1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_WX 13 select ARCH_BINFMT_ELF_STATE 14 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 15 select ARCH_ENABLE_MEMORY_HOTPLUG 16 select ARCH_ENABLE_MEMORY_HOTREMOVE 17 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 18 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 19 select ARCH_HAS_CACHE_LINE_SIZE 20 select ARCH_HAS_DEBUG_VIRTUAL 21 select ARCH_HAS_DEBUG_VM_PGTABLE 22 select ARCH_HAS_DMA_PREP_COHERENT 23 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 24 select ARCH_HAS_FAST_MULTIPLIER 25 select ARCH_HAS_FORTIFY_SOURCE 26 select ARCH_HAS_GCOV_PROFILE_ALL 27 select ARCH_HAS_GIGANTIC_PAGE 28 select ARCH_HAS_KCOV 29 select ARCH_HAS_KEEPINITRD 30 select ARCH_HAS_MEMBARRIER_SYNC_CORE 31 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 32 select ARCH_HAS_PTE_DEVMAP 33 select ARCH_HAS_PTE_SPECIAL 34 select ARCH_HAS_SETUP_DMA_OPS 35 select ARCH_HAS_SET_DIRECT_MAP 36 select ARCH_HAS_SET_MEMORY 37 select ARCH_STACKWALK 38 select ARCH_HAS_STRICT_KERNEL_RWX 39 select ARCH_HAS_STRICT_MODULE_RWX 40 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 41 select ARCH_HAS_SYNC_DMA_FOR_CPU 42 select ARCH_HAS_SYSCALL_WRAPPER 43 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 44 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 45 select ARCH_HAS_ZONE_DMA_SET if EXPERT 46 select ARCH_HAVE_ELF_PROT 47 select ARCH_HAVE_NMI_SAFE_CMPXCHG 48 select ARCH_INLINE_READ_LOCK if !PREEMPTION 49 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 50 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 51 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 52 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 53 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 54 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 55 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 56 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 57 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 58 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 59 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 60 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 61 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 62 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 63 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 64 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 65 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 66 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 67 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 68 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 69 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 70 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 71 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 72 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 73 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 74 select ARCH_KEEP_MEMBLOCK 75 select ARCH_USE_CMPXCHG_LOCKREF 76 select ARCH_USE_GNU_PROPERTY 77 select ARCH_USE_MEMTEST 78 select ARCH_USE_QUEUED_RWLOCKS 79 select ARCH_USE_QUEUED_SPINLOCKS 80 select ARCH_USE_SYM_ANNOTATIONS 81 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 82 select ARCH_SUPPORTS_HUGETLBFS 83 select ARCH_SUPPORTS_MEMORY_FAILURE 84 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 85 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 86 select ARCH_SUPPORTS_LTO_CLANG_THIN 87 select ARCH_SUPPORTS_CFI_CLANG 88 select ARCH_SUPPORTS_ATOMIC_RMW 89 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG) 90 select ARCH_SUPPORTS_NUMA_BALANCING 91 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 92 select ARCH_WANT_DEFAULT_BPF_JIT 93 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 94 select ARCH_WANT_FRAME_POINTERS 95 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 96 select ARCH_WANT_LD_ORPHAN_WARN 97 select ARCH_WANTS_NO_INSTR 98 select ARCH_HAS_UBSAN_SANITIZE_ALL 99 select ARM_AMBA 100 select ARM_ARCH_TIMER 101 select ARM_GIC 102 select AUDIT_ARCH_COMPAT_GENERIC 103 select ARM_GIC_V2M if PCI 104 select ARM_GIC_V3 105 select ARM_GIC_V3_ITS if PCI 106 select ARM_PSCI_FW 107 select BUILDTIME_TABLE_SORT 108 select CLONE_BACKWARDS 109 select COMMON_CLK 110 select CPU_PM if (SUSPEND || CPU_IDLE) 111 select CRC32 112 select DCACHE_WORD_ACCESS 113 select DMA_DIRECT_REMAP 114 select EDAC_SUPPORT 115 select FRAME_POINTER 116 select GENERIC_ALLOCATOR 117 select GENERIC_ARCH_TOPOLOGY 118 select GENERIC_CLOCKEVENTS_BROADCAST 119 select GENERIC_CPU_AUTOPROBE 120 select GENERIC_CPU_VULNERABILITIES 121 select GENERIC_EARLY_IOREMAP 122 select GENERIC_FIND_FIRST_BIT 123 select GENERIC_IDLE_POLL_SETUP 124 select GENERIC_IRQ_IPI 125 select GENERIC_IRQ_PROBE 126 select GENERIC_IRQ_SHOW 127 select GENERIC_IRQ_SHOW_LEVEL 128 select GENERIC_LIB_DEVMEM_IS_ALLOWED 129 select GENERIC_PCI_IOMAP 130 select GENERIC_PTDUMP 131 select GENERIC_SCHED_CLOCK 132 select GENERIC_SMP_IDLE_THREAD 133 select GENERIC_STRNCPY_FROM_USER 134 select GENERIC_STRNLEN_USER 135 select GENERIC_TIME_VSYSCALL 136 select GENERIC_GETTIMEOFDAY 137 select GENERIC_VDSO_TIME_NS 138 select HANDLE_DOMAIN_IRQ 139 select HARDIRQS_SW_RESEND 140 select HAVE_MOVE_PMD 141 select HAVE_MOVE_PUD 142 select HAVE_PCI 143 select HAVE_ACPI_APEI if (ACPI && EFI) 144 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 145 select HAVE_ARCH_AUDITSYSCALL 146 select HAVE_ARCH_BITREVERSE 147 select HAVE_ARCH_COMPILER_H 148 select HAVE_ARCH_HUGE_VMAP 149 select HAVE_ARCH_JUMP_LABEL 150 select HAVE_ARCH_JUMP_LABEL_RELATIVE 151 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 152 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN 153 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 154 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE) 155 select HAVE_ARCH_KFENCE 156 select HAVE_ARCH_KGDB 157 select HAVE_ARCH_MMAP_RND_BITS 158 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 159 select HAVE_ARCH_PFN_VALID 160 select HAVE_ARCH_PREL32_RELOCATIONS 161 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 162 select HAVE_ARCH_SECCOMP_FILTER 163 select HAVE_ARCH_STACKLEAK 164 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 165 select HAVE_ARCH_TRACEHOOK 166 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 167 select HAVE_ARCH_VMAP_STACK 168 select HAVE_ARM_SMCCC 169 select HAVE_ASM_MODVERSIONS 170 select HAVE_EBPF_JIT 171 select HAVE_C_RECORDMCOUNT 172 select HAVE_CMPXCHG_DOUBLE 173 select HAVE_CMPXCHG_LOCAL 174 select HAVE_CONTEXT_TRACKING 175 select HAVE_DEBUG_KMEMLEAK 176 select HAVE_DMA_CONTIGUOUS 177 select HAVE_DYNAMIC_FTRACE 178 select HAVE_DYNAMIC_FTRACE_WITH_REGS \ 179 if $(cc-option,-fpatchable-function-entry=2) 180 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 181 if DYNAMIC_FTRACE_WITH_REGS 182 select HAVE_EFFICIENT_UNALIGNED_ACCESS 183 select HAVE_FAST_GUP 184 select HAVE_FTRACE_MCOUNT_RECORD 185 select HAVE_FUNCTION_TRACER 186 select HAVE_FUNCTION_ERROR_INJECTION 187 select HAVE_FUNCTION_GRAPH_TRACER 188 select HAVE_GCC_PLUGINS 189 select HAVE_HW_BREAKPOINT if PERF_EVENTS 190 select HAVE_IRQ_TIME_ACCOUNTING 191 select HAVE_NMI 192 select HAVE_PATA_PLATFORM 193 select HAVE_PERF_EVENTS 194 select HAVE_PERF_REGS 195 select HAVE_PERF_USER_STACK_DUMP 196 select HAVE_REGS_AND_STACK_ACCESS_API 197 select HAVE_FUNCTION_ARG_ACCESS_API 198 select HAVE_FUTEX_CMPXCHG if FUTEX 199 select MMU_GATHER_RCU_TABLE_FREE 200 select HAVE_RSEQ 201 select HAVE_STACKPROTECTOR 202 select HAVE_SYSCALL_TRACEPOINTS 203 select HAVE_KPROBES 204 select HAVE_KRETPROBES 205 select HAVE_GENERIC_VDSO 206 select IOMMU_DMA if IOMMU_SUPPORT 207 select IRQ_DOMAIN 208 select IRQ_FORCED_THREADING 209 select KASAN_VMALLOC if KASAN_GENERIC 210 select MODULES_USE_ELF_RELA 211 select NEED_DMA_MAP_STATE 212 select NEED_SG_DMA_LENGTH 213 select OF 214 select OF_EARLY_FLATTREE 215 select PCI_DOMAINS_GENERIC if PCI 216 select PCI_ECAM if (ACPI && PCI) 217 select PCI_SYSCALL if PCI 218 select POWER_RESET 219 select POWER_SUPPLY 220 select SPARSE_IRQ 221 select SWIOTLB 222 select SYSCTL_EXCEPTION_TRACE 223 select THREAD_INFO_IN_TASK 224 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 225 help 226 ARM 64-bit (AArch64) Linux support. 