xref: /openbmc/linux/arch/arm64/Kconfig (revision 37744fee)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_VIRTUAL
13	select ARCH_HAS_DEVMEM_IS_ALLOWED
14	select ARCH_HAS_DMA_PREP_COHERENT
15	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
16	select ARCH_HAS_FAST_MULTIPLIER
17	select ARCH_HAS_FORTIFY_SOURCE
18	select ARCH_HAS_GCOV_PROFILE_ALL
19	select ARCH_HAS_GIGANTIC_PAGE
20	select ARCH_HAS_KCOV
21	select ARCH_HAS_KEEPINITRD
22	select ARCH_HAS_MEMBARRIER_SYNC_CORE
23	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
24	select ARCH_HAS_PTE_DEVMAP
25	select ARCH_HAS_PTE_SPECIAL
26	select ARCH_HAS_SETUP_DMA_OPS
27	select ARCH_HAS_SET_DIRECT_MAP
28	select ARCH_HAS_SET_MEMORY
29	select ARCH_HAS_STRICT_KERNEL_RWX
30	select ARCH_HAS_STRICT_MODULE_RWX
31	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
32	select ARCH_HAS_SYNC_DMA_FOR_CPU
33	select ARCH_HAS_SYSCALL_WRAPPER
34	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
35	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
36	select ARCH_HAVE_NMI_SAFE_CMPXCHG
37	select ARCH_INLINE_READ_LOCK if !PREEMPTION
38	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
39	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
40	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
41	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
42	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
43	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
44	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
45	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
46	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
47	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
48	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
49	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
50	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
51	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
52	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
53	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
54	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
55	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
56	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
57	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
58	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
59	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
60	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
61	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
62	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
63	select ARCH_KEEP_MEMBLOCK
64	select ARCH_USE_CMPXCHG_LOCKREF
65	select ARCH_USE_QUEUED_RWLOCKS
66	select ARCH_USE_QUEUED_SPINLOCKS
67	select ARCH_SUPPORTS_MEMORY_FAILURE
68	select ARCH_SUPPORTS_ATOMIC_RMW
69	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG)
70	select ARCH_SUPPORTS_NUMA_BALANCING
71	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
72	select ARCH_WANT_DEFAULT_BPF_JIT
73	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
74	select ARCH_WANT_FRAME_POINTERS
75	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
76	select ARCH_HAS_UBSAN_SANITIZE_ALL
77	select ARM_AMBA
78	select ARM_ARCH_TIMER
79	select ARM_GIC
80	select AUDIT_ARCH_COMPAT_GENERIC
81	select ARM_GIC_V2M if PCI
82	select ARM_GIC_V3
83	select ARM_GIC_V3_ITS if PCI
84	select ARM_PSCI_FW
85	select BUILDTIME_TABLE_SORT
86	select CLONE_BACKWARDS
87	select COMMON_CLK
88	select CPU_PM if (SUSPEND || CPU_IDLE)
89	select CRC32
90	select DCACHE_WORD_ACCESS
91	select DMA_DIRECT_REMAP
92	select EDAC_SUPPORT
93	select FRAME_POINTER
94	select GENERIC_ALLOCATOR
95	select GENERIC_ARCH_TOPOLOGY
96	select GENERIC_CLOCKEVENTS
97	select GENERIC_CLOCKEVENTS_BROADCAST
98	select GENERIC_CPU_AUTOPROBE
99	select GENERIC_CPU_VULNERABILITIES
100	select GENERIC_EARLY_IOREMAP
101	select GENERIC_IDLE_POLL_SETUP
102	select GENERIC_IRQ_MULTI_HANDLER
103	select GENERIC_IRQ_PROBE
104	select GENERIC_IRQ_SHOW
105	select GENERIC_IRQ_SHOW_LEVEL
106	select GENERIC_PCI_IOMAP
107	select GENERIC_PTDUMP
108	select GENERIC_SCHED_CLOCK
109	select GENERIC_SMP_IDLE_THREAD
110	select GENERIC_STRNCPY_FROM_USER
111	select GENERIC_STRNLEN_USER
112	select GENERIC_TIME_VSYSCALL
113	select GENERIC_GETTIMEOFDAY
114	select HANDLE_DOMAIN_IRQ
115	select HARDIRQS_SW_RESEND
116	select HAVE_PCI
117	select HAVE_ACPI_APEI if (ACPI && EFI)
118	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
119	select HAVE_ARCH_AUDITSYSCALL
120	select HAVE_ARCH_BITREVERSE
121	select HAVE_ARCH_COMPILER_H
122	select HAVE_ARCH_HUGE_VMAP
123	select HAVE_ARCH_JUMP_LABEL
124	select HAVE_ARCH_JUMP_LABEL_RELATIVE
125	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
126	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
127	select HAVE_ARCH_KGDB
128	select HAVE_ARCH_MMAP_RND_BITS
129	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
130	select HAVE_ARCH_PREL32_RELOCATIONS
131	select HAVE_ARCH_SECCOMP_FILTER
132	select HAVE_ARCH_STACKLEAK
133	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
134	select HAVE_ARCH_TRACEHOOK
135	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
136	select HAVE_ARCH_VMAP_STACK
137	select HAVE_ARM_SMCCC
138	select HAVE_ASM_MODVERSIONS
139	select HAVE_EBPF_JIT
140	select HAVE_C_RECORDMCOUNT
141	select HAVE_CMPXCHG_DOUBLE
142	select HAVE_CMPXCHG_LOCAL
143	select HAVE_CONTEXT_TRACKING
144	select HAVE_COPY_THREAD_TLS
145	select HAVE_DEBUG_BUGVERBOSE
146	select HAVE_DEBUG_KMEMLEAK
147	select HAVE_DMA_CONTIGUOUS
148	select HAVE_DYNAMIC_FTRACE
149	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
150		if $(cc-option,-fpatchable-function-entry=2)
151	select HAVE_EFFICIENT_UNALIGNED_ACCESS
152	select HAVE_FAST_GUP
153	select HAVE_FTRACE_MCOUNT_RECORD
154	select HAVE_FUNCTION_TRACER
155	select HAVE_FUNCTION_ERROR_INJECTION
156	select HAVE_FUNCTION_GRAPH_TRACER
157	select HAVE_GCC_PLUGINS
158	select HAVE_HW_BREAKPOINT if PERF_EVENTS
159	select HAVE_IRQ_TIME_ACCOUNTING
160	select HAVE_MEMBLOCK_NODE_MAP if NUMA
161	select HAVE_NMI
162	select HAVE_PATA_PLATFORM
163	select HAVE_PERF_EVENTS
164	select HAVE_PERF_REGS
165	select HAVE_PERF_USER_STACK_DUMP
166	select HAVE_REGS_AND_STACK_ACCESS_API
167	select HAVE_FUNCTION_ARG_ACCESS_API
168	select HAVE_FUTEX_CMPXCHG if FUTEX
169	select MMU_GATHER_RCU_TABLE_FREE
170	select HAVE_RSEQ
171	select HAVE_STACKPROTECTOR
172	select HAVE_SYSCALL_TRACEPOINTS
173	select HAVE_KPROBES
174	select HAVE_KRETPROBES
175	select HAVE_GENERIC_VDSO
176	select IOMMU_DMA if IOMMU_SUPPORT
177	select IRQ_DOMAIN
178	select IRQ_FORCED_THREADING
179	select MODULES_USE_ELF_RELA
180	select NEED_DMA_MAP_STATE
181	select NEED_SG_DMA_LENGTH
182	select OF
183	select OF_EARLY_FLATTREE
184	select PCI_DOMAINS_GENERIC if PCI
185	select PCI_ECAM if (ACPI && PCI)
