1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_VIRTUAL 13 select ARCH_HAS_DEVMEM_IS_ALLOWED 14 select ARCH_HAS_DMA_PREP_COHERENT 15 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 16 select ARCH_HAS_FAST_MULTIPLIER 17 select ARCH_HAS_FORTIFY_SOURCE 18 select ARCH_HAS_GCOV_PROFILE_ALL 19 select ARCH_HAS_GIGANTIC_PAGE 20 select ARCH_HAS_KCOV 21 select ARCH_HAS_KEEPINITRD 22 select ARCH_HAS_MEMBARRIER_SYNC_CORE 23 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 24 select ARCH_HAS_PTE_DEVMAP 25 select ARCH_HAS_PTE_SPECIAL 26 select ARCH_HAS_SETUP_DMA_OPS 27 select ARCH_HAS_SET_DIRECT_MAP 28 select ARCH_HAS_SET_MEMORY 29 select ARCH_HAS_STRICT_KERNEL_RWX 30 select ARCH_HAS_STRICT_MODULE_RWX 31 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 32 select ARCH_HAS_SYNC_DMA_FOR_CPU 33 select ARCH_HAS_SYSCALL_WRAPPER 34 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 35 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 36 select ARCH_HAVE_NMI_SAFE_CMPXCHG 37 select ARCH_INLINE_READ_LOCK if !PREEMPTION 38 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 39 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 40 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 41 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 42 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 43 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 44 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 45 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 46 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 47 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 48 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 49 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 50 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 51 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 52 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 53 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 54 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 55 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 56 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 57 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 58 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 59 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 60 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 61 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 62 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 63 select ARCH_KEEP_MEMBLOCK 64 select ARCH_USE_CMPXCHG_LOCKREF 65 select ARCH_USE_QUEUED_RWLOCKS 66 select ARCH_USE_QUEUED_SPINLOCKS 67 select ARCH_SUPPORTS_MEMORY_FAILURE 68 select ARCH_SUPPORTS_ATOMIC_RMW 69 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG) 70 select ARCH_SUPPORTS_NUMA_BALANCING 71 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 72 select ARCH_WANT_DEFAULT_BPF_JIT 73 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 74 select ARCH_WANT_FRAME_POINTERS 75 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 76 select ARCH_HAS_UBSAN_SANITIZE_ALL 77 select ARM_AMBA 78 select ARM_ARCH_TIMER 79 select ARM_GIC 80 select AUDIT_ARCH_COMPAT_GENERIC 81 select ARM_GIC_V2M if PCI 82 select ARM_GIC_V3 83 select ARM_GIC_V3_ITS if PCI 84 select ARM_PSCI_FW 85 select BUILDTIME_TABLE_SORT 86 select CLONE_BACKWARDS 87 select COMMON_CLK 88 select CPU_PM if (SUSPEND || CPU_IDLE) 89 select CRC32 90 select DCACHE_WORD_ACCESS 91 select DMA_DIRECT_REMAP 92 select EDAC_SUPPORT 93 select FRAME_POINTER 94 select GENERIC_ALLOCATOR 95 select GENERIC_ARCH_TOPOLOGY 96 select GENERIC_CLOCKEVENTS 97 select GENERIC_CLOCKEVENTS_BROADCAST 98 select GENERIC_CPU_AUTOPROBE 99 select GENERIC_CPU_VULNERABILITIES 100 select GENERIC_EARLY_IOREMAP 101 select GENERIC_IDLE_POLL_SETUP 102 select GENERIC_IRQ_MULTI_HANDLER 103 select GENERIC_IRQ_PROBE 104 select GENERIC_IRQ_SHOW 105 select GENERIC_IRQ_SHOW_LEVEL 106 select GENERIC_PCI_IOMAP 107 select GENERIC_PTDUMP 108 select GENERIC_SCHED_CLOCK 109 select GENERIC_SMP_IDLE_THREAD 110 select GENERIC_STRNCPY_FROM_USER 111 select GENERIC_STRNLEN_USER 112 select GENERIC_TIME_VSYSCALL 113 select GENERIC_GETTIMEOFDAY 114 select HANDLE_DOMAIN_IRQ 115 select HARDIRQS_SW_RESEND 116 select HAVE_PCI 117 select HAVE_ACPI_APEI if (ACPI && EFI) 118 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 119 select HAVE_ARCH_AUDITSYSCALL 120 select HAVE_ARCH_BITREVERSE 121 select HAVE_ARCH_COMPILER_H 122 select HAVE_ARCH_HUGE_VMAP 123 select HAVE_ARCH_JUMP_LABEL 124 select HAVE_ARCH_JUMP_LABEL_RELATIVE 125 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 126 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 127 select HAVE_ARCH_KGDB 128 select HAVE_ARCH_MMAP_RND_BITS 129 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 130 select HAVE_ARCH_PREL32_RELOCATIONS 131 select HAVE_ARCH_SECCOMP_FILTER 132 select HAVE_ARCH_STACKLEAK 133 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 134 select HAVE_ARCH_TRACEHOOK 135 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 136 select HAVE_ARCH_VMAP_STACK 137 select HAVE_ARM_SMCCC 138 select HAVE_ASM_MODVERSIONS 139 select HAVE_EBPF_JIT 140 select HAVE_C_RECORDMCOUNT 141 select HAVE_CMPXCHG_DOUBLE 142 select HAVE_CMPXCHG_LOCAL 143 select HAVE_CONTEXT_TRACKING 144 select HAVE_COPY_THREAD_TLS 145 select HAVE_DEBUG_BUGVERBOSE 146 select HAVE_DEBUG_KMEMLEAK 147 select HAVE_DMA_CONTIGUOUS 148 select HAVE_DYNAMIC_FTRACE 149 select HAVE_DYNAMIC_FTRACE_WITH_REGS \ 150 if $(cc-option,-fpatchable-function-entry=2) 151 select HAVE_EFFICIENT_UNALIGNED_ACCESS 152 select HAVE_FAST_GUP 153 select HAVE_FTRACE_MCOUNT_RECORD 154 select HAVE_FUNCTION_TRACER 155 select HAVE_FUNCTION_ERROR_INJECTION 156 select HAVE_FUNCTION_GRAPH_TRACER 157 select HAVE_GCC_PLUGINS 158 select HAVE_HW_BREAKPOINT if PERF_EVENTS 159 select HAVE_IRQ_TIME_ACCOUNTING 160 select HAVE_MEMBLOCK_NODE_MAP if NUMA 161 select HAVE_NMI 162 select HAVE_PATA_PLATFORM 163 select HAVE_PERF_EVENTS 164 select HAVE_PERF_REGS 165 select HAVE_PERF_USER_STACK_DUMP 166 select HAVE_REGS_AND_STACK_ACCESS_API 167 select HAVE_FUNCTION_ARG_ACCESS_API 168 select HAVE_FUTEX_CMPXCHG if FUTEX 169 select MMU_GATHER_RCU_TABLE_FREE 170 select HAVE_RSEQ 171 select HAVE_STACKPROTECTOR 172 select HAVE_SYSCALL_TRACEPOINTS 173 select HAVE_KPROBES 174 select HAVE_KRETPROBES 175 select HAVE_GENERIC_VDSO 176 select IOMMU_DMA if IOMMU_SUPPORT 177 select IRQ_DOMAIN 178 select IRQ_FORCED_THREADING 179 select MODULES_USE_ELF_RELA 180 select NEED_DMA_MAP_STATE 181 select NEED_SG_DMA_LENGTH 182 select OF 183 select OF_EARLY_FLATTREE 184 select PCI_DOMAINS_GENERIC if PCI 185 select PCI_ECAM if (ACPI && PCI) 186 select PCI_SYSCALL if PCI 187 select POWER_RESET 188 select POWER_SUPPLY 189 select SPARSE_IRQ 190 select SWIOTLB 191 select SYSCTL_EXCEPTION_TRACE 192 select THREAD_INFO_IN_TASK 193 help 194 ARM 64-bit (AArch64) Linux support. 