1402config MITIGATE_SPECTRE_BRANCH_HISTORY
1403	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1404	default y
1405	help
1406	  Speculation attacks against some high-performance processors can
1407	  make use of branch history to influence future speculation.
1408	  When taking an exception from user-space, a sequence of branches
1409	  or a firmware call overwrites the branch history.
1410
1411config RODATA_FULL_DEFAULT_ENABLED
1412	bool "Apply r/o permissions of VM areas also to their linear aliases"
1413	default y
1414	help
1415	  Apply read-only attributes of VM areas to the linear alias of
1416	  the backing pages as well. This prevents code or read-only data
1417	  from being modified (inadvertently or intentionally) via another
1418	  mapping of the same memory page. This additional enhancement can
1419	  be turned off at runtime by passing rodata=[off|on] (and turned on
1420	  with rodata=full if this option is set to 'n')
1421
1422	  This requires the linear region to be mapped down to pages,
1423	  which may adversely affect performance in some cases.
1424
1425config ARM64_SW_TTBR0_PAN
1426	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1427	help
1428	  Enabling this option prevents the kernel from accessing
1429	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1430	  zeroed area and reserved ASID. The user access routines
1431	  restore the valid TTBR0_EL1 temporarily.
1432
1433config ARM64_TAGGED_ADDR_ABI
1434	bool "Enable the tagged user addresses syscall ABI"
1435	default y
1436	help
1437	  When this option is enabled, user applications can opt in to a
1438	  relaxed ABI via prctl() allowing tagged addresses to be passed
1439	  to system calls as pointer arguments. For details, see
1440	  Documentation/arm64/tagged-address-abi.rst.
1441
1442menuconfig COMPAT
1443	bool "Kernel support for 32-bit EL0"
1444	depends on ARM64_4K_PAGES || EXPERT
1445	select HAVE_UID16
1446	select OLD_SIGSUSPEND3
1447	select COMPAT_OLD_SIGACTION
1448	help
1449	  This option enables support for a 32-bit EL0 running under a 64-bit
1450	  kernel at EL1. AArch32-specific components such as system calls,
1451	  the user helper functions, VFP support and the ptrace interface are
1452	  handled appropriately by the kernel.
1453
1454	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1455	  that you will only be able to execute AArch32 binaries that were compiled
1456	  with page size aligned segments.
1457
1458	  If you want to execute 32-bit userspace applications, say Y.
1459
1460if COMPAT
1461
1462config KUSER_HELPERS
1463	bool "Enable kuser helpers page for 32-bit applications"
1464	default y
1465	help
1466	  Warning: disabling this option may break 32-bit user programs.
1467
1468	  Provide kuser helpers to compat tasks. The kernel provides
1469	  helper code to userspace in read only form at a fixed location
1470	  to allow userspace to be independent of the CPU type fitted to
1471	  the system. This permits binaries to be run on ARMv4 through
1472	  to ARMv8 without modification.
1473
1474	  See Documentation/arm/kernel_user_helpers.rst for details.
1475
1476	  However, the fixed address nature of these helpers can be used
1477	  by ROP (return orientated programming) authors when creating
1478	  exploits.
1479
1480	  If all of the binaries and libraries which run on your platform
1481	  are built specifically for your platform, and make no use of
1482	  these helpers, then you can turn this option off to hinder
1483	  such exploits. However, in that case, if a binary or library
1484	  relying on those helpers is run, it will not function correctly.
1485
1486	  Say N here only if you are absolutely certain that you do not
1487	  need these helpers; otherwise, the safe option is to say Y.
1488
1489config COMPAT_VDSO
1490	bool "Enable vDSO for 32-bit applications"
1491	depends on !CPU_BIG_ENDIAN
1492	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1493	select GENERIC_COMPAT_VDSO
1494	default y
1495	help
1496	  Place in the process address space of 32-bit applications an
1497	  ELF shared object providing fast implementations of gettimeofday
1498	  and clock_gettime.
1499
1500	  You must have a 32-bit build of glibc 2.22 or later for programs
1501	  to seamlessly take advantage of this.