186	select PCI_SYSCALL if PCI
187	select POWER_RESET
188	select POWER_SUPPLY
189	select SPARSE_IRQ
190	select SWIOTLB
191	select SYSCTL_EXCEPTION_TRACE
192	select THREAD_INFO_IN_TASK
193	help
194	  ARM 64-bit (AArch64) Linux support.
195
196config 64BIT
197	def_bool y
198
199config MMU
200	def_bool y
201
202config ARM64_PAGE_SHIFT
203	int
204	default 16 if ARM64_64K_PAGES
205	default 14 if ARM64_16K_PAGES
206	default 12
207
208config ARM64_CONT_SHIFT
209	int
210	default 5 if ARM64_64K_PAGES
211	default 7 if ARM64_16K_PAGES
212	default 4
213
214config ARCH_MMAP_RND_BITS_MIN
215       default 14 if ARM64_64K_PAGES
216       default 16 if ARM64_16K_PAGES
217       default 18
218
219# max bits determined by the following formula:
220#  VA_BITS - PAGE_SHIFT - 3
221config ARCH_MMAP_RND_BITS_MAX
222       default 19 if ARM64_VA_BITS=36
223       default 24 if ARM64_VA_BITS=39
224       default 27 if ARM64_VA_BITS=42
225       default 30 if ARM64_VA_BITS=47
226       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
227       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
228       default 33 if ARM64_VA_BITS=48
229       default 14 if ARM64_64K_PAGES
230       default 16 if ARM64_16K_PAGES
231       default 18
232
233config ARCH_MMAP_RND_COMPAT_BITS_MIN
234       default 7 if ARM64_64K_PAGES
235       default 9 if ARM64_16K_PAGES
236       default 11
237
238config ARCH_MMAP_RND_COMPAT_BITS_MAX
239       default 16
240
241config NO_IOPORT_MAP
242	def_bool y if !PCI
243
244config STACKTRACE_SUPPORT
245	def_bool y
246
247config ILLEGAL_POINTER_VALUE
248	hex
249	default 0xdead000000000000
250
251config LOCKDEP_SUPPORT
252	def_bool y
253
254config TRACE_IRQFLAGS_SUPPORT
255	def_bool y
256
257config GENERIC_BUG
258	def_bool y
259	depends on BUG
260
261config GENERIC_BUG_RELATIVE_POINTERS
262	def_bool y
263	depends on GENERIC_BUG
264
265config GENERIC_HWEIGHT
266	def_bool y
267
268config GENERIC_CSUM
269        def_bool y
270
271config GENERIC_CALIBRATE_DELAY
272	def_bool y
273
274config ZONE_DMA
275	bool "Support DMA zone" if EXPERT
276	default y
277
278config ZONE_DMA32
279	bool "Support DMA32 zone" if EXPERT
280	default y
281
282config ARCH_ENABLE_MEMORY_HOTPLUG
283	def_bool y
284
285config ARCH_ENABLE_MEMORY_HOTREMOVE
286	def_bool y
287
288config SMP
289	def_bool y
290
291config KERNEL_MODE_NEON
292	def_bool y
293
294config FIX_EARLYCON_MEM
295	def_bool y
296
297config PGTABLE_LEVELS
298	int
299	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
300	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
301	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
302	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
303	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
304	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
305
306config ARCH_SUPPORTS_UPROBES
307	def_bool y
308
309config ARCH_PROC_KCORE_TEXT
310	def_bool y
311
312config BROKEN_GAS_INST
313	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
314
315config KASAN_SHADOW_OFFSET
316	hex
317	depends on KASAN
318	default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
319	default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
320	default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
321	default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
322	default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
323	default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
324	default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
325	default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
326	default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
327	default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
328	default 0xffffffffffffffff
329
330source "arch/arm64/Kconfig.platforms"
331
332menu "Kernel Features"
333
334menu "ARM errata workarounds via the alternatives framework"
335
336config ARM64_WORKAROUND_CLEAN_CACHE
337	bool
338
339config ARM64_ERRATUM_826319
340	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
341	default y
342	select ARM64_WORKAROUND_CLEAN_CACHE
343	help
344	  This option adds an alternative code sequence to work around ARM
345	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
346	  AXI master interface and an L2 cache.
347
348	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
349	  and is unable to accept a certain write via this interface, it will
350	  not progress on read data presented on the read data channel and the
351	  system can deadlock.
352
353	  The workaround promotes data cache clean instructions to
354	  data cache clean-and-invalidate.
355	  Please note that this does not necessarily enable the workaround,
356	  as it depends on the alternative framework, which will only patch
357	  the kernel if an affected CPU is detected.
358
359	  If unsure, say Y.
360
361config ARM64_ERRATUM_827319
362	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
363	default y
364	select ARM64_WORKAROUND_CLEAN_CACHE
365	help
366	  This option adds an alternative code sequence to work around ARM
367	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
368	  master interface and an L2 cache.
369
370	  Under certain conditions this erratum can cause a clean line eviction
371	  to occur at the same time as another transaction to the same address
372	  on the AMBA 5 CHI interface, which can cause data corruption if the
373	  interconnect reorders the two transactions.
374
375	  The workaround promotes data cache clean instructions to
376	  data cache clean-and-invalidate.
377	  Please note that this does not necessarily enable the workaround,
378	  as it depends on the alternative framework, which will only patch
379	  the kernel if an affected CPU is detected.
380
381	  If unsure, say Y.
382
383config ARM64_ERRATUM_824069
384	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
385	default y
386	select ARM64_WORKAROUND_CLEAN_CACHE
387	help
388	  This option adds an alternative code sequence to work around ARM
389	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
390	  to a coherent interconnect.
391
392	  If a Cortex-A53 processor is executing a store or prefetch for
393	  write instruction at the same time as a processor in another
394	  cluster is executing a cache maintenance operation to the same
395	  address, then this erratum might cause a clean cache line to be
396	  incorrectly marked as dirty.
397
398	  The workaround promotes data cache clean instructions to
399	  data cache clean-and-invalidate.
400	  Please note that this option does not necessarily enable the
401	  workaround, as it depends on the alternative framework, which will
402	  only patch the kernel if an affected CPU is detected.
403
404	  If unsure, say Y.
405
406config ARM64_ERRATUM_819472
407	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
408	default y
409	select ARM64_WORKAROUND_CLEAN_CACHE
410	help
411	  This option adds an alternative code sequence to work around ARM
412	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
413	  present when it is connected to a coherent interconnect.
414
415	  If the processor is executing a load and store exclusive sequence at
416	  the same time as a processor in another cluster is executing a cache
417	  maintenance operation to the same address, then this erratum might
418	  cause data corruption.
419
420	  The workaround promotes data cache clean instructions to
421	  data cache clean-and-invalidate.
422	  Please note that this does not necessarily enable the workaround,
423	  as it depends on the alternative framework, which will only patch
424	  the kernel if an affected CPU is detected.
425
426	  If unsure, say Y.
427
428config ARM64_ERRATUM_832075
429	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
430	default y
431	help
432	  This option adds an alternative code sequence to work around ARM
433	  erratum 832075 on Cortex-A57 parts up to r1p2.
434
435	  Affected Cortex-A57 parts might deadlock when exclusive load/store
436	  instructions to Write-Back memory are mixed with Device loads.
437
438	  The workaround is to promote device loads to use Load-Acquire
439	  semantics.
440	  Please note that this does not necessarily enable the workaround,
441	  as it depends on the alternative framework, which will only patch
442	  the kernel if an affected CPU is detected.
443
444	  If unsure, say Y.
445
446config ARM64_ERRATUM_834220
447	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
448	depends on KVM
449	default y
450	help
451	  This option adds an alternative code sequence to work around ARM
452	  erratum 834220 on Cortex-A57 parts up to r1p2.
453
454	  Affected Cortex-A57 parts might report a Stage 2 translation
455	  fault as the result of a Stage 1 fault for load crossing a
456	  page boundary when there is a permission or device memory
457	  alignment fault at Stage 1 and a translation fault at Stage 2.
458
459	  The workaround is to verify that the Stage 1 translation
460	  doesn't generate a fault before handling the Stage 2 fault.