195 196config 64BIT 197 def_bool y 198 199config MMU 200 def_bool y 201 202config ARM64_PAGE_SHIFT 203 int 204 default 16 if ARM64_64K_PAGES 205 default 14 if ARM64_16K_PAGES 206 default 12 207 208config ARM64_CONT_SHIFT 209 int 210 default 5 if ARM64_64K_PAGES 211 default 7 if ARM64_16K_PAGES 212 default 4 213 214config ARCH_MMAP_RND_BITS_MIN 215 default 14 if ARM64_64K_PAGES 216 default 16 if ARM64_16K_PAGES 217 default 18 218 219# max bits determined by the following formula: 220# VA_BITS - PAGE_SHIFT - 3 221config ARCH_MMAP_RND_BITS_MAX 222 default 19 if ARM64_VA_BITS=36 223 default 24 if ARM64_VA_BITS=39 224 default 27 if ARM64_VA_BITS=42 225 default 30 if ARM64_VA_BITS=47 226 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 227 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 228 default 33 if ARM64_VA_BITS=48 229 default 14 if ARM64_64K_PAGES 230 default 16 if ARM64_16K_PAGES 231 default 18 232 233config ARCH_MMAP_RND_COMPAT_BITS_MIN 234 default 7 if ARM64_64K_PAGES 235 default 9 if ARM64_16K_PAGES 236 default 11 237 238config ARCH_MMAP_RND_COMPAT_BITS_MAX 239 default 16 240 241config NO_IOPORT_MAP 242 def_bool y if !PCI 243 244config STACKTRACE_SUPPORT 245 def_bool y 246 247config ILLEGAL_POINTER_VALUE 248 hex 249 default 0xdead000000000000 250 251config LOCKDEP_SUPPORT 252 def_bool y 253 254config TRACE_IRQFLAGS_SUPPORT 255 def_bool y 256 257config GENERIC_BUG 258 def_bool y 259 depends on BUG 260 261config GENERIC_BUG_RELATIVE_POINTERS 262 def_bool y 263 depends on GENERIC_BUG 264 265config GENERIC_HWEIGHT 266 def_bool y 267 268config GENERIC_CSUM 269 def_bool y 270 271config GENERIC_CALIBRATE_DELAY 272 def_bool y 273 274config ZONE_DMA 275 bool "Support DMA zone" if EXPERT 276 default y 277 278config ZONE_DMA32 279 bool "Support DMA32 zone" if EXPERT 280 default y 281 282config ARCH_ENABLE_MEMORY_HOTPLUG 283 def_bool y 284 285config ARCH_ENABLE_MEMORY_HOTREMOVE 286 def_bool y 287 288config SMP 289 def_bool y 290 291config KERNEL_MODE_NEON 292 def_bool y 293 294config FIX_EARLYCON_MEM 295 def_bool y 296 297config PGTABLE_LEVELS 298 int 299 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 300 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 301 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 302 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 303 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 304 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 305 306config ARCH_SUPPORTS_UPROBES 307 def_bool y 308 309config ARCH_PROC_KCORE_TEXT 310 def_bool y 311 312config BROKEN_GAS_INST 313 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 314 315config KASAN_SHADOW_OFFSET 316 hex 317 depends on KASAN 318 default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 319 default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 320 default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 321 default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 322 default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 323 default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 324 default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 325 default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 326 default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 327 default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 328 default 0xffffffffffffffff 329 330source "arch/arm64/Kconfig.platforms" 331 332menu "Kernel Features" 333 334menu "ARM errata workarounds via the alternatives framework" 335 336config ARM64_WORKAROUND_CLEAN_CACHE 337 bool 338 339config ARM64_ERRATUM_826319 340 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 341 default y 342 select ARM64_WORKAROUND_CLEAN_CACHE 343 help 344 This option adds an alternative code sequence to work around ARM 345 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 346 AXI master interface and an L2 cache. 347 348 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 349 and is unable to accept a certain write via this interface, it will 350 not progress on read data presented on the read data channel and the 351 system can deadlock. 352 353 The workaround promotes data cache clean instructions to 354 data cache clean-and-invalidate. 355 Please note that this does not necessarily enable the workaround, 356 as it depends on the alternative framework, which will only patch 357 the kernel if an affected CPU is detected. 358 359 If unsure, say Y. 360 361config ARM64_ERRATUM_827319 362 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 363 default y 364 select ARM64_WORKAROUND_CLEAN_CACHE 365 help 366 This option adds an alternative code sequence to work around ARM 367 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 368 master interface and an L2 cache. 369 370 Under certain conditions this erratum can cause a clean line eviction 371 to occur at the same time as another transaction to the same address 372 on the AMBA 5 CHI interface, which can cause data corruption if the 373 interconnect reorders the two transactions. 374 375 The workaround promotes data cache clean instructions to 376 data cache clean-and-invalidate. 377 Please note that this does not necessarily enable the workaround, 378 as it depends on the alternative framework, which will only patch 379 the kernel if an affected CPU is detected. 380 381 If unsure, say Y. 382 383config ARM64_ERRATUM_824069 384 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 385 default y 386 select ARM64_WORKAROUND_CLEAN_CACHE 387 help 388 This option adds an alternative code sequence to work around ARM 389 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 390 to a coherent interconnect. 