227 228config 64BIT 229 def_bool y 230 231config MMU 232 def_bool y 233 234config ARM64_PAGE_SHIFT 235 int 236 default 16 if ARM64_64K_PAGES 237 default 14 if ARM64_16K_PAGES 238 default 12 239 240config ARM64_CONT_PTE_SHIFT 241 int 242 default 5 if ARM64_64K_PAGES 243 default 7 if ARM64_16K_PAGES 244 default 4 245 246config ARM64_CONT_PMD_SHIFT 247 int 248 default 5 if ARM64_64K_PAGES 249 default 5 if ARM64_16K_PAGES 250 default 4 251 252config ARCH_MMAP_RND_BITS_MIN 253 default 14 if ARM64_64K_PAGES 254 default 16 if ARM64_16K_PAGES 255 default 18 256 257# max bits determined by the following formula: 258# VA_BITS - PAGE_SHIFT - 3 259config ARCH_MMAP_RND_BITS_MAX 260 default 19 if ARM64_VA_BITS=36 261 default 24 if ARM64_VA_BITS=39 262 default 27 if ARM64_VA_BITS=42 263 default 30 if ARM64_VA_BITS=47 264 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 265 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 266 default 33 if ARM64_VA_BITS=48 267 default 14 if ARM64_64K_PAGES 268 default 16 if ARM64_16K_PAGES 269 default 18 270 271config ARCH_MMAP_RND_COMPAT_BITS_MIN 272 default 7 if ARM64_64K_PAGES 273 default 9 if ARM64_16K_PAGES 274 default 11 275 276config ARCH_MMAP_RND_COMPAT_BITS_MAX 277 default 16 278 279config NO_IOPORT_MAP 280 def_bool y if !PCI 281 282config STACKTRACE_SUPPORT 283 def_bool y 284 285config ILLEGAL_POINTER_VALUE 286 hex 287 default 0xdead000000000000 288 289config LOCKDEP_SUPPORT 290 def_bool y 291 292config TRACE_IRQFLAGS_SUPPORT 293 def_bool y 294 295config GENERIC_BUG 296 def_bool y 297 depends on BUG 298 299config GENERIC_BUG_RELATIVE_POINTERS 300 def_bool y 301 depends on GENERIC_BUG 302 303config GENERIC_HWEIGHT 304 def_bool y 305 306config GENERIC_CSUM 307 def_bool y 308 309config GENERIC_CALIBRATE_DELAY 310 def_bool y 311 312config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 313 def_bool y 314 315config SMP 316 def_bool y 317 318config KERNEL_MODE_NEON 319 def_bool y 320 321config FIX_EARLYCON_MEM 322 def_bool y 323 324config PGTABLE_LEVELS 325 int 326 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 327 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 328 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 329 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 330 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 331 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 332 333config ARCH_SUPPORTS_UPROBES 334 def_bool y 335 336config ARCH_PROC_KCORE_TEXT 337 def_bool y 338 339config BROKEN_GAS_INST 340 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 341 342config KASAN_SHADOW_OFFSET 343 hex 344 depends on KASAN_GENERIC || KASAN_SW_TAGS 345 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 346 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 347 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 348 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 349 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 350 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 351 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 352 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 353 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 354 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 355 default 0xffffffffffffffff 356 357source "arch/arm64/Kconfig.platforms" 358 359menu "Kernel Features" 360 361menu "ARM errata workarounds via the alternatives framework" 362 363config ARM64_WORKAROUND_CLEAN_CACHE 364 bool 365 366config ARM64_ERRATUM_826319 367 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 368 default y 369 select ARM64_WORKAROUND_CLEAN_CACHE 370 help 371 This option adds an alternative code sequence to work around ARM 372 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 373 AXI master interface and an L2 cache. 374 375 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 376 and is unable to accept a certain write via this interface, it will 377 not progress on read data presented on the read data channel and the 378 system can deadlock. 379 380 The workaround promotes data cache clean instructions to 381 data cache clean-and-invalidate. 382 Please note that this does not necessarily enable the workaround, 383 as it depends on the alternative framework, which will only patch 384 the kernel if an affected CPU is detected. 385 386 If unsure, say Y. 387 388config ARM64_ERRATUM_827319 389 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 390 default y 391 select ARM64_WORKAROUND_CLEAN_CACHE 392 help 393 This option adds an alternative code sequence to work around ARM 394 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 395 master interface and an L2 cache. 396 397 Under certain conditions this erratum can cause a clean line eviction 398 to occur at the same time as another transaction to the same address 399 on the AMBA 5 CHI interface, which can cause data corruption if the 400 interconnect reorders the two transactions. 401 402 The workaround promotes data cache clean instructions to 403 data cache clean-and-invalidate. 404 Please note that this does not necessarily enable the workaround, 405 as it depends on the alternative framework, which will only patch 406 the kernel if an affected CPU is detected. 407 408 If unsure, say Y. 409 410config ARM64_ERRATUM_824069 411 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 412 default y 413 select ARM64_WORKAROUND_CLEAN_CACHE 414 help 415 This option adds an alternative code sequence to work around ARM 416 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 417 to a coherent interconnect. 418 419 If a Cortex-A53 processor is executing a store or prefetch for 420 write instruction at the same time as a processor in another 421 cluster is executing a cache maintenance operation to the same 422 address, then this erratum might cause a clean cache line to be 423 incorrectly marked as dirty. 424 425 The workaround promotes data cache clean instructions to 426 data cache clean-and-invalidate. 427 Please note that this option does not necessarily enable the 428 workaround, as it depends on the alternative framework, which will 429 only patch the kernel if an affected CPU is detected. 430 431 If unsure, say Y. 432 433config ARM64_ERRATUM_819472 434 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 435 default y 436 select ARM64_WORKAROUND_CLEAN_CACHE 437 help 438 This option adds an alternative code sequence to work around ARM 439 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 440 present when it is connected to a coherent interconnect. 441 442 If the processor is executing a load and store exclusive sequence at 443 the same time as a processor in another cluster is executing a cache 444 maintenance operation to the same address, then this erratum might 445 cause data corruption. 446 447 The workaround promotes data cache clean instructions to 448 data cache clean-and-invalidate. 449 Please note that this does not necessarily enable the workaround, 450 as it depends on the alternative framework, which will only patch 451 the kernel if an affected CPU is detected. 452 453 If unsure, say Y. 454 455config ARM64_ERRATUM_832075 456 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 457 default y 458 help 459 This option adds an alternative code sequence to work around ARM 460 erratum 832075 on Cortex-A57 parts up to r1p2. 461 462 Affected Cortex-A57 parts might deadlock when exclusive load/store 463 instructions to Write-Back memory are mixed with Device loads. 464 465 The workaround is to promote device loads to use Load-Acquire 466 semantics. 467 Please note that this does not necessarily enable the workaround, 468 as it depends on the alternative framework, which will only patch 469 the kernel if an affected CPU is detected. 470 471 If unsure, say Y. 472 473config ARM64_ERRATUM_834220 474 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 475 depends on KVM 476 default y 477 help 478 This option adds an alternative code sequence to work around ARM 479 erratum 834220 on Cortex-A57 parts up to r1p2. 480 481 Affected Cortex-A57 parts might report a Stage 2 translation 482 fault as the result of a Stage 1 fault for load crossing a 483 page boundary when there is a permission or device memory 484 alignment fault at Stage 1 and a translation fault at Stage 2. 485 486 The workaround is to verify that the Stage 1 translation 487 doesn't generate a fault before handling the Stage 2 fault. 488 Please note that this does not necessarily enable the workaround, 489 as it depends on the alternative framework, which will only patch 490 the kernel if an affected CPU is detected. 491 492 If unsure, say Y. 493 494config ARM64_ERRATUM_845719 495 bool "Cortex-A53: 845719: a load might read incorrect data" 496 depends on COMPAT 497 default y 498 help 499 This option adds an alternative code sequence to work around ARM 500 erratum 845719 on Cortex-A53 parts up to r0p4. 