1502
1503config THUMB2_COMPAT_VDSO
1504	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1505	depends on COMPAT_VDSO
1506	default y
1507	help
1508	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1509	  otherwise with '-marm'.
1510
1511menuconfig ARMV8_DEPRECATED
1512	bool "Emulate deprecated/obsolete ARMv8 instructions"
1513	depends on SYSCTL
1514	help
1515	  Legacy software support may require certain instructions
1516	  that have been deprecated or obsoleted in the architecture.
1517
1518	  Enable this config to enable selective emulation of these
1519	  features.
1520
1521	  If unsure, say Y
1522
1523if ARMV8_DEPRECATED
1524
1525config SWP_EMULATION
1526	bool "Emulate SWP/SWPB instructions"
1527	help
1528	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1529	  they are always undefined. Say Y here to enable software
1530	  emulation of these instructions for userspace using LDXR/STXR.
1531	  This feature can be controlled at runtime with the abi.swp
1532	  sysctl which is disabled by default.
1533
1534	  In some older versions of glibc [<=2.8] SWP is used during futex
1535	  trylock() operations with the assumption that the code will not
1536	  be preempted. This invalid assumption may be more likely to fail
1537	  with SWP emulation enabled, leading to deadlock of the user
1538	  application.
1539
1540	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1541	  on an external transaction monitoring block called a global
1542	  monitor to maintain update atomicity. If your system does not
1543	  implement a global monitor, this option can cause programs that
1544	  perform SWP operations to uncached memory to deadlock.
1545
1546	  If unsure, say Y
1547
1548config CP15_BARRIER_EMULATION
1549	bool "Emulate CP15 Barrier instructions"
1550	help
1551	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1552	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1553	  strongly recommended to use the ISB, DSB, and DMB
1554	  instructions instead.
1555
1556	  Say Y here to enable software emulation of these
1557	  instructions for AArch32 userspace code. When this option is
1558	  enabled, CP15 barrier usage is traced which can help
1559	  identify software that needs updating. This feature can be
1560	  controlled at runtime with the abi.cp15_barrier sysctl.
1561
1562	  If unsure, say Y
1563
1564config SETEND_EMULATION
1565	bool "Emulate SETEND instruction"
1566	help
1567	  The SETEND instruction alters the data-endianness of the
1568	  AArch32 EL0, and is deprecated in ARMv8.
1569
1570	  Say Y here to enable software emulation of the instruction
1571	  for AArch32 userspace code. This feature can be controlled
1572	  at runtime with the abi.setend sysctl.
1573
1574	  Note: All the cpus on the system must have mixed endian support at EL0
1575	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1576	  endian - is hotplugged in after this feature has been enabled, there could
1577	  be unexpected results in the applications.
1578
1579	  If unsure, say Y
1580endif
1581
1582endif
1583
1584menu "ARMv8.1 architectural features"
1585
1586config ARM64_HW_AFDBM
1587	bool "Support for hardware updates of the Access and Dirty page flags"
1588	default y
1589	help
1590	  The ARMv8.1 architecture extensions introduce support for
1591	  hardware updates of the access and dirty information in page
1592	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1593	  capable processors, accesses to pages with PTE_AF cleared will
1594	  set this bit instead of raising an access flag fault.
1595	  Similarly, writes to read-only pages with the DBM bit set will
1596	  clear the read-only bit (AP[2]) instead of raising a
1597	  permission fault.
1598
1599	  Kernels built with this configuration option enabled continue
1600	  to work on pre-ARMv8.1 hardware and the performance impact is
1601	  minimal. If unsure, say Y.
1602
1603config ARM64_PAN
1604	bool "Enable support for Privileged Access Never (PAN)"
1605	default y
1606	help
1607	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1608	 prevents the kernel or hypervisor from accessing user-space (EL0)
1609	 memory directly.
1610
1611	 Choosing this option will cause any unprotected (not using
1612	 copy_to_user et al) memory access to fail with a permission fault.