461	  Please note that this does not necessarily enable the workaround,
462	  as it depends on the alternative framework, which will only patch
463	  the kernel if an affected CPU is detected.
464
465	  If unsure, say Y.
466
467config ARM64_ERRATUM_845719
468	bool "Cortex-A53: 845719: a load might read incorrect data"
469	depends on COMPAT
470	default y
471	help
472	  This option adds an alternative code sequence to work around ARM
473	  erratum 845719 on Cortex-A53 parts up to r0p4.
474
475	  When running a compat (AArch32) userspace on an affected Cortex-A53
476	  part, a load at EL0 from a virtual address that matches the bottom 32
477	  bits of the virtual address used by a recent load at (AArch64) EL1
478	  might return incorrect data.
479
480	  The workaround is to write the contextidr_el1 register on exception
481	  return to a 32-bit task.
482	  Please note that this does not necessarily enable the workaround,
483	  as it depends on the alternative framework, which will only patch
484	  the kernel if an affected CPU is detected.
485
486	  If unsure, say Y.
487
488config ARM64_ERRATUM_843419
489	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
490	default y
491	select ARM64_MODULE_PLTS if MODULES
492	help
493	  This option links the kernel with '--fix-cortex-a53-843419' and
494	  enables PLT support to replace certain ADRP instructions, which can
495	  cause subsequent memory accesses to use an incorrect address on
496	  Cortex-A53 parts up to r0p4.
497
498	  If unsure, say Y.
499
500config ARM64_ERRATUM_1024718
501	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
502	default y
503	help
504	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
505
506	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect
507	  update of the hardware dirty bit when the DBM/AP bits are updated
508	  without a break-before-make. The workaround is to disable the usage
509	  of hardware DBM locally on the affected cores. CPUs not affected by
510	  this erratum will continue to use the feature.
511
512	  If unsure, say Y.
513
514config ARM64_ERRATUM_1418040
515	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
516	default y
517	depends on COMPAT
518	help
519	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
520	  errata 1188873 and 1418040.
521
522	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
523	  cause register corruption when accessing the timer registers
524	  from AArch32 userspace.
525
526	  If unsure, say Y.
527
528config ARM64_WORKAROUND_SPECULATIVE_AT_VHE
529	bool
530
531config ARM64_ERRATUM_1165522
532	bool "Cortex-A76: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
533	default y
534	select ARM64_WORKAROUND_SPECULATIVE_AT_VHE
535	help
536	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
537
538	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
539	  corrupted TLBs by speculating an AT instruction during a guest
540	  context switch.
541
542	  If unsure, say Y.
543
544config ARM64_ERRATUM_1530923
545	bool "Cortex-A55: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
546	default y
547	select ARM64_WORKAROUND_SPECULATIVE_AT_VHE
548	help
549	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
550
551	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
552	  corrupted TLBs by speculating an AT instruction during a guest
553	  context switch.
554
555	  If unsure, say Y.
556
557config ARM64_ERRATUM_1286807
558	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
559	default y
560	select ARM64_WORKAROUND_REPEAT_TLBI
561	help
562	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
563
564	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
565	  address for a cacheable mapping of a location is being
566	  accessed by a core while another core is remapping the virtual
567	  address to a new physical page using the recommended
568	  break-before-make sequence, then under very rare circumstances
569	  TLBI+DSB completes before a read using the translation being
570	  invalidated has been observed by other observers. The
571	  workaround repeats the TLBI+DSB operation.
572
573config ARM64_WORKAROUND_SPECULATIVE_AT_NVHE
574	bool
575
576config ARM64_ERRATUM_1319367
577	bool "Cortex-A57/A72: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
578	default y
579	select ARM64_WORKAROUND_SPECULATIVE_AT_NVHE
580	help
581	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
582	  and A72 erratum 1319367
583
584	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
585	  speculating an AT instruction during a guest context switch.
586
587	  If unsure, say Y.
588
589config ARM64_ERRATUM_1463225
590	bool "Cortex-A76: Software Step might prevent interrupt recognition"
591	default y
592	help
593	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
594
595	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
596	  of a system call instruction (SVC) can prevent recognition of
597	  subsequent interrupts when software stepping is disabled in the
598	  exception handler of the system call and either kernel debugging
599	  is enabled or VHE is in use.
600
601	  Work around the erratum by triggering a dummy step exception
602	  when handling a system call from a task that is being stepped
603	  in a VHE configuration of the kernel.
604
605	  If unsure, say Y.
606
607config ARM64_ERRATUM_1542419
608	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
609	default y
610	help
611	  This option adds a workaround for ARM Neoverse-N1 erratum
612	  1542419.
613
614	  Affected Neoverse-N1 cores could execute a stale instruction when
615	  modified by another CPU. The workaround depends on a firmware
616	  counterpart.
617
618	  Workaround the issue by hiding the DIC feature from EL0. This
619	  forces user-space to perform cache maintenance.
620
621	  If unsure, say Y.
622
623config CAVIUM_ERRATUM_22375
624	bool "Cavium erratum 22375, 24313"
625	default y
626	help
627	  Enable workaround for errata 22375 and 24313.
628
629	  This implements two gicv3-its errata workarounds for ThunderX. Both
630	  with a small impact affecting only ITS table allocation.
631
632	    erratum 22375: only alloc 8MB table size
633	    erratum 24313: ignore memory access type
634
635	  The fixes are in ITS initialization and basically ignore memory access
636	  type and table size provided by the TYPER and BASER registers.
637
638	  If unsure, say Y.
639
640config CAVIUM_ERRATUM_23144
641	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
642	depends on NUMA
643	default y
644	help
645	  ITS SYNC command hang for cross node io and collections/cpu mapping.
646
647	  If unsure, say Y.
648
649config CAVIUM_ERRATUM_23154
650	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
651	default y
652	help
653	  The gicv3 of ThunderX requires a modified version for
654	  reading the IAR status to ensure data synchronization
655	  (access to icc_iar1_el1 is not sync'ed before and after).
656
657	  If unsure, say Y.
658
659config CAVIUM_ERRATUM_27456
660	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
661	default y
662	help
663	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
664	  instructions may cause the icache to become corrupted if it
665	  contains data for a non-current ASID.  The fix is to
666	  invalidate the icache when changing the mm context.
667
668	  If unsure, say Y.
669
670config CAVIUM_ERRATUM_30115
671	bool "Cavium erratum 30115: Guest may disable interrupts in host"
672	default y
673	help
674	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
675	  1.2, and T83 Pass 1.0, KVM guest execution may disable
676	  interrupts in host. Trapping both GICv3 group-0 and group-1
677	  accesses sidesteps the issue.
678
679	  If unsure, say Y.
680
681config CAVIUM_TX2_ERRATUM_219
682	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
683	default y
684	help
685	  On Cavium ThunderX2, a load, store or prefetch instruction between a
686	  TTBR update and the corresponding context synchronizing operation can
687	  cause a spurious Data Abort to be delivered to any hardware thread in
688	  the CPU core.
689
690	  Work around the issue by avoiding the problematic code sequence and
691	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
692	  trap handler performs the corresponding register access, skips the
693	  instruction and ensures context synchronization by virtue of the
694	  exception return.
695
696	  If unsure, say Y.
697
698config QCOM_FALKOR_ERRATUM_1003
699	bool "Falkor E1003: Incorrect translation due to ASID change"
700	default y
701	help
702	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
703	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
704	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
705	  then only for entries in the walk cache, since the leaf translation
706	  is unchanged. Work around the erratum by invalidating the walk cache
707	  entries for the trampoline before entering the kernel proper.
708
709config ARM64_WORKAROUND_REPEAT_TLBI
710	bool
711
712config QCOM_FALKOR_ERRATUM_1009
713	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
714	default y
715	select ARM64_WORKAROUND_REPEAT_TLBI
716	help
717	  On Falkor v1, the CPU may prematurely complete a DSB following a
718	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
719	  one more time to fix the issue.