501 502 When running a compat (AArch32) userspace on an affected Cortex-A53 503 part, a load at EL0 from a virtual address that matches the bottom 32 504 bits of the virtual address used by a recent load at (AArch64) EL1 505 might return incorrect data. 506 507 The workaround is to write the contextidr_el1 register on exception 508 return to a 32-bit task. 509 Please note that this does not necessarily enable the workaround, 510 as it depends on the alternative framework, which will only patch 511 the kernel if an affected CPU is detected. 512 513 If unsure, say Y. 514 515config ARM64_ERRATUM_843419 516 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 517 default y 518 select ARM64_MODULE_PLTS if MODULES 519 help 520 This option links the kernel with '--fix-cortex-a53-843419' and 521 enables PLT support to replace certain ADRP instructions, which can 522 cause subsequent memory accesses to use an incorrect address on 523 Cortex-A53 parts up to r0p4. 524 525 If unsure, say Y. 526 527config ARM64_LD_HAS_FIX_ERRATUM_843419 528 def_bool $(ld-option,--fix-cortex-a53-843419) 529 530config ARM64_ERRATUM_1024718 531 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 532 default y 533 help 534 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 535 536 Affected Cortex-A55 cores (all revisions) could cause incorrect 537 update of the hardware dirty bit when the DBM/AP bits are updated 538 without a break-before-make. The workaround is to disable the usage 539 of hardware DBM locally on the affected cores. CPUs not affected by 540 this erratum will continue to use the feature. 541 542 If unsure, say Y. 543 544config ARM64_ERRATUM_1418040 545 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 546 default y 547 depends on COMPAT 548 help 549 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 550 errata 1188873 and 1418040. 551 552 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 553 cause register corruption when accessing the timer registers 554 from AArch32 userspace. 555 556 If unsure, say Y. 557 558config ARM64_WORKAROUND_SPECULATIVE_AT 559 bool 560 561config ARM64_ERRATUM_1165522 562 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 563 default y 564 select ARM64_WORKAROUND_SPECULATIVE_AT 565 help 566 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 567 568 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 569 corrupted TLBs by speculating an AT instruction during a guest 570 context switch. 571 572 If unsure, say Y. 573 574config ARM64_ERRATUM_1319367 575 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 576 default y 577 select ARM64_WORKAROUND_SPECULATIVE_AT 578 help 579 This option adds work arounds for ARM Cortex-A57 erratum 1319537 580 and A72 erratum 1319367 581 582 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 583 speculating an AT instruction during a guest context switch. 584 585 If unsure, say Y. 586 587config ARM64_ERRATUM_1530923 588 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 589 default y 590 select ARM64_WORKAROUND_SPECULATIVE_AT 591 help 592 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 593 594 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 595 corrupted TLBs by speculating an AT instruction during a guest 596 context switch. 597 598 If unsure, say Y. 599 600config ARM64_WORKAROUND_REPEAT_TLBI 601 bool 602 603config ARM64_ERRATUM_1286807 604 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 605 default y 606 select ARM64_WORKAROUND_REPEAT_TLBI 607 help 608 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 609 610 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 611 address for a cacheable mapping of a location is being 612 accessed by a core while another core is remapping the virtual 613 address to a new physical page using the recommended 614 break-before-make sequence, then under very rare circumstances 615 TLBI+DSB completes before a read using the translation being 616 invalidated has been observed by other observers. The 617 workaround repeats the TLBI+DSB operation. 618 619config ARM64_ERRATUM_1463225 620 bool "Cortex-A76: Software Step might prevent interrupt recognition" 621 default y 622 help 623 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 624 625 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 626 of a system call instruction (SVC) can prevent recognition of 627 subsequent interrupts when software stepping is disabled in the 628 exception handler of the system call and either kernel debugging 629 is enabled or VHE is in use. 630 631 Work around the erratum by triggering a dummy step exception 632 when handling a system call from a task that is being stepped 633 in a VHE configuration of the kernel. 634 635 If unsure, say Y. 636 637config ARM64_ERRATUM_1542419 638 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 639 default y 640 help 641 This option adds a workaround for ARM Neoverse-N1 erratum 642 1542419. 643 644 Affected Neoverse-N1 cores could execute a stale instruction when 645 modified by another CPU. The workaround depends on a firmware 646 counterpart. 647 648 Workaround the issue by hiding the DIC feature from EL0. This 649 forces user-space to perform cache maintenance. 650 651 If unsure, say Y. 652 653config ARM64_ERRATUM_1508412 654 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 655 default y 656 help 657 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 658 659 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 660 of a store-exclusive or read of PAR_EL1 and a load with device or 661 non-cacheable memory attributes. The workaround depends on a firmware 662 counterpart. 663 664 KVM guests must also have the workaround implemented or they can 665 deadlock the system. 666 667 Work around the issue by inserting DMB SY barriers around PAR_EL1 668 register reads and warning KVM users. The DMB barrier is sufficient 669 to prevent a speculative PAR_EL1 read. 670 671 If unsure, say Y. 672 673config CAVIUM_ERRATUM_22375 674 bool "Cavium erratum 22375, 24313" 675 default y 676 help 677 Enable workaround for errata 22375 and 24313. 678 679 This implements two gicv3-its errata workarounds for ThunderX. Both 680 with a small impact affecting only ITS table allocation. 681 682 erratum 22375: only alloc 8MB table size 683 erratum 24313: ignore memory access type 684 685 The fixes are in ITS initialization and basically ignore memory access 686 type and table size provided by the TYPER and BASER registers. 687 688 If unsure, say Y. 689 690config CAVIUM_ERRATUM_23144 691 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 692 depends on NUMA 693 default y 694 help 695 ITS SYNC command hang for cross node io and collections/cpu mapping. 696 697 If unsure, say Y. 698 699config CAVIUM_ERRATUM_23154 700 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" 701 default y 702 help 703 The gicv3 of ThunderX requires a modified version for 704 reading the IAR status to ensure data synchronization 705 (access to icc_iar1_el1 is not sync'ed before and after). 706 707 If unsure, say Y. 708 709config CAVIUM_ERRATUM_27456 710 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 711 default y 712 help 713 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 714 instructions may cause the icache to become corrupted if it 715 contains data for a non-current ASID. The fix is to 716 invalidate the icache when changing the mm context. 717 718 If unsure, say Y. 719 720config CAVIUM_ERRATUM_30115 721 bool "Cavium erratum 30115: Guest may disable interrupts in host" 722 default y 723 help 724 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 725 1.2, and T83 Pass 1.0, KVM guest execution may disable 726 interrupts in host. Trapping both GICv3 group-0 and group-1 727 accesses sidesteps the issue. 728 729 If unsure, say Y. 730 731config CAVIUM_TX2_ERRATUM_219 732 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 733 default y 734 help 735 On Cavium ThunderX2, a load, store or prefetch instruction between a 736 TTBR update and the corresponding context synchronizing operation can 737 cause a spurious Data Abort to be delivered to any hardware thread in 738 the CPU core. 739 740 Work around the issue by avoiding the problematic code sequence and 741 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 742 trap handler performs the corresponding register access, skips the 743 instruction and ensures context synchronization by virtue of the 744 exception return. 745 746 If unsure, say Y. 747 748config FUJITSU_ERRATUM_010001 749 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 750 default y 751 help 752 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 753 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 754 accesses may cause undefined fault (Data abort, DFSC=0b111111). 