391 392 If a Cortex-A53 processor is executing a store or prefetch for 393 write instruction at the same time as a processor in another 394 cluster is executing a cache maintenance operation to the same 395 address, then this erratum might cause a clean cache line to be 396 incorrectly marked as dirty. 397 398 The workaround promotes data cache clean instructions to 399 data cache clean-and-invalidate. 400 Please note that this option does not necessarily enable the 401 workaround, as it depends on the alternative framework, which will 402 only patch the kernel if an affected CPU is detected. 403 404 If unsure, say Y. 405 406config ARM64_ERRATUM_819472 407 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 408 default y 409 select ARM64_WORKAROUND_CLEAN_CACHE 410 help 411 This option adds an alternative code sequence to work around ARM 412 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 413 present when it is connected to a coherent interconnect. 414 415 If the processor is executing a load and store exclusive sequence at 416 the same time as a processor in another cluster is executing a cache 417 maintenance operation to the same address, then this erratum might 418 cause data corruption. 419 420 The workaround promotes data cache clean instructions to 421 data cache clean-and-invalidate. 422 Please note that this does not necessarily enable the workaround, 423 as it depends on the alternative framework, which will only patch 424 the kernel if an affected CPU is detected. 425 426 If unsure, say Y. 427 428config ARM64_ERRATUM_832075 429 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 430 default y 431 help 432 This option adds an alternative code sequence to work around ARM 433 erratum 832075 on Cortex-A57 parts up to r1p2. 434 435 Affected Cortex-A57 parts might deadlock when exclusive load/store 436 instructions to Write-Back memory are mixed with Device loads. 437 438 The workaround is to promote device loads to use Load-Acquire 439 semantics. 440 Please note that this does not necessarily enable the workaround, 441 as it depends on the alternative framework, which will only patch 442 the kernel if an affected CPU is detected. 443 444 If unsure, say Y. 445 446config ARM64_ERRATUM_834220 447 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 448 depends on KVM 449 default y 450 help 451 This option adds an alternative code sequence to work around ARM 452 erratum 834220 on Cortex-A57 parts up to r1p2. 453 454 Affected Cortex-A57 parts might report a Stage 2 translation 455 fault as the result of a Stage 1 fault for load crossing a 456 page boundary when there is a permission or device memory 457 alignment fault at Stage 1 and a translation fault at Stage 2. 458 459 The workaround is to verify that the Stage 1 translation 460 doesn't generate a fault before handling the Stage 2 fault. 461 Please note that this does not necessarily enable the workaround, 462 as it depends on the alternative framework, which will only patch 463 the kernel if an affected CPU is detected. 464 465 If unsure, say Y. 466 467config ARM64_ERRATUM_845719 468 bool "Cortex-A53: 845719: a load might read incorrect data" 469 depends on COMPAT 470 default y 471 help 472 This option adds an alternative code sequence to work around ARM 473 erratum 845719 on Cortex-A53 parts up to r0p4. 474 475 When running a compat (AArch32) userspace on an affected Cortex-A53 476 part, a load at EL0 from a virtual address that matches the bottom 32 477 bits of the virtual address used by a recent load at (AArch64) EL1 478 might return incorrect data. 479 480 The workaround is to write the contextidr_el1 register on exception 481 return to a 32-bit task. 482 Please note that this does not necessarily enable the workaround, 483 as it depends on the alternative framework, which will only patch 484 the kernel if an affected CPU is detected. 485 486 If unsure, say Y. 487 488config ARM64_ERRATUM_843419 489 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 490 default y 491 select ARM64_MODULE_PLTS if MODULES 492 help 493 This option links the kernel with '--fix-cortex-a53-843419' and 494 enables PLT support to replace certain ADRP instructions, which can 495 cause subsequent memory accesses to use an incorrect address on 496 Cortex-A53 parts up to r0p4. 497 498 If unsure, say Y. 499 500config ARM64_ERRATUM_1024718 501 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 502 default y 503 help 504 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 505 506 Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect 507 update of the hardware dirty bit when the DBM/AP bits are updated 508 without a break-before-make. The workaround is to disable the usage 509 of hardware DBM locally on the affected cores. CPUs not affected by 510 this erratum will continue to use the feature. 511 512 If unsure, say Y. 513 514config ARM64_ERRATUM_1418040 515 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 516 default y 517 depends on COMPAT 518 help 519 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 520 errata 1188873 and 1418040. 521 522 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 523 cause register corruption when accessing the timer registers 524 from AArch32 userspace. 525 526 If unsure, say Y. 527 528config ARM64_WORKAROUND_SPECULATIVE_AT_VHE 529 bool 530 531config ARM64_ERRATUM_1165522 532 bool "Cortex-A76: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 533 default y 534 select ARM64_WORKAROUND_SPECULATIVE_AT_VHE 535 help 536 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 537 538 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 539 corrupted TLBs by speculating an AT instruction during a guest 540 context switch. 541 542 If unsure, say Y. 543 544config ARM64_ERRATUM_1530923 545 bool "Cortex-A55: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 546 default y 547 select ARM64_WORKAROUND_SPECULATIVE_AT_VHE 548 help 549 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 550 551 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 552 corrupted TLBs by speculating an AT instruction during a guest 553 context switch. 