720
721	  If unsure, say Y.
722
723config QCOM_QDF2400_ERRATUM_0065
724	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
725	default y
726	help
727	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
728	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
729	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
730
731	  If unsure, say Y.
732
733config SOCIONEXT_SYNQUACER_PREITS
734	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
735	default y
736	help
737	  Socionext Synquacer SoCs implement a separate h/w block to generate
738	  MSI doorbell writes with non-zero values for the device ID.
739
740	  If unsure, say Y.
741
742config HISILICON_ERRATUM_161600802
743	bool "Hip07 161600802: Erroneous redistributor VLPI base"
744	default y
745	help
746	  The HiSilicon Hip07 SoC uses the wrong redistributor base
747	  when issued ITS commands such as VMOVP and VMAPP, and requires
748	  a 128kB offset to be applied to the target address in this commands.
749
750	  If unsure, say Y.
751
752config QCOM_FALKOR_ERRATUM_E1041
753	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
754	default y
755	help
756	  Falkor CPU may speculatively fetch instructions from an improper
757	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
758	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
759
760	  If unsure, say Y.
761
762config FUJITSU_ERRATUM_010001
763	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
764	default y
765	help
766	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
767	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
768	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
769	  This fault occurs under a specific hardware condition when a
770	  load/store instruction performs an address translation using:
771	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
772	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
773	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
774	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
775
776	  The workaround is to ensure these bits are clear in TCR_ELx.
777	  The workaround only affects the Fujitsu-A64FX.
778
779	  If unsure, say Y.
780
781endmenu
782
783
784choice
785	prompt "Page size"
786	default ARM64_4K_PAGES
787	help
788	  Page size (translation granule) configuration.
789
790config ARM64_4K_PAGES
791	bool "4KB"
792	help
793	  This feature enables 4KB pages support.
794
795config ARM64_16K_PAGES
796	bool "16KB"
797	help
798	  The system will use 16KB pages support. AArch32 emulation
799	  requires applications compiled with 16K (or a multiple of 16K)
800	  aligned segments.
801
802config ARM64_64K_PAGES
803	bool "64KB"
804	help
805	  This feature enables 64KB pages support (4KB by default)
806	  allowing only two levels of page tables and faster TLB
807	  look-up. AArch32 emulation requires applications compiled
808	  with 64K aligned segments.
809
810endchoice
811
812choice
813	prompt "Virtual address space size"
814	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
815	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
816	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
817	help
818	  Allows choosing one of multiple possible virtual address
819	  space sizes. The level of translation table is determined by
820	  a combination of page size and virtual address space size.
821
822config ARM64_VA_BITS_36
823	bool "36-bit" if EXPERT
824	depends on ARM64_16K_PAGES
825
826config ARM64_VA_BITS_39
827	bool "39-bit"
828	depends on ARM64_4K_PAGES
829
830config ARM64_VA_BITS_42
831	bool "42-bit"
832	depends on ARM64_64K_PAGES
833
834config ARM64_VA_BITS_47
835	bool "47-bit"
836	depends on ARM64_16K_PAGES
837
838config ARM64_VA_BITS_48
839	bool "48-bit"
840
841config ARM64_VA_BITS_52
842	bool "52-bit"
843	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
844	help
845	  Enable 52-bit virtual addressing for userspace when explicitly
846	  requested via a hint to mmap(). The kernel will also use 52-bit
847	  virtual addresses for its own mappings (provided HW support for
848	  this feature is available, otherwise it reverts to 48-bit).
849
850	  NOTE: Enabling 52-bit virtual addressing in conjunction with
851	  ARMv8.3 Pointer Authentication will result in the PAC being
852	  reduced from 7 bits to 3 bits, which may have a significant
853	  impact on its susceptibility to brute-force attacks.
854
855	  If unsure, select 48-bit virtual addressing instead.
856
857endchoice
858
859config ARM64_FORCE_52BIT
860	bool "Force 52-bit virtual addresses for userspace"
861	depends on ARM64_VA_BITS_52 && EXPERT
862	help
863	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
864	  to maintain compatibility with older software by providing 48-bit VAs
865	  unless a hint is supplied to mmap.
866
867	  This configuration option disables the 48-bit compatibility logic, and
868	  forces all userspace addresses to be 52-bit on HW that supports it. One
869	  should only enable this configuration option for stress testing userspace
870	  memory management code. If unsure say N here.
871
872config ARM64_VA_BITS
873	int
874	default 36 if ARM64_VA_BITS_36
875	default 39 if ARM64_VA_BITS_39
876	default 42 if ARM64_VA_BITS_42
877	default 47 if ARM64_VA_BITS_47
878	default 48 if ARM64_VA_BITS_48
879	default 52 if ARM64_VA_BITS_52
880
881choice
882	prompt "Physical address space size"
883	default ARM64_PA_BITS_48
884	help
885	  Choose the maximum physical address range that the kernel will
886	  support.
887
888config ARM64_PA_BITS_48
889	bool "48-bit"
890
891config ARM64_PA_BITS_52
892	bool "52-bit (ARMv8.2)"
893	depends on ARM64_64K_PAGES
894	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
895	help
896	  Enable support for a 52-bit physical address space, introduced as
897	  part of the ARMv8.2-LPA extension.
898
899	  With this enabled, the kernel will also continue to work on CPUs that
900	  do not support ARMv8.2-LPA, but with some added memory overhead (and
901	  minor performance overhead).
902
903endchoice
904
905config ARM64_PA_BITS
906	int
907	default 48 if ARM64_PA_BITS_48
908	default 52 if ARM64_PA_BITS_52
909
910choice
911	prompt "Endianness"
912	default CPU_LITTLE_ENDIAN
913	help
914	  Select the endianness of data accesses performed by the CPU. Userspace
915	  applications will need to be compiled and linked for the endianness
916	  that is selected here.
917
918config CPU_BIG_ENDIAN
919       bool "Build big-endian kernel"
920       help
921	  Say Y if you plan on running a kernel with a big-endian userspace.
922
923config CPU_LITTLE_ENDIAN
924	bool "Build little-endian kernel"
925	help
926	  Say Y if you plan on running a kernel with a little-endian userspace.
927	  This is usually the case for distributions targeting arm64.
928
929endchoice
930
931config SCHED_MC
932	bool "Multi-core scheduler support"
933	help
934	  Multi-core scheduler support improves the CPU scheduler's decision
935	  making when dealing with multi-core CPU chips at a cost of slightly
936	  increased overhead in some places. If unsure say N here.
937
938config SCHED_SMT
939	bool "SMT scheduler support"
940	help
941	  Improves the CPU scheduler's decision making when dealing with
942	  MultiThreading at a cost of slightly increased overhead in some
943	  places. If unsure say N here.
944
945config NR_CPUS
946	int "Maximum number of CPUs (2-4096)"
947	range 2 4096
948	default "256"
949
950config HOTPLUG_CPU
951	bool "Support for hot-pluggable CPUs"
952	select GENERIC_IRQ_MIGRATION
953	help
954	  Say Y here to experiment with turning CPUs off and on.  CPUs
955	  can be controlled through /sys/devices/system/cpu.
956
957# Common NUMA Features
958config NUMA
959	bool "NUMA Memory Allocation and Scheduler Support"
960	select ACPI_NUMA if ACPI
961	select OF_NUMA
962	help
963	  Enable NUMA (Non-Uniform Memory Access) support.
964
965	  The kernel will try to allocate memory used by a CPU on the
966	  local memory of the CPU and add some more
967	  NUMA awareness to the kernel.
968
969config NODES_SHIFT
970	int "Maximum NUMA Nodes (as a power of 2)"
971	range 1 10
972	default "2"
973	depends on NEED_MULTIPLE_NODES
974	help
975	  Specify the maximum number of NUMA Nodes available on the target
976	  system.  Increases memory reserved to accommodate various tables.