1613
1614	 The feature is detected at runtime, and will remain as a 'nop'
1615	 instruction if the cpu does not implement the feature.
1616
1617config AS_HAS_LDAPR
1618	def_bool $(as-instr,.arch_extension rcpc)
1619
1620config AS_HAS_LSE_ATOMICS
1621	def_bool $(as-instr,.arch_extension lse)
1622
1623config ARM64_LSE_ATOMICS
1624	bool
1625	default ARM64_USE_LSE_ATOMICS
1626	depends on AS_HAS_LSE_ATOMICS
1627
1628config ARM64_USE_LSE_ATOMICS
1629	bool "Atomic instructions"
1630	depends on JUMP_LABEL
1631	default y
1632	help
1633	  As part of the Large System Extensions, ARMv8.1 introduces new
1634	  atomic instructions that are designed specifically to scale in
1635	  very large systems.
1636
1637	  Say Y here to make use of these instructions for the in-kernel
1638	  atomic routines. This incurs a small overhead on CPUs that do
1639	  not support these instructions and requires the kernel to be
1640	  built with binutils >= 2.25 in order for the new instructions
1641	  to be used.
1642
1643endmenu
1644
1645menu "ARMv8.2 architectural features"
1646
1647config AS_HAS_ARMV8_2
1648       def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1649
1650config AS_HAS_SHA3
1651       def_bool $(as-instr,.arch armv8.2-a+sha3)
1652
1653config ARM64_PMEM
1654	bool "Enable support for persistent memory"
1655	select ARCH_HAS_PMEM_API
1656	select ARCH_HAS_UACCESS_FLUSHCACHE
1657	help
1658	  Say Y to enable support for the persistent memory API based on the
1659	  ARMv8.2 DCPoP feature.
1660
1661	  The feature is detected at runtime, and the kernel will use DC CVAC
1662	  operations if DC CVAP is not supported (following the behaviour of
1663	  DC CVAP itself if the system does not define a point of persistence).
1664
1665config ARM64_RAS_EXTN
1666	bool "Enable support for RAS CPU Extensions"
1667	default y
1668	help
1669	  CPUs that support the Reliability, Availability and Serviceability
1670	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1671	  errors, classify them and report them to software.
1672
1673	  On CPUs with these extensions system software can use additional
1674	  barriers to determine if faults are pending and read the
1675	  classification from a new set of registers.
1676
1677	  Selecting this feature will allow the kernel to use these barriers
1678	  and access the new registers if the system supports the extension.
1679	  Platform RAS features may additionally depend on firmware support.
1680
1681config ARM64_CNP
1682	bool "Enable support for Common Not Private (CNP) translations"
1683	default y
1684	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1685	help
1686	  Common Not Private (CNP) allows translation table entries to
1687	  be shared between different PEs in the same inner shareable
1688	  domain, so the hardware can use this fact to optimise the
1689	  caching of such entries in the TLB.
1690
1691	  Selecting this option allows the CNP feature to be detected
1692	  at runtime, and does not affect PEs that do not implement
1693	  this feature.
1694
1695endmenu
1696
1697menu "ARMv8.3 architectural features"
1698
1699config ARM64_PTR_AUTH
1700	bool "Enable support for pointer authentication"
1701	default y
1702	help
1703	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1704	  instructions for signing and authenticating pointers against secret
1705	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1706	  and other attacks.
1707
1708	  This option enables these instructions at EL0 (i.e. for userspace).
1709	  Choosing this option will cause the kernel to initialise secret keys
1710	  for each process at exec() time, with these keys being
1711	  context-switched along with the process.
1712
1713	  The feature is detected at runtime. If the feature is not present in
1714	  hardware it will not be advertised to userspace/KVM guest nor will it
1715	  be enabled.
1716
1717	  If the feature is present on the boot CPU but not on a late CPU, then
1718	  the late CPU will be parked. Also, if the boot CPU does not have
1719	  address auth and the late CPU has then the late CPU will still boot
1720	  but with the feature disabled. On such a system, this option should
1721	  not be selected.