554 555 If unsure, say Y. 556 557config ARM64_ERRATUM_1286807 558 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 559 default y 560 select ARM64_WORKAROUND_REPEAT_TLBI 561 help 562 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 563 564 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 565 address for a cacheable mapping of a location is being 566 accessed by a core while another core is remapping the virtual 567 address to a new physical page using the recommended 568 break-before-make sequence, then under very rare circumstances 569 TLBI+DSB completes before a read using the translation being 570 invalidated has been observed by other observers. The 571 workaround repeats the TLBI+DSB operation. 572 573config ARM64_WORKAROUND_SPECULATIVE_AT_NVHE 574 bool 575 576config ARM64_ERRATUM_1319367 577 bool "Cortex-A57/A72: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 578 default y 579 select ARM64_WORKAROUND_SPECULATIVE_AT_NVHE 580 help 581 This option adds work arounds for ARM Cortex-A57 erratum 1319537 582 and A72 erratum 1319367 583 584 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 585 speculating an AT instruction during a guest context switch. 586 587 If unsure, say Y. 588 589config ARM64_ERRATUM_1463225 590 bool "Cortex-A76: Software Step might prevent interrupt recognition" 591 default y 592 help 593 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 594 595 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 596 of a system call instruction (SVC) can prevent recognition of 597 subsequent interrupts when software stepping is disabled in the 598 exception handler of the system call and either kernel debugging 599 is enabled or VHE is in use. 600 601 Work around the erratum by triggering a dummy step exception 602 when handling a system call from a task that is being stepped 603 in a VHE configuration of the kernel. 604 605 If unsure, say Y. 606 607config ARM64_ERRATUM_1542419 608 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 609 default y 610 help 611 This option adds a workaround for ARM Neoverse-N1 erratum 612 1542419. 613 614 Affected Neoverse-N1 cores could execute a stale instruction when 615 modified by another CPU. The workaround depends on a firmware 616 counterpart. 617 618 Workaround the issue by hiding the DIC feature from EL0. This 619 forces user-space to perform cache maintenance. 620 621 If unsure, say Y. 622 623config CAVIUM_ERRATUM_22375 624 bool "Cavium erratum 22375, 24313" 625 default y 626 help 627 Enable workaround for errata 22375 and 24313. 628 629 This implements two gicv3-its errata workarounds for ThunderX. Both 630 with a small impact affecting only ITS table allocation. 631 632 erratum 22375: only alloc 8MB table size 633 erratum 24313: ignore memory access type 634 635 The fixes are in ITS initialization and basically ignore memory access 636 type and table size provided by the TYPER and BASER registers. 637 638 If unsure, say Y. 639 640config CAVIUM_ERRATUM_23144 641 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 642 depends on NUMA 643 default y 644 help 645 ITS SYNC command hang for cross node io and collections/cpu mapping. 646 647 If unsure, say Y. 648 649config CAVIUM_ERRATUM_23154 650 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" 651 default y 652 help 653 The gicv3 of ThunderX requires a modified version for 654 reading the IAR status to ensure data synchronization 655 (access to icc_iar1_el1 is not sync'ed before and after). 656 657 If unsure, say Y. 658 659config CAVIUM_ERRATUM_27456 660 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 661 default y 662 help 663 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 664 instructions may cause the icache to become corrupted if it 665 contains data for a non-current ASID. The fix is to 666 invalidate the icache when changing the mm context. 667 668 If unsure, say Y. 669 670config CAVIUM_ERRATUM_30115 671 bool "Cavium erratum 30115: Guest may disable interrupts in host" 672 default y 673 help 674 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 675 1.2, and T83 Pass 1.0, KVM guest execution may disable 676 interrupts in host. Trapping both GICv3 group-0 and group-1 677 accesses sidesteps the issue. 678 679 If unsure, say Y. 680 681config CAVIUM_TX2_ERRATUM_219 682 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 683 default y 684 help 685 On Cavium ThunderX2, a load, store or prefetch instruction between a 686 TTBR update and the corresponding context synchronizing operation can 687 cause a spurious Data Abort to be delivered to any hardware thread in 688 the CPU core. 689 690 Work around the issue by avoiding the problematic code sequence and 691 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 692 trap handler performs the corresponding register access, skips the 693 instruction and ensures context synchronization by virtue of the 694 exception return. 695 696 If unsure, say Y. 697 698config QCOM_FALKOR_ERRATUM_1003 699 bool "Falkor E1003: Incorrect translation due to ASID change" 700 default y 701 help 702 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 703 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 704 in TTBR1_EL1, this situation only occurs in the entry trampoline and 705 then only for entries in the walk cache, since the leaf translation 706 is unchanged. Work around the erratum by invalidating the walk cache 707 entries for the trampoline before entering the kernel proper. 708 709config ARM64_WORKAROUND_REPEAT_TLBI 710 bool 711 712config QCOM_FALKOR_ERRATUM_1009 713 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 714 default y 715 select ARM64_WORKAROUND_REPEAT_TLBI 716 help 717 On Falkor v1, the CPU may prematurely complete a DSB following a 718 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 719 one more time to fix the issue. 720 721 If unsure, say Y. 722 723config QCOM_QDF2400_ERRATUM_0065 724 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 725 default y 726 help 727 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 728 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 729 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 730 731 If unsure, say Y. 732 733config SOCIONEXT_SYNQUACER_PREITS 734 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 735 default y 736 help 737 Socionext Synquacer SoCs implement a separate h/w block to generate 738 MSI doorbell writes with non-zero values for the device ID. 739 740 If unsure, say Y. 741 742config HISILICON_ERRATUM_161600802 743 bool "Hip07 161600802: Erroneous redistributor VLPI base" 744 default y 745 help 746 The HiSilicon Hip07 SoC uses the wrong redistributor base 747 when issued ITS commands such as VMOVP and VMAPP, and requires 748 a 128kB offset to be applied to the target address in this commands. 