977
978config USE_PERCPU_NUMA_NODE_ID
979	def_bool y
980	depends on NUMA
981
982config HAVE_SETUP_PER_CPU_AREA
983	def_bool y
984	depends on NUMA
985
986config NEED_PER_CPU_EMBED_FIRST_CHUNK
987	def_bool y
988	depends on NUMA
989
990config HOLES_IN_ZONE
991	def_bool y
992
993source "kernel/Kconfig.hz"
994
995config ARCH_SUPPORTS_DEBUG_PAGEALLOC
996	def_bool y
997
998config ARCH_SPARSEMEM_ENABLE
999	def_bool y
1000	select SPARSEMEM_VMEMMAP_ENABLE
1001
1002config ARCH_SPARSEMEM_DEFAULT
1003	def_bool ARCH_SPARSEMEM_ENABLE
1004
1005config ARCH_SELECT_MEMORY_MODEL
1006	def_bool ARCH_SPARSEMEM_ENABLE
1007
1008config ARCH_FLATMEM_ENABLE
1009	def_bool !NUMA
1010
1011config HAVE_ARCH_PFN_VALID
1012	def_bool y
1013
1014config HW_PERF_EVENTS
1015	def_bool y
1016	depends on ARM_PMU
1017
1018config SYS_SUPPORTS_HUGETLBFS
1019	def_bool y
1020
1021config ARCH_WANT_HUGE_PMD_SHARE
1022
1023config ARCH_HAS_CACHE_LINE_SIZE
1024	def_bool y
1025
1026config ARCH_ENABLE_SPLIT_PMD_PTLOCK
1027	def_bool y if PGTABLE_LEVELS > 2
1028
1029config SECCOMP
1030	bool "Enable seccomp to safely compute untrusted bytecode"
1031	---help---
1032	  This kernel feature is useful for number crunching applications
1033	  that may need to compute untrusted bytecode during their
1034	  execution. By using pipes or other transports made available to
1035	  the process as file descriptors supporting the read/write
1036	  syscalls, it's possible to isolate those applications in
1037	  their own address space using seccomp. Once seccomp is
1038	  enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1039	  and the task is only allowed to execute a few safe syscalls
1040	  defined by each seccomp mode.
1041
1042config PARAVIRT
1043	bool "Enable paravirtualization code"
1044	help
1045	  This changes the kernel so it can modify itself when it is run
1046	  under a hypervisor, potentially improving performance significantly
1047	  over full virtualization.
1048
1049config PARAVIRT_TIME_ACCOUNTING
1050	bool "Paravirtual steal time accounting"
1051	select PARAVIRT
1052	help
1053	  Select this option to enable fine granularity task steal time
1054	  accounting. Time spent executing other tasks in parallel with
1055	  the current vCPU is discounted from the vCPU power. To account for
1056	  that, there can be a small performance impact.
1057
1058	  If in doubt, say N here.
1059
1060config KEXEC
1061	depends on PM_SLEEP_SMP
1062	select KEXEC_CORE
1063	bool "kexec system call"
1064	---help---
1065	  kexec is a system call that implements the ability to shutdown your
1066	  current kernel, and to start another kernel.  It is like a reboot
1067	  but it is independent of the system firmware.   And like a reboot
1068	  you can start any kernel with it, not just Linux.
1069
1070config KEXEC_FILE
1071	bool "kexec file based system call"
1072	select KEXEC_CORE
1073	help
1074	  This is new version of kexec system call. This system call is
1075	  file based and takes file descriptors as system call argument
1076	  for kernel and initramfs as opposed to list of segments as
1077	  accepted by previous system call.
1078
1079config KEXEC_SIG
1080	bool "Verify kernel signature during kexec_file_load() syscall"
1081	depends on KEXEC_FILE
1082	help
1083	  Select this option to verify a signature with loaded kernel
1084	  image. If configured, any attempt of loading a image without
1085	  valid signature will fail.
1086
1087	  In addition to that option, you need to enable signature
1088	  verification for the corresponding kernel image type being
1089	  loaded in order for this to work.
1090
1091config KEXEC_IMAGE_VERIFY_SIG
1092	bool "Enable Image signature verification support"
1093	default y
1094	depends on KEXEC_SIG
1095	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1096	help
1097	  Enable Image signature verification support.
1098
1099comment "Support for PE file signature verification disabled"
1100	depends on KEXEC_SIG
1101	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1102
1103config CRASH_DUMP
1104	bool "Build kdump crash kernel"
1105	help
1106	  Generate crash dump after being started by kexec. This should
1107	  be normally only set in special crash dump kernels which are
1108	  loaded in the main kernel with kexec-tools into a specially
1109	  reserved region and then later executed after a crash by
1110	  kdump/kexec.
1111
1112	  For more details see Documentation/admin-guide/kdump/kdump.rst
1113
1114config XEN_DOM0
1115	def_bool y
1116	depends on XEN
1117
1118config XEN
1119	bool "Xen guest support on ARM64"
1120	depends on ARM64 && OF
1121	select SWIOTLB_XEN
1122	select PARAVIRT
1123	help
1124	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1125
1126config FORCE_MAX_ZONEORDER
1127	int
1128	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
1129	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
1130	default "11"
1131	help
1132	  The kernel memory allocator divides physically contiguous memory
1133	  blocks into "zones", where each zone is a power of two number of
1134	  pages.  This option selects the largest power of two that the kernel
1135	  keeps in the memory allocator.  If you need to allocate very large
1136	  blocks of physically contiguous memory, then you may need to
1137	  increase this value.
1138
1139	  This config option is actually maximum order plus one. For example,
1140	  a value of 11 means that the largest free memory block is 2^10 pages.
1141
1142	  We make sure that we can allocate upto a HugePage size for each configuration.
1143	  Hence we have :
1144		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1145
1146	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1147	  4M allocations matching the default size used by generic code.
1148
1149config UNMAP_KERNEL_AT_EL0
1150	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1151	default y
1152	help
1153	  Speculation attacks against some high-performance processors can
1154	  be used to bypass MMU permission checks and leak kernel data to
1155	  userspace. This can be defended against by unmapping the kernel
1156	  when running in userspace, mapping it back in on exception entry
1157	  via a trampoline page in the vector table.
1158
1159	  If unsure, say Y.
1160
1161config HARDEN_BRANCH_PREDICTOR
1162	bool "Harden the branch predictor against aliasing attacks" if EXPERT
1163	default y
1164	help
1165	  Speculation attacks against some high-performance processors rely on
1166	  being able to manipulate the branch predictor for a victim context by
1167	  executing aliasing branches in the attacker context.  Such attacks
1168	  can be partially mitigated against by clearing internal branch
1169	  predictor state and limiting the prediction logic in some situations.
1170
1171	  This config option will take CPU-specific actions to harden the
1172	  branch predictor against aliasing attacks and may rely on specific
1173	  instruction sequences or control bits being set by the system
1174	  firmware.
1175
1176	  If unsure, say Y.
1177
1178config HARDEN_EL2_VECTORS
1179	bool "Harden EL2 vector mapping against system register leak" if EXPERT
1180	default y
1181	help
1182	  Speculation attacks against some high-performance processors can
1183	  be used to leak privileged information such as the vector base
1184	  register, resulting in a potential defeat of the EL2 layout
1185	  randomization.
1186
1187	  This config option will map the vectors to a fixed location,
1188	  independent of the EL2 code mapping, so that revealing VBAR_EL2
1189	  to an attacker does not give away any extra information. This
1190	  only gets enabled on affected CPUs.
1191
1192	  If unsure, say Y.
1193
1194config ARM64_SSBD
1195	bool "Speculative Store Bypass Disable" if EXPERT
1196	default y
1197	help
1198	  This enables mitigation of the bypassing of previous stores
1199	  by speculative loads.
1200
1201	  If unsure, say Y.
1202
1203config RODATA_FULL_DEFAULT_ENABLED
1204	bool "Apply r/o permissions of VM areas also to their linear aliases"
1205	default y
1206	help
1207	  Apply read-only attributes of VM areas to the linear alias of
1208	  the backing pages as well. This prevents code or read-only data
1209	  from being modified (inadvertently or intentionally) via another
1210	  mapping of the same memory page. This additional enhancement can
1211	  be turned off at runtime by passing rodata=[off|on] (and turned on
1212	  with rodata=full if this option is set to 'n')
1213
1214	  This requires the linear region to be mapped down to pages,
1215	  which may adversely affect performance in some cases.