755 This fault occurs under a specific hardware condition when a 756 load/store instruction performs an address translation using: 757 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 758 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 759 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 760 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 761 762 The workaround is to ensure these bits are clear in TCR_ELx. 763 The workaround only affects the Fujitsu-A64FX. 764 765 If unsure, say Y. 766 767config HISILICON_ERRATUM_161600802 768 bool "Hip07 161600802: Erroneous redistributor VLPI base" 769 default y 770 help 771 The HiSilicon Hip07 SoC uses the wrong redistributor base 772 when issued ITS commands such as VMOVP and VMAPP, and requires 773 a 128kB offset to be applied to the target address in this commands. 774 775 If unsure, say Y. 776 777config QCOM_FALKOR_ERRATUM_1003 778 bool "Falkor E1003: Incorrect translation due to ASID change" 779 default y 780 help 781 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 782 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 783 in TTBR1_EL1, this situation only occurs in the entry trampoline and 784 then only for entries in the walk cache, since the leaf translation 785 is unchanged. Work around the erratum by invalidating the walk cache 786 entries for the trampoline before entering the kernel proper. 787 788config QCOM_FALKOR_ERRATUM_1009 789 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 790 default y 791 select ARM64_WORKAROUND_REPEAT_TLBI 792 help 793 On Falkor v1, the CPU may prematurely complete a DSB following a 794 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 795 one more time to fix the issue. 796 797 If unsure, say Y. 798 799config QCOM_QDF2400_ERRATUM_0065 800 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 801 default y 802 help 803 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 804 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 805 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 806 807 If unsure, say Y. 808 809config QCOM_FALKOR_ERRATUM_E1041 810 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 811 default y 812 help 813 Falkor CPU may speculatively fetch instructions from an improper 814 memory location when MMU translation is changed from SCTLR_ELn[M]=1 815 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 816 817 If unsure, say Y. 818 819config NVIDIA_CARMEL_CNP_ERRATUM 820 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 821 default y 822 help 823 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 824 invalidate shared TLB entries installed by a different core, as it would 825 on standard ARM cores. 826 827 If unsure, say Y. 828 829config SOCIONEXT_SYNQUACER_PREITS 830 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 831 default y 832 help 833 Socionext Synquacer SoCs implement a separate h/w block to generate 834 MSI doorbell writes with non-zero values for the device ID. 835 836 If unsure, say Y. 837 838endmenu 839 840 841choice 842 prompt "Page size" 843 default ARM64_4K_PAGES 844 help 845 Page size (translation granule) configuration. 846 847config ARM64_4K_PAGES 848 bool "4KB" 849 help 850 This feature enables 4KB pages support. 851 852config ARM64_16K_PAGES 853 bool "16KB" 854 help 855 The system will use 16KB pages support. AArch32 emulation 856 requires applications compiled with 16K (or a multiple of 16K) 857 aligned segments. 858 859config ARM64_64K_PAGES 860 bool "64KB" 861 help 862 This feature enables 64KB pages support (4KB by default) 863 allowing only two levels of page tables and faster TLB 864 look-up. AArch32 emulation requires applications compiled 865 with 64K aligned segments. 866 867endchoice 868 869choice 870 prompt "Virtual address space size" 871 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 872 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 873 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 874 help 875 Allows choosing one of multiple possible virtual address 876 space sizes. The level of translation table is determined by 877 a combination of page size and virtual address space size. 878 879config ARM64_VA_BITS_36 880 bool "36-bit" if EXPERT 881 depends on ARM64_16K_PAGES 882 883config ARM64_VA_BITS_39 884 bool "39-bit" 885 depends on ARM64_4K_PAGES 886 887config ARM64_VA_BITS_42 888 bool "42-bit" 889 depends on ARM64_64K_PAGES 890 891config ARM64_VA_BITS_47 892 bool "47-bit" 893 depends on ARM64_16K_PAGES 894 895config ARM64_VA_BITS_48 896 bool "48-bit" 897 898config ARM64_VA_BITS_52 899 bool "52-bit" 900 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 901 help 902 Enable 52-bit virtual addressing for userspace when explicitly 903 requested via a hint to mmap(). The kernel will also use 52-bit 904 virtual addresses for its own mappings (provided HW support for 905 this feature is available, otherwise it reverts to 48-bit). 906 907 NOTE: Enabling 52-bit virtual addressing in conjunction with 908 ARMv8.3 Pointer Authentication will result in the PAC being 909 reduced from 7 bits to 3 bits, which may have a significant 910 impact on its susceptibility to brute-force attacks. 911 912 If unsure, select 48-bit virtual addressing instead. 913 914endchoice 915 916config ARM64_FORCE_52BIT 917 bool "Force 52-bit virtual addresses for userspace" 918 depends on ARM64_VA_BITS_52 && EXPERT 919 help 920 For systems with 52-bit userspace VAs enabled, the kernel will attempt 921 to maintain compatibility with older software by providing 48-bit VAs 922 unless a hint is supplied to mmap. 923 924 This configuration option disables the 48-bit compatibility logic, and 925 forces all userspace addresses to be 52-bit on HW that supports it. One 926 should only enable this configuration option for stress testing userspace 927 memory management code. If unsure say N here. 928 929config ARM64_VA_BITS 930 int 931 default 36 if ARM64_VA_BITS_36 932 default 39 if ARM64_VA_BITS_39 933 default 42 if ARM64_VA_BITS_42 934 default 47 if ARM64_VA_BITS_47 935 default 48 if ARM64_VA_BITS_48 936 default 52 if ARM64_VA_BITS_52 937 938choice 939 prompt "Physical address space size" 940 default ARM64_PA_BITS_48 941 help 942 Choose the maximum physical address range that the kernel will 943 support. 944 945config ARM64_PA_BITS_48 946 bool "48-bit" 947 948config ARM64_PA_BITS_52 949 bool "52-bit (ARMv8.2)" 950 depends on ARM64_64K_PAGES 951 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 952 help 953 Enable support for a 52-bit physical address space, introduced as 954 part of the ARMv8.2-LPA extension. 955 956 With this enabled, the kernel will also continue to work on CPUs that 957 do not support ARMv8.2-LPA, but with some added memory overhead (and 958 minor performance overhead). 959 960endchoice 961 962config ARM64_PA_BITS 963 int 964 default 48 if ARM64_PA_BITS_48 965 default 52 if ARM64_PA_BITS_52 966 967choice 968 prompt "Endianness" 969 default CPU_LITTLE_ENDIAN 970 help 971 Select the endianness of data accesses performed by the CPU. Userspace 972 applications will need to be compiled and linked for the endianness 973 that is selected here. 974 975config CPU_BIG_ENDIAN 976 bool "Build big-endian kernel" 977 depends on !LD_IS_LLD || LLD_VERSION >= 130000 978 help 979 Say Y if you plan on running a kernel with a big-endian userspace. 980 981config CPU_LITTLE_ENDIAN 982 bool "Build little-endian kernel" 983 help 984 Say Y if you plan on running a kernel with a little-endian userspace. 985 This is usually the case for distributions targeting arm64. 986 987endchoice 988 989config SCHED_MC 990 bool "Multi-core scheduler support" 991 help 992 Multi-core scheduler support improves the CPU scheduler's decision 993 making when dealing with multi-core CPU chips at a cost of slightly 994 increased overhead in some places. If unsure say N here. 995 996config SCHED_SMT 997 bool "SMT scheduler support" 998 help 999 Improves the CPU scheduler's decision making when dealing with 1000 MultiThreading at a cost of slightly increased overhead in some 1001 places. If unsure say N here. 1002 1003config NR_CPUS 1004 int "Maximum number of CPUs (2-4096)" 1005 range 2 4096 1006 default "256" 1007 1008config HOTPLUG_CPU 1009 bool "Support for hot-pluggable CPUs" 1010 select GENERIC_IRQ_MIGRATION 1011 help 1012 Say Y here to experiment with turning CPUs off and on. CPUs 1013 can be controlled through /sys/devices/system/cpu. 1014 1015# Common NUMA Features 1016config NUMA 1017 bool "NUMA Memory Allocation and Scheduler Support" 1018 select GENERIC_ARCH_NUMA 1019 select ACPI_NUMA if ACPI 1020 select OF_NUMA 1021 help 1022 Enable NUMA (Non-Uniform Memory Access) support. 