749 750 If unsure, say Y. 751 752config QCOM_FALKOR_ERRATUM_E1041 753 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 754 default y 755 help 756 Falkor CPU may speculatively fetch instructions from an improper 757 memory location when MMU translation is changed from SCTLR_ELn[M]=1 758 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 759 760 If unsure, say Y. 761 762config FUJITSU_ERRATUM_010001 763 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 764 default y 765 help 766 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 767 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 768 accesses may cause undefined fault (Data abort, DFSC=0b111111). 769 This fault occurs under a specific hardware condition when a 770 load/store instruction performs an address translation using: 771 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 772 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 773 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 774 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 775 776 The workaround is to ensure these bits are clear in TCR_ELx. 777 The workaround only affects the Fujitsu-A64FX. 778 779 If unsure, say Y. 780 781endmenu 782 783 784choice 785 prompt "Page size" 786 default ARM64_4K_PAGES 787 help 788 Page size (translation granule) configuration. 789 790config ARM64_4K_PAGES 791 bool "4KB" 792 help 793 This feature enables 4KB pages support. 794 795config ARM64_16K_PAGES 796 bool "16KB" 797 help 798 The system will use 16KB pages support. AArch32 emulation 799 requires applications compiled with 16K (or a multiple of 16K) 800 aligned segments. 801 802config ARM64_64K_PAGES 803 bool "64KB" 804 help 805 This feature enables 64KB pages support (4KB by default) 806 allowing only two levels of page tables and faster TLB 807 look-up. AArch32 emulation requires applications compiled 808 with 64K aligned segments. 809 810endchoice 811 812choice 813 prompt "Virtual address space size" 814 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 815 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 816 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 817 help 818 Allows choosing one of multiple possible virtual address 819 space sizes. The level of translation table is determined by 820 a combination of page size and virtual address space size. 821 822config ARM64_VA_BITS_36 823 bool "36-bit" if EXPERT 824 depends on ARM64_16K_PAGES 825 826config ARM64_VA_BITS_39 827 bool "39-bit" 828 depends on ARM64_4K_PAGES 829 830config ARM64_VA_BITS_42 831 bool "42-bit" 832 depends on ARM64_64K_PAGES 833 834config ARM64_VA_BITS_47 835 bool "47-bit" 836 depends on ARM64_16K_PAGES 837 838config ARM64_VA_BITS_48 839 bool "48-bit" 840 841config ARM64_VA_BITS_52 842 bool "52-bit" 843 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 844 help 845 Enable 52-bit virtual addressing for userspace when explicitly 846 requested via a hint to mmap(). The kernel will also use 52-bit 847 virtual addresses for its own mappings (provided HW support for 848 this feature is available, otherwise it reverts to 48-bit). 849 850 NOTE: Enabling 52-bit virtual addressing in conjunction with 851 ARMv8.3 Pointer Authentication will result in the PAC being 852 reduced from 7 bits to 3 bits, which may have a significant 853 impact on its susceptibility to brute-force attacks. 854 855 If unsure, select 48-bit virtual addressing instead. 856 857endchoice 858 859config ARM64_FORCE_52BIT 860 bool "Force 52-bit virtual addresses for userspace" 861 depends on ARM64_VA_BITS_52 && EXPERT 862 help 863 For systems with 52-bit userspace VAs enabled, the kernel will attempt 864 to maintain compatibility with older software by providing 48-bit VAs 865 unless a hint is supplied to mmap. 866 867 This configuration option disables the 48-bit compatibility logic, and 868 forces all userspace addresses to be 52-bit on HW that supports it. One 869 should only enable this configuration option for stress testing userspace 870 memory management code. If unsure say N here. 871 872config ARM64_VA_BITS 873 int 874 default 36 if ARM64_VA_BITS_36 875 default 39 if ARM64_VA_BITS_39 876 default 42 if ARM64_VA_BITS_42 877 default 47 if ARM64_VA_BITS_47 878 default 48 if ARM64_VA_BITS_48 879 default 52 if ARM64_VA_BITS_52 880 881choice 882 prompt "Physical address space size" 883 default ARM64_PA_BITS_48 884 help 885 Choose the maximum physical address range that the kernel will 886 support. 887 888config ARM64_PA_BITS_48 889 bool "48-bit" 890 891config ARM64_PA_BITS_52 892 bool "52-bit (ARMv8.2)" 893 depends on ARM64_64K_PAGES 894 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 895 help 896 Enable support for a 52-bit physical address space, introduced as 897 part of the ARMv8.2-LPA extension. 898 899 With this enabled, the kernel will also continue to work on CPUs that 900 do not support ARMv8.2-LPA, but with some added memory overhead (and 901 minor performance overhead). 902 903endchoice 904 905config ARM64_PA_BITS 906 int 907 default 48 if ARM64_PA_BITS_48 908 default 52 if ARM64_PA_BITS_52 909 910choice 911 prompt "Endianness" 912 default CPU_LITTLE_ENDIAN 913 help 914 Select the endianness of data accesses performed by the CPU. Userspace 915 applications will need to be compiled and linked for the endianness 916 that is selected here. 917 918config CPU_BIG_ENDIAN 919 bool "Build big-endian kernel" 920 help 921 Say Y if you plan on running a kernel with a big-endian userspace. 922 923config CPU_LITTLE_ENDIAN 924 bool "Build little-endian kernel" 925 help 926 Say Y if you plan on running a kernel with a little-endian userspace. 927 This is usually the case for distributions targeting arm64. 