1216
1217config ARM64_SW_TTBR0_PAN
1218	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1219	help
1220	  Enabling this option prevents the kernel from accessing
1221	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1222	  zeroed area and reserved ASID. The user access routines
1223	  restore the valid TTBR0_EL1 temporarily.
1224
1225config ARM64_TAGGED_ADDR_ABI
1226	bool "Enable the tagged user addresses syscall ABI"
1227	default y
1228	help
1229	  When this option is enabled, user applications can opt in to a
1230	  relaxed ABI via prctl() allowing tagged addresses to be passed
1231	  to system calls as pointer arguments. For details, see
1232	  Documentation/arm64/tagged-address-abi.rst.
1233
1234menuconfig COMPAT
1235	bool "Kernel support for 32-bit EL0"
1236	depends on ARM64_4K_PAGES || EXPERT
1237	select COMPAT_BINFMT_ELF if BINFMT_ELF
1238	select HAVE_UID16
1239	select OLD_SIGSUSPEND3
1240	select COMPAT_OLD_SIGACTION
1241	help
1242	  This option enables support for a 32-bit EL0 running under a 64-bit
1243	  kernel at EL1. AArch32-specific components such as system calls,
1244	  the user helper functions, VFP support and the ptrace interface are
1245	  handled appropriately by the kernel.
1246
1247	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1248	  that you will only be able to execute AArch32 binaries that were compiled
1249	  with page size aligned segments.
1250
1251	  If you want to execute 32-bit userspace applications, say Y.
1252
1253if COMPAT
1254
1255config KUSER_HELPERS
1256	bool "Enable kuser helpers page for 32-bit applications"
1257	default y
1258	help
1259	  Warning: disabling this option may break 32-bit user programs.
1260
1261	  Provide kuser helpers to compat tasks. The kernel provides
1262	  helper code to userspace in read only form at a fixed location
1263	  to allow userspace to be independent of the CPU type fitted to
1264	  the system. This permits binaries to be run on ARMv4 through
1265	  to ARMv8 without modification.
1266
1267	  See Documentation/arm/kernel_user_helpers.rst for details.
1268
1269	  However, the fixed address nature of these helpers can be used
1270	  by ROP (return orientated programming) authors when creating
1271	  exploits.
1272
1273	  If all of the binaries and libraries which run on your platform
1274	  are built specifically for your platform, and make no use of
1275	  these helpers, then you can turn this option off to hinder
1276	  such exploits. However, in that case, if a binary or library
1277	  relying on those helpers is run, it will not function correctly.
1278
1279	  Say N here only if you are absolutely certain that you do not
1280	  need these helpers; otherwise, the safe option is to say Y.
1281
1282config COMPAT_VDSO
1283	bool "Enable vDSO for 32-bit applications"
1284	depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
1285	select GENERIC_COMPAT_VDSO
1286	default y
1287	help
1288	  Place in the process address space of 32-bit applications an
1289	  ELF shared object providing fast implementations of gettimeofday
1290	  and clock_gettime.
1291
1292	  You must have a 32-bit build of glibc 2.22 or later for programs
1293	  to seamlessly take advantage of this.
1294
1295menuconfig ARMV8_DEPRECATED
1296	bool "Emulate deprecated/obsolete ARMv8 instructions"
1297	depends on SYSCTL
1298	help
1299	  Legacy software support may require certain instructions
1300	  that have been deprecated or obsoleted in the architecture.
1301
1302	  Enable this config to enable selective emulation of these
1303	  features.
1304
1305	  If unsure, say Y
1306
1307if ARMV8_DEPRECATED
1308
1309config SWP_EMULATION
1310	bool "Emulate SWP/SWPB instructions"
1311	help
1312	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1313	  they are always undefined. Say Y here to enable software
1314	  emulation of these instructions for userspace using LDXR/STXR.
1315
1316	  In some older versions of glibc [<=2.8] SWP is used during futex
1317	  trylock() operations with the assumption that the code will not
1318	  be preempted. This invalid assumption may be more likely to fail
1319	  with SWP emulation enabled, leading to deadlock of the user
1320	  application.
1321
1322	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1323	  on an external transaction monitoring block called a global
1324	  monitor to maintain update atomicity. If your system does not
1325	  implement a global monitor, this option can cause programs that
1326	  perform SWP operations to uncached memory to deadlock.
1327
1328	  If unsure, say Y
1329
1330config CP15_BARRIER_EMULATION
1331	bool "Emulate CP15 Barrier instructions"
1332	help
1333	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1334	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1335	  strongly recommended to use the ISB, DSB, and DMB
1336	  instructions instead.
1337
1338	  Say Y here to enable software emulation of these
1339	  instructions for AArch32 userspace code. When this option is
1340	  enabled, CP15 barrier usage is traced which can help
1341	  identify software that needs updating.
1342
1343	  If unsure, say Y
1344
1345config SETEND_EMULATION
1346	bool "Emulate SETEND instruction"
1347	help
1348	  The SETEND instruction alters the data-endianness of the
1349	  AArch32 EL0, and is deprecated in ARMv8.
1350
1351	  Say Y here to enable software emulation of the instruction
1352	  for AArch32 userspace code.
1353
1354	  Note: All the cpus on the system must have mixed endian support at EL0
1355	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1356	  endian - is hotplugged in after this feature has been enabled, there could
1357	  be unexpected results in the applications.
1358
1359	  If unsure, say Y
1360endif
1361
1362endif
1363
1364menu "ARMv8.1 architectural features"
1365
1366config ARM64_HW_AFDBM
1367	bool "Support for hardware updates of the Access and Dirty page flags"
1368	default y
1369	help
1370	  The ARMv8.1 architecture extensions introduce support for
1371	  hardware updates of the access and dirty information in page
1372	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1373	  capable processors, accesses to pages with PTE_AF cleared will
1374	  set this bit instead of raising an access flag fault.
1375	  Similarly, writes to read-only pages with the DBM bit set will
1376	  clear the read-only bit (AP[2]) instead of raising a
1377	  permission fault.
1378
1379	  Kernels built with this configuration option enabled continue
1380	  to work on pre-ARMv8.1 hardware and the performance impact is
1381	  minimal. If unsure, say Y.
1382
1383config ARM64_PAN
1384	bool "Enable support for Privileged Access Never (PAN)"
1385	default y
1386	help
1387	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1388	 prevents the kernel or hypervisor from accessing user-space (EL0)
1389	 memory directly.
1390
1391	 Choosing this option will cause any unprotected (not using
1392	 copy_to_user et al) memory access to fail with a permission fault.
1393
1394	 The feature is detected at runtime, and will remain as a 'nop'
1395	 instruction if the cpu does not implement the feature.
1396
1397config ARM64_LSE_ATOMICS
1398	bool
1399	default ARM64_USE_LSE_ATOMICS
1400	depends on $(as-instr,.arch_extension lse)
1401
1402config ARM64_USE_LSE_ATOMICS
1403	bool "Atomic instructions"
1404	depends on JUMP_LABEL
1405	default y
1406	help
1407	  As part of the Large System Extensions, ARMv8.1 introduces new
1408	  atomic instructions that are designed specifically to scale in
1409	  very large systems.
1410
1411	  Say Y here to make use of these instructions for the in-kernel
1412	  atomic routines. This incurs a small overhead on CPUs that do
1413	  not support these instructions and requires the kernel to be
1414	  built with binutils >= 2.25 in order for the new instructions
1415	  to be used.