1722
1723config ARM64_PTR_AUTH_KERNEL
1724	bool "Use pointer authentication for kernel"
1725	default y
1726	depends on ARM64_PTR_AUTH
1727	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1728	# Modern compilers insert a .note.gnu.property section note for PAC
1729	# which is only understood by binutils starting with version 2.33.1.
1730	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1731	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1732	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1733	help
1734	  If the compiler supports the -mbranch-protection or
1735	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1736	  will cause the kernel itself to be compiled with return address
1737	  protection. In this case, and if the target hardware is known to
1738	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1739	  disabled with minimal loss of protection.
1740
1741	  This feature works with FUNCTION_GRAPH_TRACER option only if
1742	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1743
1744config CC_HAS_BRANCH_PROT_PAC_RET
1745	# GCC 9 or later, clang 8 or later
1746	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1747
1748config CC_HAS_SIGN_RETURN_ADDRESS
1749	# GCC 7, 8
1750	def_bool $(cc-option,-msign-return-address=all)
1751
1752config AS_HAS_PAC
1753	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1754
1755config AS_HAS_CFI_NEGATE_RA_STATE
1756	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1757
1758endmenu
1759
1760menu "ARMv8.4 architectural features"
1761
1762config ARM64_AMU_EXTN
1763	bool "Enable support for the Activity Monitors Unit CPU extension"
1764	default y
1765	help
1766	  The activity monitors extension is an optional extension introduced
1767	  by the ARMv8.4 CPU architecture. This enables support for version 1
1768	  of the activity monitors architecture, AMUv1.
1769
1770	  To enable the use of this extension on CPUs that implement it, say Y.
1771
1772	  Note that for architectural reasons, firmware _must_ implement AMU
1773	  support when running on CPUs that present the activity monitors
1774	  extension. The required support is present in:
1775	    * Version 1.5 and later of the ARM Trusted Firmware
1776
1777	  For kernels that have this configuration enabled but boot with broken
1778	  firmware, you may need to say N here until the firmware is fixed.
1779	  Otherwise you may experience firmware panics or lockups when
1780	  accessing the counter registers. Even if you are not observing these
1781	  symptoms, the values returned by the register reads might not
1782	  correctly reflect reality. Most commonly, the value read will be 0,
1783	  indicating that the counter is not enabled.
1784
1785config AS_HAS_ARMV8_4
1786	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1787
1788config ARM64_TLB_RANGE
1789	bool "Enable support for tlbi range feature"
1790	default y
1791	depends on AS_HAS_ARMV8_4
1792	help
1793	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1794	  range of input addresses.
1795
1796	  The feature introduces new assembly instructions, and they were
1797	  support when binutils >= 2.30.
1798
1799endmenu
1800
1801menu "ARMv8.5 architectural features"
1802
1803config AS_HAS_ARMV8_5
1804	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1805
1806config ARM64_BTI
1807	bool "Branch Target Identification support"
1808	default y
1809	help
1810	  Branch Target Identification (part of the ARMv8.5 Extensions)
1811	  provides a mechanism to limit the set of locations to which computed
1812	  branch instructions such as BR or BLR can jump.
1813
1814	  To make use of BTI on CPUs that support it, say Y.
1815
1816	  BTI is intended to provide complementary protection to other control
1817	  flow integrity protection mechanisms, such as the Pointer
1818	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1819	  For this reason, it does not make sense to enable this option without
1820	  also enabling support for pointer authentication.  Thus, when
1821	  enabling this option you should also select ARM64_PTR_AUTH=y.
1822
1823	  Userspace binaries must also be specifically compiled to make use of
1824	  this mechanism.  If you say N here or the hardware does not support
1825	  BTI, such binaries can still run, but you get no additional
1826	  enforcement of branch destinations.
1827
1828config ARM64_BTI_KERNEL
1829	bool "Use Branch Target Identification for kernel"
1830	default y
1831	depends on ARM64_BTI
1832	depends on ARM64_PTR_AUTH_KERNEL
1833	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1834	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1835	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1836	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1837	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1838	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1839	help
1840	  Build the kernel with Branch Target Identification annotations
1841	  and enable enforcement of this for kernel code. When this option
1842	  is enabled and the system supports BTI all kernel code including
1843	  modular code must have BTI enabled.