928 929endchoice 930 931config SCHED_MC 932 bool "Multi-core scheduler support" 933 help 934 Multi-core scheduler support improves the CPU scheduler's decision 935 making when dealing with multi-core CPU chips at a cost of slightly 936 increased overhead in some places. If unsure say N here. 937 938config SCHED_SMT 939 bool "SMT scheduler support" 940 help 941 Improves the CPU scheduler's decision making when dealing with 942 MultiThreading at a cost of slightly increased overhead in some 943 places. If unsure say N here. 944 945config NR_CPUS 946 int "Maximum number of CPUs (2-4096)" 947 range 2 4096 948 default "256" 949 950config HOTPLUG_CPU 951 bool "Support for hot-pluggable CPUs" 952 select GENERIC_IRQ_MIGRATION 953 help 954 Say Y here to experiment with turning CPUs off and on. CPUs 955 can be controlled through /sys/devices/system/cpu. 956 957# Common NUMA Features 958config NUMA 959 bool "NUMA Memory Allocation and Scheduler Support" 960 select ACPI_NUMA if ACPI 961 select OF_NUMA 962 help 963 Enable NUMA (Non-Uniform Memory Access) support. 964 965 The kernel will try to allocate memory used by a CPU on the 966 local memory of the CPU and add some more 967 NUMA awareness to the kernel. 968 969config NODES_SHIFT 970 int "Maximum NUMA Nodes (as a power of 2)" 971 range 1 10 972 default "2" 973 depends on NEED_MULTIPLE_NODES 974 help 975 Specify the maximum number of NUMA Nodes available on the target 976 system. Increases memory reserved to accommodate various tables. 977 978config USE_PERCPU_NUMA_NODE_ID 979 def_bool y 980 depends on NUMA 981 982config HAVE_SETUP_PER_CPU_AREA 983 def_bool y 984 depends on NUMA 985 986config NEED_PER_CPU_EMBED_FIRST_CHUNK 987 def_bool y 988 depends on NUMA 989 990config HOLES_IN_ZONE 991 def_bool y 992 993source "kernel/Kconfig.hz" 994 995config ARCH_SUPPORTS_DEBUG_PAGEALLOC 996 def_bool y 997 998config ARCH_SPARSEMEM_ENABLE 999 def_bool y 1000 select SPARSEMEM_VMEMMAP_ENABLE 1001 1002config ARCH_SPARSEMEM_DEFAULT 1003 def_bool ARCH_SPARSEMEM_ENABLE 1004 1005config ARCH_SELECT_MEMORY_MODEL 1006 def_bool ARCH_SPARSEMEM_ENABLE 1007 1008config ARCH_FLATMEM_ENABLE 1009 def_bool !NUMA 1010 1011config HAVE_ARCH_PFN_VALID 1012 def_bool y 1013 1014config HW_PERF_EVENTS 1015 def_bool y 1016 depends on ARM_PMU 1017 1018config SYS_SUPPORTS_HUGETLBFS 1019 def_bool y 1020 1021config ARCH_WANT_HUGE_PMD_SHARE 1022 1023config ARCH_HAS_CACHE_LINE_SIZE 1024 def_bool y 1025 1026config ARCH_ENABLE_SPLIT_PMD_PTLOCK 1027 def_bool y if PGTABLE_LEVELS > 2 1028 1029config SECCOMP 1030 bool "Enable seccomp to safely compute untrusted bytecode" 1031 ---help--- 1032 This kernel feature is useful for number crunching applications 1033 that may need to compute untrusted bytecode during their 1034 execution. By using pipes or other transports made available to 1035 the process as file descriptors supporting the read/write 1036 syscalls, it's possible to isolate those applications in 1037 their own address space using seccomp. Once seccomp is 1038 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled 1039 and the task is only allowed to execute a few safe syscalls 1040 defined by each seccomp mode. 1041 1042config PARAVIRT 1043 bool "Enable paravirtualization code" 1044 help 1045 This changes the kernel so it can modify itself when it is run 1046 under a hypervisor, potentially improving performance significantly 1047 over full virtualization. 1048 1049config PARAVIRT_TIME_ACCOUNTING 1050 bool "Paravirtual steal time accounting" 1051 select PARAVIRT 1052 help 1053 Select this option to enable fine granularity task steal time 1054 accounting. Time spent executing other tasks in parallel with 1055 the current vCPU is discounted from the vCPU power. To account for 1056 that, there can be a small performance impact. 1057 1058 If in doubt, say N here. 1059 1060config KEXEC 1061 depends on PM_SLEEP_SMP 1062 select KEXEC_CORE 1063 bool "kexec system call" 1064 ---help--- 1065 kexec is a system call that implements the ability to shutdown your 1066 current kernel, and to start another kernel. It is like a reboot 1067 but it is independent of the system firmware. And like a reboot 1068 you can start any kernel with it, not just Linux. 1069 1070config KEXEC_FILE 1071 bool "kexec file based system call" 1072 select KEXEC_CORE 1073 help 1074 This is new version of kexec system call. This system call is 1075 file based and takes file descriptors as system call argument 1076 for kernel and initramfs as opposed to list of segments as 1077 accepted by previous system call. 1078 1079config KEXEC_SIG 1080 bool "Verify kernel signature during kexec_file_load() syscall" 1081 depends on KEXEC_FILE 1082 help 1083 Select this option to verify a signature with loaded kernel 1084 image. If configured, any attempt of loading a image without 1085 valid signature will fail. 1086 1087 In addition to that option, you need to enable signature 1088 verification for the corresponding kernel image type being 1089 loaded in order for this to work. 1090 1091config KEXEC_IMAGE_VERIFY_SIG 1092 bool "Enable Image signature verification support" 1093 default y 1094 depends on KEXEC_SIG 1095 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1096 help 1097 Enable Image signature verification support. 1098 1099comment "Support for PE file signature verification disabled" 1100 depends on KEXEC_SIG 1101 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1102 1103config CRASH_DUMP 1104 bool "Build kdump crash kernel" 1105 help 1106 Generate crash dump after being started by kexec. This should 1107 be normally only set in special crash dump kernels which are 1108 loaded in the main kernel with kexec-tools into a specially 1109 reserved region and then later executed after a crash by 1110 kdump/kexec. 1111 1112 For more details see Documentation/admin-guide/kdump/kdump.rst 1113 1114config XEN_DOM0 1115 def_bool y 1116 depends on XEN 1117 1118config XEN 1119 bool "Xen guest support on ARM64" 1120 depends on ARM64 && OF 1121 select SWIOTLB_XEN 1122 select PARAVIRT 1123 help 1124 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1125 1126config FORCE_MAX_ZONEORDER 1127 int 1128 default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE) 1129 default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE) 1130 default "11" 1131 help 1132 The kernel memory allocator divides physically contiguous memory 1133 blocks into "zones", where each zone is a power of two number of 1134 pages. This option selects the largest power of two that the kernel 1135 keeps in the memory allocator. If you need to allocate very large 1136 blocks of physically contiguous memory, then you may need to 1137 increase this value. 1138 1139 This config option is actually maximum order plus one. For example, 1140 a value of 11 means that the largest free memory block is 2^10 pages. 