1416
1417config ARM64_VHE
1418	bool "Enable support for Virtualization Host Extensions (VHE)"
1419	default y
1420	help
1421	  Virtualization Host Extensions (VHE) allow the kernel to run
1422	  directly at EL2 (instead of EL1) on processors that support
1423	  it. This leads to better performance for KVM, as they reduce
1424	  the cost of the world switch.
1425
1426	  Selecting this option allows the VHE feature to be detected
1427	  at runtime, and does not affect processors that do not
1428	  implement this feature.
1429
1430endmenu
1431
1432menu "ARMv8.2 architectural features"
1433
1434config ARM64_UAO
1435	bool "Enable support for User Access Override (UAO)"
1436	default y
1437	help
1438	  User Access Override (UAO; part of the ARMv8.2 Extensions)
1439	  causes the 'unprivileged' variant of the load/store instructions to
1440	  be overridden to be privileged.
1441
1442	  This option changes get_user() and friends to use the 'unprivileged'
1443	  variant of the load/store instructions. This ensures that user-space
1444	  really did have access to the supplied memory. When addr_limit is
1445	  set to kernel memory the UAO bit will be set, allowing privileged
1446	  access to kernel memory.
1447
1448	  Choosing this option will cause copy_to_user() et al to use user-space
1449	  memory permissions.
1450
1451	  The feature is detected at runtime, the kernel will use the
1452	  regular load/store instructions if the cpu does not implement the
1453	  feature.
1454
1455config ARM64_PMEM
1456	bool "Enable support for persistent memory"
1457	select ARCH_HAS_PMEM_API
1458	select ARCH_HAS_UACCESS_FLUSHCACHE
1459	help
1460	  Say Y to enable support for the persistent memory API based on the
1461	  ARMv8.2 DCPoP feature.
1462
1463	  The feature is detected at runtime, and the kernel will use DC CVAC
1464	  operations if DC CVAP is not supported (following the behaviour of
1465	  DC CVAP itself if the system does not define a point of persistence).
1466
1467config ARM64_RAS_EXTN
1468	bool "Enable support for RAS CPU Extensions"
1469	default y
1470	help
1471	  CPUs that support the Reliability, Availability and Serviceability
1472	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1473	  errors, classify them and report them to software.
1474
1475	  On CPUs with these extensions system software can use additional
1476	  barriers to determine if faults are pending and read the
1477	  classification from a new set of registers.
1478
1479	  Selecting this feature will allow the kernel to use these barriers
1480	  and access the new registers if the system supports the extension.
1481	  Platform RAS features may additionally depend on firmware support.
1482
1483config ARM64_CNP
1484	bool "Enable support for Common Not Private (CNP) translations"
1485	default y
1486	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1487	help
1488	  Common Not Private (CNP) allows translation table entries to
1489	  be shared between different PEs in the same inner shareable
1490	  domain, so the hardware can use this fact to optimise the
1491	  caching of such entries in the TLB.
1492
1493	  Selecting this option allows the CNP feature to be detected
1494	  at runtime, and does not affect PEs that do not implement
1495	  this feature.
1496
1497endmenu
1498
1499menu "ARMv8.3 architectural features"
1500
1501config ARM64_PTR_AUTH
1502	bool "Enable support for pointer authentication"
1503	default y
1504	depends on !KVM || ARM64_VHE
1505	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1506	# GCC 9.1 and later inserts a .note.gnu.property section note for PAC
1507	# which is only understood by binutils starting with version 2.33.1.
1508	depends on !CC_IS_GCC || GCC_VERSION < 90100 || LD_VERSION >= 233010000
1509	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1510	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1511	help
1512	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1513	  instructions for signing and authenticating pointers against secret
1514	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1515	  and other attacks.
1516
1517	  This option enables these instructions at EL0 (i.e. for userspace).
1518	  Choosing this option will cause the kernel to initialise secret keys
1519	  for each process at exec() time, with these keys being
1520	  context-switched along with the process.
1521
1522	  If the compiler supports the -mbranch-protection or
1523	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1524	  will also cause the kernel itself to be compiled with return address
1525	  protection. In this case, and if the target hardware is known to
1526	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1527	  disabled with minimal loss of protection.
1528
1529	  The feature is detected at runtime. If the feature is not present in
1530	  hardware it will not be advertised to userspace/KVM guest nor will it
1531	  be enabled. However, KVM guest also require VHE mode and hence
1532	  CONFIG_ARM64_VHE=y option to use this feature.
1533
1534	  If the feature is present on the boot CPU but not on a late CPU, then
1535	  the late CPU will be parked. Also, if the boot CPU does not have
1536	  address auth and the late CPU has then the late CPU will still boot
1537	  but with the feature disabled. On such a system, this option should
1538	  not be selected.
1539
1540	  This feature works with FUNCTION_GRAPH_TRACER option only if
1541	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1542
1543config CC_HAS_BRANCH_PROT_PAC_RET
1544	# GCC 9 or later, clang 8 or later
1545	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1546
1547config CC_HAS_SIGN_RETURN_ADDRESS
1548	# GCC 7, 8
1549	def_bool $(cc-option,-msign-return-address=all)
1550
1551config AS_HAS_PAC
1552	def_bool $(as-option,-Wa$(comma)-march=armv8.3-a)
1553
1554config AS_HAS_CFI_NEGATE_RA_STATE
1555	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1556
1557endmenu
1558
1559menu "ARMv8.4 architectural features"
1560
1561config ARM64_AMU_EXTN
1562	bool "Enable support for the Activity Monitors Unit CPU extension"
1563	default y
1564	help
1565	  The activity monitors extension is an optional extension introduced
1566	  by the ARMv8.4 CPU architecture. This enables support for version 1
1567	  of the activity monitors architecture, AMUv1.
1568
1569	  To enable the use of this extension on CPUs that implement it, say Y.
1570
1571	  Note that for architectural reasons, firmware _must_ implement AMU
1572	  support when running on CPUs that present the activity monitors
1573	  extension. The required support is present in:
1574	    * Version 1.5 and later of the ARM Trusted Firmware
1575
1576	  For kernels that have this configuration enabled but boot with broken
1577	  firmware, you may need to say N here until the firmware is fixed.
1578	  Otherwise you may experience firmware panics or lockups when
1579	  accessing the counter registers. Even if you are not observing these
1580	  symptoms, the values returned by the register reads might not
1581	  correctly reflect reality. Most commonly, the value read will be 0,
1582	  indicating that the counter is not enabled.
1583
1584endmenu
1585
1586menu "ARMv8.5 architectural features"
1587
1588config ARM64_E0PD
1589	bool "Enable support for E0PD"
1590	default y
1591	help
1592	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1593	  that EL0 accesses made via TTBR1 always fault in constant time,
1594	  providing similar benefits to KASLR as those provided by KPTI, but
1595	  with lower overhead and without disrupting legitimate access to
1596	  kernel memory such as SPE.
1597
1598	  This option enables E0PD for TTBR1 where available.
1599
1600config ARCH_RANDOM
1601	bool "Enable support for random number generation"
1602	default y
1603	help
1604	  Random number generation (part of the ARMv8.5 Extensions)
1605	  provides a high bandwidth, cryptographically secure
1606	  hardware random number generator.
1607
1608endmenu
1609
1610config ARM64_SVE
1611	bool "ARM Scalable Vector Extension support"
1612	default y
1613	depends on !KVM || ARM64_VHE
1614	help
1615	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1616	  execution state which complements and extends the SIMD functionality
1617	  of the base architecture to support much larger vectors and to enable
1618	  additional vectorisation opportunities.
1619
1620	  To enable use of this extension on CPUs that implement it, say Y.
1621
1622	  On CPUs that support the SVE2 extensions, this option will enable
1623	  those too.
1624
1625	  Note that for architectural reasons, firmware _must_ implement SVE
1626	  support when running on SVE capable hardware.  The required support
1627	  is present in:
1628
1629	    * version 1.5 and later of the ARM Trusted Firmware
1630	    * the AArch64 boot wrapper since commit 5e1261e08abf
1631	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1632
1633	  For other firmware implementations, consult the firmware documentation
1634	  or vendor.