1844
1845config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1846	# GCC 9 or later, clang 8 or later
1847	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1848
1849config ARM64_E0PD
1850	bool "Enable support for E0PD"
1851	default y
1852	help
1853	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1854	  that EL0 accesses made via TTBR1 always fault in constant time,
1855	  providing similar benefits to KASLR as those provided by KPTI, but
1856	  with lower overhead and without disrupting legitimate access to
1857	  kernel memory such as SPE.
1858
1859	  This option enables E0PD for TTBR1 where available.
1860
1861config ARCH_RANDOM
1862	bool "Enable support for random number generation"
1863	default y
1864	help
1865	  Random number generation (part of the ARMv8.5 Extensions)
1866	  provides a high bandwidth, cryptographically secure
1867	  hardware random number generator.
1868
1869config ARM64_AS_HAS_MTE
1870	# Initial support for MTE went in binutils 2.32.0, checked with
1871	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1872	# as a late addition to the final architecture spec (LDGM/STGM)
1873	# is only supported in the newer 2.32.x and 2.33 binutils
1874	# versions, hence the extra "stgm" instruction check below.
1875	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1876
1877config ARM64_MTE
1878	bool "Memory Tagging Extension support"
1879	default y
1880	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1881	depends on AS_HAS_ARMV8_5
1882	depends on AS_HAS_LSE_ATOMICS
1883	# Required for tag checking in the uaccess routines
1884	depends on ARM64_PAN
1885	select ARCH_USES_HIGH_VMA_FLAGS
1886	help
1887	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1888	  architectural support for run-time, always-on detection of
1889	  various classes of memory error to aid with software debugging
1890	  to eliminate vulnerabilities arising from memory-unsafe
1891	  languages.
1892
1893	  This option enables the support for the Memory Tagging
1894	  Extension at EL0 (i.e. for userspace).
1895
1896	  Selecting this option allows the feature to be detected at
1897	  runtime. Any secondary CPU not implementing this feature will
1898	  not be allowed a late bring-up.
1899
1900	  Userspace binaries that want to use this feature must
1901	  explicitly opt in. The mechanism for the userspace is
1902	  described in:
1903
1904	  Documentation/arm64/memory-tagging-extension.rst.
1905
1906endmenu
1907
1908menu "ARMv8.7 architectural features"
1909
1910config ARM64_EPAN
1911	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1912	default y
1913	depends on ARM64_PAN
1914	help
1915	 Enhanced Privileged Access Never (EPAN) allows Privileged
1916	 Access Never to be used with Execute-only mappings.
1917
1918	 The feature is detected at runtime, and will remain disabled
1919	 if the cpu does not implement the feature.
1920endmenu
1921
1922config ARM64_SVE
1923	bool "ARM Scalable Vector Extension support"
1924	default y
1925	help
1926	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1927	  execution state which complements and extends the SIMD functionality
1928	  of the base architecture to support much larger vectors and to enable
1929	  additional vectorisation opportunities.
1930
1931	  To enable use of this extension on CPUs that implement it, say Y.
1932
1933	  On CPUs that support the SVE2 extensions, this option will enable
1934	  those too.
1935
1936	  Note that for architectural reasons, firmware _must_ implement SVE
1937	  support when running on SVE capable hardware.  The required support
1938	  is present in:
1939
1940	    * version 1.5 and later of the ARM Trusted Firmware
1941	    * the AArch64 boot wrapper since commit 5e1261e08abf
1942	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1943
1944	  For other firmware implementations, consult the firmware documentation
1945	  or vendor.
1946
1947	  If you need the kernel to boot on SVE-capable hardware with broken
1948	  firmware, you may need to say N here until you get your firmware
1949	  fixed.  Otherwise, you may experience firmware panics or lockups when
1950	  booting the kernel.  If unsure and you are not observing these
1951	  symptoms, you should assume that it is safe to say Y.