1023 1024 The kernel will try to allocate memory used by a CPU on the 1025 local memory of the CPU and add some more 1026 NUMA awareness to the kernel. 1027 1028config NODES_SHIFT 1029 int "Maximum NUMA Nodes (as a power of 2)" 1030 range 1 10 1031 default "4" 1032 depends on NUMA 1033 help 1034 Specify the maximum number of NUMA Nodes available on the target 1035 system. Increases memory reserved to accommodate various tables. 1036 1037config USE_PERCPU_NUMA_NODE_ID 1038 def_bool y 1039 depends on NUMA 1040 1041config HAVE_SETUP_PER_CPU_AREA 1042 def_bool y 1043 depends on NUMA 1044 1045config NEED_PER_CPU_EMBED_FIRST_CHUNK 1046 def_bool y 1047 depends on NUMA 1048 1049source "kernel/Kconfig.hz" 1050 1051config ARCH_SPARSEMEM_ENABLE 1052 def_bool y 1053 select SPARSEMEM_VMEMMAP_ENABLE 1054 select SPARSEMEM_VMEMMAP 1055 1056config HW_PERF_EVENTS 1057 def_bool y 1058 depends on ARM_PMU 1059 1060config ARCH_HAS_FILTER_PGPROT 1061 def_bool y 1062 1063# Supported by clang >= 7.0 1064config CC_HAVE_SHADOW_CALL_STACK 1065 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1066 1067config PARAVIRT 1068 bool "Enable paravirtualization code" 1069 help 1070 This changes the kernel so it can modify itself when it is run 1071 under a hypervisor, potentially improving performance significantly 1072 over full virtualization. 1073 1074config PARAVIRT_TIME_ACCOUNTING 1075 bool "Paravirtual steal time accounting" 1076 select PARAVIRT 1077 help 1078 Select this option to enable fine granularity task steal time 1079 accounting. Time spent executing other tasks in parallel with 1080 the current vCPU is discounted from the vCPU power. To account for 1081 that, there can be a small performance impact. 1082 1083 If in doubt, say N here. 1084 1085config KEXEC 1086 depends on PM_SLEEP_SMP 1087 select KEXEC_CORE 1088 bool "kexec system call" 1089 help 1090 kexec is a system call that implements the ability to shutdown your 1091 current kernel, and to start another kernel. It is like a reboot 1092 but it is independent of the system firmware. And like a reboot 1093 you can start any kernel with it, not just Linux. 1094 1095config KEXEC_FILE 1096 bool "kexec file based system call" 1097 select KEXEC_CORE 1098 select HAVE_IMA_KEXEC if IMA 1099 help 1100 This is new version of kexec system call. This system call is 1101 file based and takes file descriptors as system call argument 1102 for kernel and initramfs as opposed to list of segments as 1103 accepted by previous system call. 1104 1105config KEXEC_SIG 1106 bool "Verify kernel signature during kexec_file_load() syscall" 1107 depends on KEXEC_FILE 1108 help 1109 Select this option to verify a signature with loaded kernel 1110 image. If configured, any attempt of loading a image without 1111 valid signature will fail. 1112 1113 In addition to that option, you need to enable signature 1114 verification for the corresponding kernel image type being 1115 loaded in order for this to work. 1116 1117config KEXEC_IMAGE_VERIFY_SIG 1118 bool "Enable Image signature verification support" 1119 default y 1120 depends on KEXEC_SIG 1121 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1122 help 1123 Enable Image signature verification support. 1124 1125comment "Support for PE file signature verification disabled" 1126 depends on KEXEC_SIG 1127 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1128 1129config CRASH_DUMP 1130 bool "Build kdump crash kernel" 1131 help 1132 Generate crash dump after being started by kexec. This should 1133 be normally only set in special crash dump kernels which are 1134 loaded in the main kernel with kexec-tools into a specially 1135 reserved region and then later executed after a crash by 1136 kdump/kexec. 1137 1138 For more details see Documentation/admin-guide/kdump/kdump.rst 1139 1140config TRANS_TABLE 1141 def_bool y 1142 depends on HIBERNATION 1143 1144config XEN_DOM0 1145 def_bool y 1146 depends on XEN 1147 1148config XEN 1149 bool "Xen guest support on ARM64" 1150 depends on ARM64 && OF 1151 select SWIOTLB_XEN 1152 select PARAVIRT 1153 help 1154 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1155 1156config FORCE_MAX_ZONEORDER 1157 int 1158 default "14" if ARM64_64K_PAGES 1159 default "12" if ARM64_16K_PAGES 1160 default "11" 1161 help 1162 The kernel memory allocator divides physically contiguous memory 1163 blocks into "zones", where each zone is a power of two number of 1164 pages. This option selects the largest power of two that the kernel 1165 keeps in the memory allocator. If you need to allocate very large 1166 blocks of physically contiguous memory, then you may need to 1167 increase this value. 1168 1169 This config option is actually maximum order plus one. For example, 1170 a value of 11 means that the largest free memory block is 2^10 pages. 1171 1172 We make sure that we can allocate upto a HugePage size for each configuration. 1173 Hence we have : 1174 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1175 1176 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1177 4M allocations matching the default size used by generic code. 1178 1179config UNMAP_KERNEL_AT_EL0 1180 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1181 default y 1182 help 1183 Speculation attacks against some high-performance processors can 1184 be used to bypass MMU permission checks and leak kernel data to 1185 userspace. This can be defended against by unmapping the kernel 1186 when running in userspace, mapping it back in on exception entry 1187 via a trampoline page in the vector table. 1188 1189 If unsure, say Y. 1190 1191config RODATA_FULL_DEFAULT_ENABLED 1192 bool "Apply r/o permissions of VM areas also to their linear aliases" 1193 default y 1194 help 1195 Apply read-only attributes of VM areas to the linear alias of 1196 the backing pages as well. This prevents code or read-only data 1197 from being modified (inadvertently or intentionally) via another 1198 mapping of the same memory page. This additional enhancement can 1199 be turned off at runtime by passing rodata=[off|on] (and turned on 1200 with rodata=full if this option is set to 'n') 1201 1202 This requires the linear region to be mapped down to pages, 1203 which may adversely affect performance in some cases. 1204 1205config ARM64_SW_TTBR0_PAN 1206 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1207 help 1208 Enabling this option prevents the kernel from accessing 1209 user-space memory directly by pointing TTBR0_EL1 to a reserved 1210 zeroed area and reserved ASID. The user access routines 1211 restore the valid TTBR0_EL1 temporarily. 1212 1213config ARM64_TAGGED_ADDR_ABI 1214 bool "Enable the tagged user addresses syscall ABI" 1215 default y 1216 help 1217 When this option is enabled, user applications can opt in to a 1218 relaxed ABI via prctl() allowing tagged addresses to be passed 1219 to system calls as pointer arguments. For details, see 1220 Documentation/arm64/tagged-address-abi.rst. 1221 1222menuconfig COMPAT 1223 bool "Kernel support for 32-bit EL0" 1224 depends on ARM64_4K_PAGES || EXPERT 1225 select HAVE_UID16 1226 select OLD_SIGSUSPEND3 1227 select COMPAT_OLD_SIGACTION 1228 help 1229 This option enables support for a 32-bit EL0 running under a 64-bit 1230 kernel at EL1. AArch32-specific components such as system calls, 1231 the user helper functions, VFP support and the ptrace interface are 1232 handled appropriately by the kernel. 1233 1234 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1235 that you will only be able to execute AArch32 binaries that were compiled 1236 with page size aligned segments. 1237 1238 If you want to execute 32-bit userspace applications, say Y. 1239 1240if COMPAT 1241 1242config KUSER_HELPERS 1243 bool "Enable kuser helpers page for 32-bit applications" 1244 default y 1245 help 1246 Warning: disabling this option may break 32-bit user programs. 1247 1248 Provide kuser helpers to compat tasks. The kernel provides 1249 helper code to userspace in read only form at a fixed location 1250 to allow userspace to be independent of the CPU type fitted to 1251 the system. This permits binaries to be run on ARMv4 through 1252 to ARMv8 without modification. 1253 1254 See Documentation/arm/kernel_user_helpers.rst for details. 1255 1256 However, the fixed address nature of these helpers can be used 1257 by ROP (return orientated programming) authors when creating 1258 exploits. 