1635
1636	  If you need the kernel to boot on SVE-capable hardware with broken
1637	  firmware, you may need to say N here until you get your firmware
1638	  fixed.  Otherwise, you may experience firmware panics or lockups when
1639	  booting the kernel.  If unsure and you are not observing these
1640	  symptoms, you should assume that it is safe to say Y.
1641
1642	  CPUs that support SVE are architecturally required to support the
1643	  Virtualization Host Extensions (VHE), so the kernel makes no
1644	  provision for supporting SVE alongside KVM without VHE enabled.
1645	  Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
1646	  KVM in the same kernel image.
1647
1648config ARM64_MODULE_PLTS
1649	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1650	depends on MODULES
1651	select HAVE_MOD_ARCH_SPECIFIC
1652	help
1653	  Allocate PLTs when loading modules so that jumps and calls whose
1654	  targets are too far away for their relative offsets to be encoded
1655	  in the instructions themselves can be bounced via veneers in the
1656	  module's PLT. This allows modules to be allocated in the generic
1657	  vmalloc area after the dedicated module memory area has been
1658	  exhausted.
1659
1660	  When running with address space randomization (KASLR), the module
1661	  region itself may be too far away for ordinary relative jumps and
1662	  calls, and so in that case, module PLTs are required and cannot be
1663	  disabled.
1664
1665	  Specific errata workaround(s) might also force module PLTs to be
1666	  enabled (ARM64_ERRATUM_843419).
1667
1668config ARM64_PSEUDO_NMI
1669	bool "Support for NMI-like interrupts"
1670	select ARM_GIC_V3
1671	help
1672	  Adds support for mimicking Non-Maskable Interrupts through the use of
1673	  GIC interrupt priority. This support requires version 3 or later of
1674	  ARM GIC.
1675
1676	  This high priority configuration for interrupts needs to be
1677	  explicitly enabled by setting the kernel parameter
1678	  "irqchip.gicv3_pseudo_nmi" to 1.
1679
1680	  If unsure, say N
1681
1682if ARM64_PSEUDO_NMI
1683config ARM64_DEBUG_PRIORITY_MASKING
1684	bool "Debug interrupt priority masking"
1685	help
1686	  This adds runtime checks to functions enabling/disabling
1687	  interrupts when using priority masking. The additional checks verify
1688	  the validity of ICC_PMR_EL1 when calling concerned functions.
1689
1690	  If unsure, say N
1691endif
1692
1693config RELOCATABLE
1694	bool
1695	select ARCH_HAS_RELR
1696	help
1697	  This builds the kernel as a Position Independent Executable (PIE),
1698	  which retains all relocation metadata required to relocate the
1699	  kernel binary at runtime to a different virtual address than the
1700	  address it was linked at.
1701	  Since AArch64 uses the RELA relocation format, this requires a
1702	  relocation pass at runtime even if the kernel is loaded at the
1703	  same address it was linked at.
1704
1705config RANDOMIZE_BASE
1706	bool "Randomize the address of the kernel image"
1707	select ARM64_MODULE_PLTS if MODULES
1708	select RELOCATABLE
1709	help
1710	  Randomizes the virtual address at which the kernel image is
1711	  loaded, as a security feature that deters exploit attempts
1712	  relying on knowledge of the location of kernel internals.
1713
1714	  It is the bootloader's job to provide entropy, by passing a
1715	  random u64 value in /chosen/kaslr-seed at kernel entry.
1716
1717	  When booting via the UEFI stub, it will invoke the firmware's
1718	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1719	  to the kernel proper. In addition, it will randomise the physical
1720	  location of the kernel Image as well.
1721
1722	  If unsure, say N.
1723
1724config RANDOMIZE_MODULE_REGION_FULL
1725	bool "Randomize the module region over a 4 GB range"
1726	depends on RANDOMIZE_BASE
1727	default y
1728	help
1729	  Randomizes the location of the module region inside a 4 GB window
1730	  covering the core kernel. This way, it is less likely for modules
1731	  to leak information about the location of core kernel data structures
1732	  but it does imply that function calls between modules and the core
1733	  kernel will need to be resolved via veneers in the module PLT.
1734
1735	  When this option is not set, the module region will be randomized over
1736	  a limited range that contains the [_stext, _etext] interval of the
1737	  core kernel, so branch relocations are always in range.
1738
1739config CC_HAVE_STACKPROTECTOR_SYSREG
1740	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1741
1742config STACKPROTECTOR_PER_TASK
1743	def_bool y
1744	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1745
1746endmenu
1747
1748menu "Boot options"
1749
1750config ARM64_ACPI_PARKING_PROTOCOL
1751	bool "Enable support for the ARM64 ACPI parking protocol"
1752	depends on ACPI
1753	help
1754	  Enable support for the ARM64 ACPI parking protocol. If disabled
1755	  the kernel will not allow booting through the ARM64 ACPI parking
1756	  protocol even if the corresponding data is present in the ACPI
1757	  MADT table.
1758
1759config CMDLINE
1760	string "Default kernel command string"
1761	default ""
1762	help
1763	  Provide a set of default command-line options at build time by
1764	  entering them here. As a minimum, you should specify the the
1765	  root device (e.g. root=/dev/nfs).
1766
1767config CMDLINE_FORCE
1768	bool "Always use the default kernel command string"
1769	depends on CMDLINE != ""
1770	help
1771	  Always use the default kernel command string, even if the boot
1772	  loader passes other arguments to the kernel.
1773	  This is useful if you cannot or don't want to change the
1774	  command-line options your boot loader passes to the kernel.
1775
1776config EFI_STUB
1777	bool
1778
1779config EFI
1780	bool "UEFI runtime support"
1781	depends on OF && !CPU_BIG_ENDIAN
1782	depends on KERNEL_MODE_NEON
1783	select ARCH_SUPPORTS_ACPI
1784	select LIBFDT
1785	select UCS2_STRING
1786	select EFI_PARAMS_FROM_FDT
1787	select EFI_RUNTIME_WRAPPERS
1788	select EFI_STUB
1789	select EFI_ARMSTUB
1790	default y
1791	help
1792	  This option provides support for runtime services provided
1793	  by UEFI firmware (such as non-volatile variables, realtime
1794          clock, and platform reset). A UEFI stub is also provided to
1795	  allow the kernel to be booted as an EFI application. This
1796	  is only useful on systems that have UEFI firmware.
1797
1798config DMI
1799	bool "Enable support for SMBIOS (DMI) tables"
1800	depends on EFI
1801	default y
1802	help
1803	  This enables SMBIOS/DMI feature for systems.
1804
1805	  This option is only useful on systems that have UEFI firmware.
1806	  However, even with this option, the resultant kernel should
1807	  continue to boot on existing non-UEFI platforms.
1808
1809endmenu
1810
1811config SYSVIPC_COMPAT
1812	def_bool y
1813	depends on COMPAT && SYSVIPC
1814
1815config ARCH_ENABLE_HUGEPAGE_MIGRATION
1816	def_bool y
1817	depends on HUGETLB_PAGE && MIGRATION
1818
1819menu "Power management options"
1820
1821source "kernel/power/Kconfig"
1822
1823config ARCH_HIBERNATION_POSSIBLE
1824	def_bool y
1825	depends on CPU_PM
1826
1827config ARCH_HIBERNATION_HEADER
1828	def_bool y
1829	depends on HIBERNATION
1830
1831config ARCH_SUSPEND_POSSIBLE
1832	def_bool y
1833
1834endmenu
1835
1836menu "CPU Power Management"
1837
1838source "drivers/cpuidle/Kconfig"
1839
1840source "drivers/cpufreq/Kconfig"
1841
1842endmenu
1843
1844source "drivers/firmware/Kconfig"
1845
1846source "drivers/acpi/Kconfig"
1847
1848source "arch/arm64/kvm/Kconfig"
1849
1850if CRYPTO
1851source "arch/arm64/crypto/Kconfig"
1852endif
1853