1952
1953config ARM64_MODULE_PLTS
1954	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1955	depends on MODULES
1956	select HAVE_MOD_ARCH_SPECIFIC
1957	help
1958	  Allocate PLTs when loading modules so that jumps and calls whose
1959	  targets are too far away for their relative offsets to be encoded
1960	  in the instructions themselves can be bounced via veneers in the
1961	  module's PLT. This allows modules to be allocated in the generic
1962	  vmalloc area after the dedicated module memory area has been
1963	  exhausted.
1964
1965	  When running with address space randomization (KASLR), the module
1966	  region itself may be too far away for ordinary relative jumps and
1967	  calls, and so in that case, module PLTs are required and cannot be
1968	  disabled.
1969
1970	  Specific errata workaround(s) might also force module PLTs to be
1971	  enabled (ARM64_ERRATUM_843419).
1972
1973config ARM64_PSEUDO_NMI
1974	bool "Support for NMI-like interrupts"
1975	select ARM_GIC_V3
1976	help
1977	  Adds support for mimicking Non-Maskable Interrupts through the use of
1978	  GIC interrupt priority. This support requires version 3 or later of
1979	  ARM GIC.
1980
1981	  This high priority configuration for interrupts needs to be
1982	  explicitly enabled by setting the kernel parameter
1983	  "irqchip.gicv3_pseudo_nmi" to 1.
1984
1985	  If unsure, say N
1986
1987if ARM64_PSEUDO_NMI
1988config ARM64_DEBUG_PRIORITY_MASKING
1989	bool "Debug interrupt priority masking"
1990	help
1991	  This adds runtime checks to functions enabling/disabling
1992	  interrupts when using priority masking. The additional checks verify
1993	  the validity of ICC_PMR_EL1 when calling concerned functions.
1994
1995	  If unsure, say N
1996endif
1997
1998config RELOCATABLE
1999	bool "Build a relocatable kernel image" if EXPERT
2000	select ARCH_HAS_RELR
2001	default y
2002	help
2003	  This builds the kernel as a Position Independent Executable (PIE),
2004	  which retains all relocation metadata required to relocate the
2005	  kernel binary at runtime to a different virtual address than the
2006	  address it was linked at.
2007	  Since AArch64 uses the RELA relocation format, this requires a
2008	  relocation pass at runtime even if the kernel is loaded at the
2009	  same address it was linked at.
2010
2011config RANDOMIZE_BASE
2012	bool "Randomize the address of the kernel image"
2013	select ARM64_MODULE_PLTS if MODULES
2014	select RELOCATABLE
2015	help
2016	  Randomizes the virtual address at which the kernel image is
2017	  loaded, as a security feature that deters exploit attempts
2018	  relying on knowledge of the location of kernel internals.
2019
2020	  It is the bootloader's job to provide entropy, by passing a
2021	  random u64 value in /chosen/kaslr-seed at kernel entry.
2022
2023	  When booting via the UEFI stub, it will invoke the firmware's
2024	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2025	  to the kernel proper. In addition, it will randomise the physical
2026	  location of the kernel Image as well.
2027
2028	  If unsure, say N.
2029
2030config RANDOMIZE_MODULE_REGION_FULL
2031	bool "Randomize the module region over a 2 GB range"
2032	depends on RANDOMIZE_BASE
2033	default y
2034	help
2035	  Randomizes the location of the module region inside a 2 GB window
2036	  covering the core kernel. This way, it is less likely for modules
2037	  to leak information about the location of core kernel data structures
2038	  but it does imply that function calls between modules and the core
2039	  kernel will need to be resolved via veneers in the module PLT.
2040
2041	  When this option is not set, the module region will be randomized over
2042	  a limited range that contains the [_stext, _etext] interval of the
2043	  core kernel, so branch relocations are almost always in range unless
2044	  ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
2045	  particular case of region exhaustion, modules might be able to fall
2046	  back to a larger 2GB area.