1259 1260 If all of the binaries and libraries which run on your platform 1261 are built specifically for your platform, and make no use of 1262 these helpers, then you can turn this option off to hinder 1263 such exploits. However, in that case, if a binary or library 1264 relying on those helpers is run, it will not function correctly. 1265 1266 Say N here only if you are absolutely certain that you do not 1267 need these helpers; otherwise, the safe option is to say Y. 1268 1269config COMPAT_VDSO 1270 bool "Enable vDSO for 32-bit applications" 1271 depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != "" 1272 select GENERIC_COMPAT_VDSO 1273 default y 1274 help 1275 Place in the process address space of 32-bit applications an 1276 ELF shared object providing fast implementations of gettimeofday 1277 and clock_gettime. 1278 1279 You must have a 32-bit build of glibc 2.22 or later for programs 1280 to seamlessly take advantage of this. 1281 1282config THUMB2_COMPAT_VDSO 1283 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1284 depends on COMPAT_VDSO 1285 default y 1286 help 1287 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1288 otherwise with '-marm'. 1289 1290menuconfig ARMV8_DEPRECATED 1291 bool "Emulate deprecated/obsolete ARMv8 instructions" 1292 depends on SYSCTL 1293 help 1294 Legacy software support may require certain instructions 1295 that have been deprecated or obsoleted in the architecture. 1296 1297 Enable this config to enable selective emulation of these 1298 features. 1299 1300 If unsure, say Y 1301 1302if ARMV8_DEPRECATED 1303 1304config SWP_EMULATION 1305 bool "Emulate SWP/SWPB instructions" 1306 help 1307 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1308 they are always undefined. Say Y here to enable software 1309 emulation of these instructions for userspace using LDXR/STXR. 1310 This feature can be controlled at runtime with the abi.swp 1311 sysctl which is disabled by default. 1312 1313 In some older versions of glibc [<=2.8] SWP is used during futex 1314 trylock() operations with the assumption that the code will not 1315 be preempted. This invalid assumption may be more likely to fail 1316 with SWP emulation enabled, leading to deadlock of the user 1317 application. 1318 1319 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1320 on an external transaction monitoring block called a global 1321 monitor to maintain update atomicity. If your system does not 1322 implement a global monitor, this option can cause programs that 1323 perform SWP operations to uncached memory to deadlock. 1324 1325 If unsure, say Y 1326 1327config CP15_BARRIER_EMULATION 1328 bool "Emulate CP15 Barrier instructions" 1329 help 1330 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1331 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1332 strongly recommended to use the ISB, DSB, and DMB 1333 instructions instead. 1334 1335 Say Y here to enable software emulation of these 1336 instructions for AArch32 userspace code. When this option is 1337 enabled, CP15 barrier usage is traced which can help 1338 identify software that needs updating. This feature can be 1339 controlled at runtime with the abi.cp15_barrier sysctl. 1340 1341 If unsure, say Y 1342 1343config SETEND_EMULATION 1344 bool "Emulate SETEND instruction" 1345 help 1346 The SETEND instruction alters the data-endianness of the 1347 AArch32 EL0, and is deprecated in ARMv8. 1348 1349 Say Y here to enable software emulation of the instruction 1350 for AArch32 userspace code. This feature can be controlled 1351 at runtime with the abi.setend sysctl. 1352 1353 Note: All the cpus on the system must have mixed endian support at EL0 1354 for this feature to be enabled. If a new CPU - which doesn't support mixed 1355 endian - is hotplugged in after this feature has been enabled, there could 1356 be unexpected results in the applications. 1357 1358 If unsure, say Y 1359endif 1360 1361endif 1362 1363menu "ARMv8.1 architectural features" 1364 1365config ARM64_HW_AFDBM 1366 bool "Support for hardware updates of the Access and Dirty page flags" 1367 default y 1368 help 1369 The ARMv8.1 architecture extensions introduce support for 1370 hardware updates of the access and dirty information in page 1371 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1372 capable processors, accesses to pages with PTE_AF cleared will 1373 set this bit instead of raising an access flag fault. 1374 Similarly, writes to read-only pages with the DBM bit set will 1375 clear the read-only bit (AP[2]) instead of raising a 1376 permission fault. 1377 1378 Kernels built with this configuration option enabled continue 1379 to work on pre-ARMv8.1 hardware and the performance impact is 1380 minimal. If unsure, say Y. 1381 1382config ARM64_PAN 1383 bool "Enable support for Privileged Access Never (PAN)" 1384 default y 1385 help 1386 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1387 prevents the kernel or hypervisor from accessing user-space (EL0) 1388 memory directly. 1389 1390 Choosing this option will cause any unprotected (not using 1391 copy_to_user et al) memory access to fail with a permission fault. 1392 1393 The feature is detected at runtime, and will remain as a 'nop' 1394 instruction if the cpu does not implement the feature. 1395 1396config AS_HAS_LDAPR 1397 def_bool $(as-instr,.arch_extension rcpc) 1398 1399config AS_HAS_LSE_ATOMICS 1400 def_bool $(as-instr,.arch_extension lse) 1401 1402config ARM64_LSE_ATOMICS 1403 bool 1404 default ARM64_USE_LSE_ATOMICS 1405 depends on AS_HAS_LSE_ATOMICS 1406 1407config ARM64_USE_LSE_ATOMICS 1408 bool "Atomic instructions" 1409 depends on JUMP_LABEL 1410 default y 1411 help 1412 As part of the Large System Extensions, ARMv8.1 introduces new 1413 atomic instructions that are designed specifically to scale in 1414 very large systems. 1415 1416 Say Y here to make use of these instructions for the in-kernel 1417 atomic routines. This incurs a small overhead on CPUs that do 1418 not support these instructions and requires the kernel to be 1419 built with binutils >= 2.25 in order for the new instructions 1420 to be used. 1421 1422endmenu 1423 1424menu "ARMv8.2 architectural features" 1425 1426config ARM64_PMEM 1427 bool "Enable support for persistent memory" 1428 select ARCH_HAS_PMEM_API 1429 select ARCH_HAS_UACCESS_FLUSHCACHE 1430 help 1431 Say Y to enable support for the persistent memory API based on the 1432 ARMv8.2 DCPoP feature. 1433 1434 The feature is detected at runtime, and the kernel will use DC CVAC 1435 operations if DC CVAP is not supported (following the behaviour of 1436 DC CVAP itself if the system does not define a point of persistence). 1437 1438config ARM64_RAS_EXTN 1439 bool "Enable support for RAS CPU Extensions" 1440 default y 1441 help 1442 CPUs that support the Reliability, Availability and Serviceability 1443 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1444 errors, classify them and report them to software. 1445 1446 On CPUs with these extensions system software can use additional 1447 barriers to determine if faults are pending and read the 1448 classification from a new set of registers. 1449 1450 Selecting this feature will allow the kernel to use these barriers 1451 and access the new registers if the system supports the extension. 1452 Platform RAS features may additionally depend on firmware support. 1453 1454config ARM64_CNP 1455 bool "Enable support for Common Not Private (CNP) translations" 1456 default y 1457 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1458 help 1459 Common Not Private (CNP) allows translation table entries to 1460 be shared between different PEs in the same inner shareable 1461 domain, so the hardware can use this fact to optimise the 1462 caching of such entries in the TLB. 1463 1464 Selecting this option allows the CNP feature to be detected 1465 at runtime, and does not affect PEs that do not implement 1466 this feature. 1467 1468endmenu 1469 1470menu "ARMv8.3 architectural features" 1471 1472config ARM64_PTR_AUTH 1473 bool "Enable support for pointer authentication" 1474 default y 1475 help 1476 Pointer authentication (part of the ARMv8.3 Extensions) provides 1477 instructions for signing and authenticating pointers against secret 1478 keys, which can be used to mitigate Return Oriented Programming (ROP) 1479 and other attacks. 1480 1481 This option enables these instructions at EL0 (i.e. for userspace). 1482 Choosing this option will cause the kernel to initialise secret keys 1483 for each process at exec() time, with these keys being 1484 context-switched along with the process. 