1141 1142 We make sure that we can allocate upto a HugePage size for each configuration. 1143 Hence we have : 1144 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1145 1146 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1147 4M allocations matching the default size used by generic code. 1148 1149config UNMAP_KERNEL_AT_EL0 1150 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1151 default y 1152 help 1153 Speculation attacks against some high-performance processors can 1154 be used to bypass MMU permission checks and leak kernel data to 1155 userspace. This can be defended against by unmapping the kernel 1156 when running in userspace, mapping it back in on exception entry 1157 via a trampoline page in the vector table. 1158 1159 If unsure, say Y. 1160 1161config HARDEN_BRANCH_PREDICTOR 1162 bool "Harden the branch predictor against aliasing attacks" if EXPERT 1163 default y 1164 help 1165 Speculation attacks against some high-performance processors rely on 1166 being able to manipulate the branch predictor for a victim context by 1167 executing aliasing branches in the attacker context. Such attacks 1168 can be partially mitigated against by clearing internal branch 1169 predictor state and limiting the prediction logic in some situations. 1170 1171 This config option will take CPU-specific actions to harden the 1172 branch predictor against aliasing attacks and may rely on specific 1173 instruction sequences or control bits being set by the system 1174 firmware. 1175 1176 If unsure, say Y. 1177 1178config HARDEN_EL2_VECTORS 1179 bool "Harden EL2 vector mapping against system register leak" if EXPERT 1180 default y 1181 help 1182 Speculation attacks against some high-performance processors can 1183 be used to leak privileged information such as the vector base 1184 register, resulting in a potential defeat of the EL2 layout 1185 randomization. 1186 1187 This config option will map the vectors to a fixed location, 1188 independent of the EL2 code mapping, so that revealing VBAR_EL2 1189 to an attacker does not give away any extra information. This 1190 only gets enabled on affected CPUs. 1191 1192 If unsure, say Y. 1193 1194config ARM64_SSBD 1195 bool "Speculative Store Bypass Disable" if EXPERT 1196 default y 1197 help 1198 This enables mitigation of the bypassing of previous stores 1199 by speculative loads. 1200 1201 If unsure, say Y. 1202 1203config RODATA_FULL_DEFAULT_ENABLED 1204 bool "Apply r/o permissions of VM areas also to their linear aliases" 1205 default y 1206 help 1207 Apply read-only attributes of VM areas to the linear alias of 1208 the backing pages as well. This prevents code or read-only data 1209 from being modified (inadvertently or intentionally) via another 1210 mapping of the same memory page. This additional enhancement can 1211 be turned off at runtime by passing rodata=[off|on] (and turned on 1212 with rodata=full if this option is set to 'n') 1213 1214 This requires the linear region to be mapped down to pages, 1215 which may adversely affect performance in some cases. 1216 1217config ARM64_SW_TTBR0_PAN 1218 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1219 help 1220 Enabling this option prevents the kernel from accessing 1221 user-space memory directly by pointing TTBR0_EL1 to a reserved 1222 zeroed area and reserved ASID. The user access routines 1223 restore the valid TTBR0_EL1 temporarily. 1224 1225config ARM64_TAGGED_ADDR_ABI 1226 bool "Enable the tagged user addresses syscall ABI" 1227 default y 1228 help 1229 When this option is enabled, user applications can opt in to a 1230 relaxed ABI via prctl() allowing tagged addresses to be passed 1231 to system calls as pointer arguments. For details, see 1232 Documentation/arm64/tagged-address-abi.rst. 1233 1234menuconfig COMPAT 1235 bool "Kernel support for 32-bit EL0" 1236 depends on ARM64_4K_PAGES || EXPERT 1237 select COMPAT_BINFMT_ELF if BINFMT_ELF 1238 select HAVE_UID16 1239 select OLD_SIGSUSPEND3 1240 select COMPAT_OLD_SIGACTION 1241 help 1242 This option enables support for a 32-bit EL0 running under a 64-bit 1243 kernel at EL1. AArch32-specific components such as system calls, 1244 the user helper functions, VFP support and the ptrace interface are 1245 handled appropriately by the kernel. 1246 1247 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1248 that you will only be able to execute AArch32 binaries that were compiled 1249 with page size aligned segments. 1250 1251 If you want to execute 32-bit userspace applications, say Y. 1252 1253if COMPAT 1254 1255config KUSER_HELPERS 1256 bool "Enable kuser helpers page for 32-bit applications" 1257 default y 1258 help 1259 Warning: disabling this option may break 32-bit user programs. 1260 1261 Provide kuser helpers to compat tasks. The kernel provides 1262 helper code to userspace in read only form at a fixed location 1263 to allow userspace to be independent of the CPU type fitted to 1264 the system. This permits binaries to be run on ARMv4 through 1265 to ARMv8 without modification. 1266 1267 See Documentation/arm/kernel_user_helpers.rst for details. 1268 1269 However, the fixed address nature of these helpers can be used 1270 by ROP (return orientated programming) authors when creating 1271 exploits. 1272 1273 If all of the binaries and libraries which run on your platform 1274 are built specifically for your platform, and make no use of 1275 these helpers, then you can turn this option off to hinder 1276 such exploits. However, in that case, if a binary or library 1277 relying on those helpers is run, it will not function correctly. 1278 1279 Say N here only if you are absolutely certain that you do not 1280 need these helpers; otherwise, the safe option is to say Y. 1281 1282config COMPAT_VDSO 1283 bool "Enable vDSO for 32-bit applications" 1284 depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != "" 1285 select GENERIC_COMPAT_VDSO 1286 default y 1287 help 1288 Place in the process address space of 32-bit applications an 1289 ELF shared object providing fast implementations of gettimeofday 1290 and clock_gettime. 1291 1292 You must have a 32-bit build of glibc 2.22 or later for programs 1293 to seamlessly take advantage of this. 1294 1295menuconfig ARMV8_DEPRECATED 1296 bool "Emulate deprecated/obsolete ARMv8 instructions" 1297 depends on SYSCTL 1298 help 1299 Legacy software support may require certain instructions 1300 that have been deprecated or obsoleted in the architecture. 