2047
2048config CC_HAVE_STACKPROTECTOR_SYSREG
2049	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2050
2051config STACKPROTECTOR_PER_TASK
2052	def_bool y
2053	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2054
2055endmenu
2056
2057menu "Boot options"
2058
2059config ARM64_ACPI_PARKING_PROTOCOL
2060	bool "Enable support for the ARM64 ACPI parking protocol"
2061	depends on ACPI
2062	help
2063	  Enable support for the ARM64 ACPI parking protocol. If disabled
2064	  the kernel will not allow booting through the ARM64 ACPI parking
2065	  protocol even if the corresponding data is present in the ACPI
2066	  MADT table.
2067
2068config CMDLINE
2069	string "Default kernel command string"
2070	default ""
2071	help
2072	  Provide a set of default command-line options at build time by
2073	  entering them here. As a minimum, you should specify the the
2074	  root device (e.g. root=/dev/nfs).
2075
2076choice
2077	prompt "Kernel command line type" if CMDLINE != ""
2078	default CMDLINE_FROM_BOOTLOADER
2079	help
2080	  Choose how the kernel will handle the provided default kernel
2081	  command line string.
2082
2083config CMDLINE_FROM_BOOTLOADER
2084	bool "Use bootloader kernel arguments if available"
2085	help
2086	  Uses the command-line options passed by the boot loader. If
2087	  the boot loader doesn't provide any, the default kernel command
2088	  string provided in CMDLINE will be used.
2089
2090config CMDLINE_FORCE
2091	bool "Always use the default kernel command string"
2092	help
2093	  Always use the default kernel command string, even if the boot
2094	  loader passes other arguments to the kernel.
2095	  This is useful if you cannot or don't want to change the
2096	  command-line options your boot loader passes to the kernel.
2097
2098endchoice
2099
2100config EFI_STUB
2101	bool
2102
2103config EFI
2104	bool "UEFI runtime support"
2105	depends on OF && !CPU_BIG_ENDIAN
2106	depends on KERNEL_MODE_NEON
2107	select ARCH_SUPPORTS_ACPI
2108	select LIBFDT
2109	select UCS2_STRING
2110	select EFI_PARAMS_FROM_FDT
2111	select EFI_RUNTIME_WRAPPERS
2112	select EFI_STUB
2113	select EFI_GENERIC_STUB
2114	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2115	default y
2116	help
2117	  This option provides support for runtime services provided
2118	  by UEFI firmware (such as non-volatile variables, realtime
2119          clock, and platform reset). A UEFI stub is also provided to
2120	  allow the kernel to be booted as an EFI application. This
2121	  is only useful on systems that have UEFI firmware.
2122
2123config DMI
2124	bool "Enable support for SMBIOS (DMI) tables"
2125	depends on EFI
2126	default y
2127	help
2128	  This enables SMBIOS/DMI feature for systems.
2129
2130	  This option is only useful on systems that have UEFI firmware.
2131	  However, even with this option, the resultant kernel should
2132	  continue to boot on existing non-UEFI platforms.
2133
2134endmenu
2135
2136config SYSVIPC_COMPAT
2137	def_bool y
2138	depends on COMPAT && SYSVIPC
2139
2140menu "Power management options"
2141
2142source "kernel/power/Kconfig"
2143
2144config ARCH_HIBERNATION_POSSIBLE
2145	def_bool y
2146	depends on CPU_PM
2147
2148config ARCH_HIBERNATION_HEADER
2149	def_bool y
2150	depends on HIBERNATION
2151
2152config ARCH_SUSPEND_POSSIBLE
2153	def_bool y
2154
2155endmenu
2156
2157menu "CPU Power Management"
2158
2159source "drivers/cpuidle/Kconfig"
2160
2161source "drivers/cpufreq/Kconfig"
2162
2163endmenu
2164
2165source "drivers/acpi/Kconfig"
2166
2167source "arch/arm64/kvm/Kconfig"
2168
2169if CRYPTO
2170source "arch/arm64/crypto/Kconfig"
2171endif
2172