1485 1486 The feature is detected at runtime. If the feature is not present in 1487 hardware it will not be advertised to userspace/KVM guest nor will it 1488 be enabled. 1489 1490 If the feature is present on the boot CPU but not on a late CPU, then 1491 the late CPU will be parked. Also, if the boot CPU does not have 1492 address auth and the late CPU has then the late CPU will still boot 1493 but with the feature disabled. On such a system, this option should 1494 not be selected. 1495 1496config ARM64_PTR_AUTH_KERNEL 1497 bool "Use pointer authentication for kernel" 1498 default y 1499 depends on ARM64_PTR_AUTH 1500 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1501 # Modern compilers insert a .note.gnu.property section note for PAC 1502 # which is only understood by binutils starting with version 2.33.1. 1503 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1504 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1505 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1506 help 1507 If the compiler supports the -mbranch-protection or 1508 -msign-return-address flag (e.g. GCC 7 or later), then this option 1509 will cause the kernel itself to be compiled with return address 1510 protection. In this case, and if the target hardware is known to 1511 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1512 disabled with minimal loss of protection. 1513 1514 This feature works with FUNCTION_GRAPH_TRACER option only if 1515 DYNAMIC_FTRACE_WITH_REGS is enabled. 1516 1517config CC_HAS_BRANCH_PROT_PAC_RET 1518 # GCC 9 or later, clang 8 or later 1519 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1520 1521config CC_HAS_SIGN_RETURN_ADDRESS 1522 # GCC 7, 8 1523 def_bool $(cc-option,-msign-return-address=all) 1524 1525config AS_HAS_PAC 1526 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1527 1528config AS_HAS_CFI_NEGATE_RA_STATE 1529 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1530 1531endmenu 1532 1533menu "ARMv8.4 architectural features" 1534 1535config ARM64_AMU_EXTN 1536 bool "Enable support for the Activity Monitors Unit CPU extension" 1537 default y 1538 help 1539 The activity monitors extension is an optional extension introduced 1540 by the ARMv8.4 CPU architecture. This enables support for version 1 1541 of the activity monitors architecture, AMUv1. 1542 1543 To enable the use of this extension on CPUs that implement it, say Y. 1544 1545 Note that for architectural reasons, firmware _must_ implement AMU 1546 support when running on CPUs that present the activity monitors 1547 extension. The required support is present in: 1548 * Version 1.5 and later of the ARM Trusted Firmware 1549 1550 For kernels that have this configuration enabled but boot with broken 1551 firmware, you may need to say N here until the firmware is fixed. 1552 Otherwise you may experience firmware panics or lockups when 1553 accessing the counter registers. Even if you are not observing these 1554 symptoms, the values returned by the register reads might not 1555 correctly reflect reality. Most commonly, the value read will be 0, 1556 indicating that the counter is not enabled. 1557 1558config AS_HAS_ARMV8_4 1559 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1560 1561config ARM64_TLB_RANGE 1562 bool "Enable support for tlbi range feature" 1563 default y 1564 depends on AS_HAS_ARMV8_4 1565 help 1566 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1567 range of input addresses. 1568 1569 The feature introduces new assembly instructions, and they were 1570 support when binutils >= 2.30. 1571 1572endmenu 1573 1574menu "ARMv8.5 architectural features" 1575 1576config AS_HAS_ARMV8_5 1577 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 1578 1579config ARM64_BTI 1580 bool "Branch Target Identification support" 1581 default y 1582 help 1583 Branch Target Identification (part of the ARMv8.5 Extensions) 1584 provides a mechanism to limit the set of locations to which computed 1585 branch instructions such as BR or BLR can jump. 1586 1587 To make use of BTI on CPUs that support it, say Y. 1588 1589 BTI is intended to provide complementary protection to other control 1590 flow integrity protection mechanisms, such as the Pointer 1591 authentication mechanism provided as part of the ARMv8.3 Extensions. 1592 For this reason, it does not make sense to enable this option without 1593 also enabling support for pointer authentication. Thus, when 1594 enabling this option you should also select ARM64_PTR_AUTH=y. 1595 1596 Userspace binaries must also be specifically compiled to make use of 1597 this mechanism. If you say N here or the hardware does not support 1598 BTI, such binaries can still run, but you get no additional 1599 enforcement of branch destinations. 1600 1601config ARM64_BTI_KERNEL 1602 bool "Use Branch Target Identification for kernel" 1603 default y 1604 depends on ARM64_BTI 1605 depends on ARM64_PTR_AUTH_KERNEL 1606 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 1607 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 1608 depends on !CC_IS_GCC || GCC_VERSION >= 100100 1609 # https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9 1610 depends on !CC_IS_CLANG || CLANG_VERSION >= 120000 1611 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1612 help 1613 Build the kernel with Branch Target Identification annotations 1614 and enable enforcement of this for kernel code. When this option 1615 is enabled and the system supports BTI all kernel code including 1616 modular code must have BTI enabled. 1617 1618config CC_HAS_BRANCH_PROT_PAC_RET_BTI 1619 # GCC 9 or later, clang 8 or later 1620 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 1621 1622config ARM64_E0PD 1623 bool "Enable support for E0PD" 1624 default y 1625 help 1626 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1627 that EL0 accesses made via TTBR1 always fault in constant time, 1628 providing similar benefits to KASLR as those provided by KPTI, but 1629 with lower overhead and without disrupting legitimate access to 1630 kernel memory such as SPE. 1631 1632 This option enables E0PD for TTBR1 where available. 1633 1634config ARCH_RANDOM 1635 bool "Enable support for random number generation" 1636 default y 1637 help 1638 Random number generation (part of the ARMv8.5 Extensions) 1639 provides a high bandwidth, cryptographically secure 1640 hardware random number generator. 1641 1642config ARM64_AS_HAS_MTE 1643 # Initial support for MTE went in binutils 2.32.0, checked with 1644 # ".arch armv8.5-a+memtag" below. However, this was incomplete 1645 # as a late addition to the final architecture spec (LDGM/STGM) 1646 # is only supported in the newer 2.32.x and 2.33 binutils 1647 # versions, hence the extra "stgm" instruction check below. 1648 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 1649 1650config ARM64_MTE 1651 bool "Memory Tagging Extension support" 1652 default y 1653 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 1654 depends on AS_HAS_ARMV8_5 1655 depends on AS_HAS_LSE_ATOMICS 1656 # Required for tag checking in the uaccess routines 1657 depends on ARM64_PAN 1658 select ARCH_USES_HIGH_VMA_FLAGS 1659 help 1660 Memory Tagging (part of the ARMv8.5 Extensions) provides 1661 architectural support for run-time, always-on detection of 1662 various classes of memory error to aid with software debugging 1663 to eliminate vulnerabilities arising from memory-unsafe 1664 languages. 1665 1666 This option enables the support for the Memory Tagging 1667 Extension at EL0 (i.e. for userspace). 1668 1669 Selecting this option allows the feature to be detected at 1670 runtime. Any secondary CPU not implementing this feature will 1671 not be allowed a late bring-up. 1672 1673 Userspace binaries that want to use this feature must 1674 explicitly opt in. The mechanism for the userspace is 1675 described in: 1676 1677 Documentation/arm64/memory-tagging-extension.rst. 1678 1679endmenu 1680 1681menu "ARMv8.7 architectural features" 1682 1683config ARM64_EPAN 1684 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 1685 default y 1686 depends on ARM64_PAN 1687 help 1688 Enhanced Privileged Access Never (EPAN) allows Privileged 1689 Access Never to be used with Execute-only mappings. 1690 1691 The feature is detected at runtime, and will remain disabled 1692 if the cpu does not implement the feature. 1693endmenu 1694 1695config ARM64_SVE 1696 bool "ARM Scalable Vector Extension support" 1697 default y 1698 help 1699 The Scalable Vector Extension (SVE) is an extension to the AArch64 1700 execution state which complements and extends the SIMD functionality 1701 of the base architecture to support much larger vectors and to enable 1702 additional vectorisation opportunities. 1703 1704 To enable use of this extension on CPUs that implement it, say Y. 1705 1706 On CPUs that support the SVE2 extensions, this option will enable 1707 those too. 1708 1709 Note that for architectural reasons, firmware _must_ implement SVE 1710 support when running on SVE capable hardware. The required support 1711 is present in: 1712 1713 * version 1.5 and later of the ARM Trusted Firmware 1714 * the AArch64 boot wrapper since commit 5e1261e08abf 1715 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1716 1717 For other firmware implementations, consult the firmware documentation 1718 or vendor. 1719 1720 If you need the kernel to boot on SVE-capable hardware with broken 1721 firmware, you may need to say N here until you get your firmware 1722 fixed. Otherwise, you may experience firmware panics or lockups when 1723 booting the kernel. If unsure and you are not observing these 1724 symptoms, you should assume that it is safe to say Y. 1725 1726config ARM64_MODULE_PLTS 1727 bool "Use PLTs to allow module memory to spill over into vmalloc area" 1728 depends on MODULES 1729 select HAVE_MOD_ARCH_SPECIFIC 1730 help 1731 Allocate PLTs when loading modules so that jumps and calls whose 1732 targets are too far away for their relative offsets to be encoded 1733 in the instructions themselves can be bounced via veneers in the 1734 module's PLT. This allows modules to be allocated in the generic 1735 vmalloc area after the dedicated module memory area has been 1736 exhausted. 1737 1738 When running with address space randomization (KASLR), the module 1739 region itself may be too far away for ordinary relative jumps and 1740 calls, and so in that case, module PLTs are required and cannot be 1741 disabled. 1742 1743 Specific errata workaround(s) might also force module PLTs to be 1744 enabled (ARM64_ERRATUM_843419). 1745 1746config ARM64_PSEUDO_NMI 1747 bool "Support for NMI-like interrupts" 1748 select ARM_GIC_V3 1749 help 1750 Adds support for mimicking Non-Maskable Interrupts through the use of 1751 GIC interrupt priority. This support requires version 3 or later of 1752 ARM GIC. 1753 1754 This high priority configuration for interrupts needs to be 1755 explicitly enabled by setting the kernel parameter 1756 "irqchip.gicv3_pseudo_nmi" to 1. 1757 1758 If unsure, say N 1759 1760if ARM64_PSEUDO_NMI 1761config ARM64_DEBUG_PRIORITY_MASKING 1762 bool "Debug interrupt priority masking" 1763 help 1764 This adds runtime checks to functions enabling/disabling 1765 interrupts when using priority masking. The additional checks verify 1766 the validity of ICC_PMR_EL1 when calling concerned functions. 1767 1768 If unsure, say N 1769endif 1770 1771config RELOCATABLE 1772 bool "Build a relocatable kernel image" if EXPERT 1773 select ARCH_HAS_RELR 1774 default y 1775 help 1776 This builds the kernel as a Position Independent Executable (PIE), 1777 which retains all relocation metadata required to relocate the 1778 kernel binary at runtime to a different virtual address than the 1779 address it was linked at. 1780 Since AArch64 uses the RELA relocation format, this requires a 1781 relocation pass at runtime even if the kernel is loaded at the 1782 same address it was linked at. 1783 1784config RANDOMIZE_BASE 1785 bool "Randomize the address of the kernel image" 1786 select ARM64_MODULE_PLTS if MODULES 1787 select RELOCATABLE 1788 help 1789 Randomizes the virtual address at which the kernel image is 1790 loaded, as a security feature that deters exploit attempts 1791 relying on knowledge of the location of kernel internals. 1792 1793 It is the bootloader's job to provide entropy, by passing a 1794 random u64 value in /chosen/kaslr-seed at kernel entry. 1795 1796 When booting via the UEFI stub, it will invoke the firmware's 1797 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 1798 to the kernel proper. In addition, it will randomise the physical 1799 location of the kernel Image as well. 1800 1801 If unsure, say N. 1802 1803config RANDOMIZE_MODULE_REGION_FULL 1804 bool "Randomize the module region over a 2 GB range" 1805 depends on RANDOMIZE_BASE 1806 default y 1807 help 1808 Randomizes the location of the module region inside a 2 GB window 1809 covering the core kernel. This way, it is less likely for modules 1810 to leak information about the location of core kernel data structures 1811 but it does imply that function calls between modules and the core 1812 kernel will need to be resolved via veneers in the module PLT. 1813 1814 When this option is not set, the module region will be randomized over 1815 a limited range that contains the [_stext, _etext] interval of the 1816 core kernel, so branch relocations are almost always in range unless 1817 ARM64_MODULE_PLTS is enabled and the region is exhausted. In this 1818 particular case of region exhaustion, modules might be able to fall 1819 back to a larger 2GB area. 1820 1821config CC_HAVE_STACKPROTECTOR_SYSREG 1822 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 1823 1824config STACKPROTECTOR_PER_TASK 1825 def_bool y 1826 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 1827 1828endmenu 1829 1830menu "Boot options" 1831 1832config ARM64_ACPI_PARKING_PROTOCOL 1833 bool "Enable support for the ARM64 ACPI parking protocol" 1834 depends on ACPI 1835 help 1836 Enable support for the ARM64 ACPI parking protocol. If disabled 1837 the kernel will not allow booting through the ARM64 ACPI parking 1838 protocol even if the corresponding data is present in the ACPI 1839 MADT table. 1840 1841config CMDLINE 1842 string "Default kernel command string" 1843 default "" 1844 help 1845 Provide a set of default command-line options at build time by 1846 entering them here. As a minimum, you should specify the the 1847 root device (e.g. root=/dev/nfs). 1848 1849choice 1850 prompt "Kernel command line type" if CMDLINE != "" 1851 default CMDLINE_FROM_BOOTLOADER 1852 help 1853 Choose how the kernel will handle the provided default kernel 1854 command line string. 1855 1856config CMDLINE_FROM_BOOTLOADER 1857 bool "Use bootloader kernel arguments if available" 1858 help 1859 Uses the command-line options passed by the boot loader. If 1860 the boot loader doesn't provide any, the default kernel command 1861 string provided in CMDLINE will be used. 1862 1863config CMDLINE_FORCE 1864 bool "Always use the default kernel command string" 1865 help 1866 Always use the default kernel command string, even if the boot 1867 loader passes other arguments to the kernel. 1868 This is useful if you cannot or don't want to change the 1869 command-line options your boot loader passes to the kernel. 1870 1871endchoice 1872 1873config EFI_STUB 1874 bool 1875 1876config EFI 1877 bool "UEFI runtime support" 1878 depends on OF && !CPU_BIG_ENDIAN 1879 depends on KERNEL_MODE_NEON 1880 select ARCH_SUPPORTS_ACPI 1881 select LIBFDT 1882 select UCS2_STRING 1883 select EFI_PARAMS_FROM_FDT 1884 select EFI_RUNTIME_WRAPPERS 1885 select EFI_STUB 1886 select EFI_GENERIC_STUB 1887 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 1888 default y 1889 help 1890 This option provides support for runtime services provided 1891 by UEFI firmware (such as non-volatile variables, realtime 1892 clock, and platform reset). A UEFI stub is also provided to 1893 allow the kernel to be booted as an EFI application. This 1894 is only useful on systems that have UEFI firmware. 1895 1896config DMI 1897 bool "Enable support for SMBIOS (DMI) tables" 1898 depends on EFI 1899 default y 1900 help 1901 This enables SMBIOS/DMI feature for systems. 1902 1903 This option is only useful on systems that have UEFI firmware. 1904 However, even with this option, the resultant kernel should 1905 continue to boot on existing non-UEFI platforms. 1906 1907endmenu 1908 1909config SYSVIPC_COMPAT 1910 def_bool y 1911 depends on COMPAT && SYSVIPC 1912 1913menu "Power management options" 1914 1915source "kernel/power/Kconfig" 1916 1917config ARCH_HIBERNATION_POSSIBLE 1918 def_bool y 1919 depends on CPU_PM 1920 1921config ARCH_HIBERNATION_HEADER 1922 def_bool y 1923 depends on HIBERNATION 1924 1925config ARCH_SUSPEND_POSSIBLE 1926 def_bool y 1927 1928endmenu 1929 1930menu "CPU Power Management" 1931 1932source "drivers/cpuidle/Kconfig" 1933 1934source "drivers/cpufreq/Kconfig" 1935 1936endmenu 1937 1938source "drivers/firmware/Kconfig" 1939 1940source "drivers/acpi/Kconfig" 1941 1942source "arch/arm64/kvm/Kconfig" 1943 1944if CRYPTO 1945source "arch/arm64/crypto/Kconfig" 1946endif 1947