1301 1302 Enable this config to enable selective emulation of these 1303 features. 1304 1305 If unsure, say Y 1306 1307if ARMV8_DEPRECATED 1308 1309config SWP_EMULATION 1310 bool "Emulate SWP/SWPB instructions" 1311 help 1312 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1313 they are always undefined. Say Y here to enable software 1314 emulation of these instructions for userspace using LDXR/STXR. 1315 1316 In some older versions of glibc [<=2.8] SWP is used during futex 1317 trylock() operations with the assumption that the code will not 1318 be preempted. This invalid assumption may be more likely to fail 1319 with SWP emulation enabled, leading to deadlock of the user 1320 application. 1321 1322 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1323 on an external transaction monitoring block called a global 1324 monitor to maintain update atomicity. If your system does not 1325 implement a global monitor, this option can cause programs that 1326 perform SWP operations to uncached memory to deadlock. 1327 1328 If unsure, say Y 1329 1330config CP15_BARRIER_EMULATION 1331 bool "Emulate CP15 Barrier instructions" 1332 help 1333 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1334 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1335 strongly recommended to use the ISB, DSB, and DMB 1336 instructions instead. 1337 1338 Say Y here to enable software emulation of these 1339 instructions for AArch32 userspace code. When this option is 1340 enabled, CP15 barrier usage is traced which can help 1341 identify software that needs updating. 1342 1343 If unsure, say Y 1344 1345config SETEND_EMULATION 1346 bool "Emulate SETEND instruction" 1347 help 1348 The SETEND instruction alters the data-endianness of the 1349 AArch32 EL0, and is deprecated in ARMv8. 1350 1351 Say Y here to enable software emulation of the instruction 1352 for AArch32 userspace code. 1353 1354 Note: All the cpus on the system must have mixed endian support at EL0 1355 for this feature to be enabled. If a new CPU - which doesn't support mixed 1356 endian - is hotplugged in after this feature has been enabled, there could 1357 be unexpected results in the applications. 1358 1359 If unsure, say Y 1360endif 1361 1362endif 1363 1364menu "ARMv8.1 architectural features" 1365 1366config ARM64_HW_AFDBM 1367 bool "Support for hardware updates of the Access and Dirty page flags" 1368 default y 1369 help 1370 The ARMv8.1 architecture extensions introduce support for 1371 hardware updates of the access and dirty information in page 1372 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1373 capable processors, accesses to pages with PTE_AF cleared will 1374 set this bit instead of raising an access flag fault. 1375 Similarly, writes to read-only pages with the DBM bit set will 1376 clear the read-only bit (AP[2]) instead of raising a 1377 permission fault. 1378 1379 Kernels built with this configuration option enabled continue 1380 to work on pre-ARMv8.1 hardware and the performance impact is 1381 minimal. If unsure, say Y. 1382 1383config ARM64_PAN 1384 bool "Enable support for Privileged Access Never (PAN)" 1385 default y 1386 help 1387 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1388 prevents the kernel or hypervisor from accessing user-space (EL0) 1389 memory directly. 1390 1391 Choosing this option will cause any unprotected (not using 1392 copy_to_user et al) memory access to fail with a permission fault. 1393 1394 The feature is detected at runtime, and will remain as a 'nop' 1395 instruction if the cpu does not implement the feature. 1396 1397config ARM64_LSE_ATOMICS 1398 bool 1399 default ARM64_USE_LSE_ATOMICS 1400 depends on $(as-instr,.arch_extension lse) 1401 1402config ARM64_USE_LSE_ATOMICS 1403 bool "Atomic instructions" 1404 depends on JUMP_LABEL 1405 default y 1406 help 1407 As part of the Large System Extensions, ARMv8.1 introduces new 1408 atomic instructions that are designed specifically to scale in 1409 very large systems. 1410 1411 Say Y here to make use of these instructions for the in-kernel 1412 atomic routines. This incurs a small overhead on CPUs that do 1413 not support these instructions and requires the kernel to be 1414 built with binutils >= 2.25 in order for the new instructions 1415 to be used. 1416 1417config ARM64_VHE 1418 bool "Enable support for Virtualization Host Extensions (VHE)" 1419 default y 1420 help 1421 Virtualization Host Extensions (VHE) allow the kernel to run 1422 directly at EL2 (instead of EL1) on processors that support 1423 it. This leads to better performance for KVM, as they reduce 1424 the cost of the world switch. 1425 1426 Selecting this option allows the VHE feature to be detected 1427 at runtime, and does not affect processors that do not 1428 implement this feature. 1429 1430endmenu 1431 1432menu "ARMv8.2 architectural features" 1433 1434config ARM64_UAO 1435 bool "Enable support for User Access Override (UAO)" 1436 default y 1437 help 1438 User Access Override (UAO; part of the ARMv8.2 Extensions) 1439 causes the 'unprivileged' variant of the load/store instructions to 1440 be overridden to be privileged. 1441 1442 This option changes get_user() and friends to use the 'unprivileged' 1443 variant of the load/store instructions. This ensures that user-space 1444 really did have access to the supplied memory. When addr_limit is 1445 set to kernel memory the UAO bit will be set, allowing privileged 1446 access to kernel memory. 1447 1448 Choosing this option will cause copy_to_user() et al to use user-space 1449 memory permissions. 1450 1451 The feature is detected at runtime, the kernel will use the 1452 regular load/store instructions if the cpu does not implement the 1453 feature. 1454 1455config ARM64_PMEM 1456 bool "Enable support for persistent memory" 1457 select ARCH_HAS_PMEM_API 1458 select ARCH_HAS_UACCESS_FLUSHCACHE 1459 help 1460 Say Y to enable support for the persistent memory API based on the 1461 ARMv8.2 DCPoP feature. 1462 1463 The feature is detected at runtime, and the kernel will use DC CVAC 1464 operations if DC CVAP is not supported (following the behaviour of 1465 DC CVAP itself if the system does not define a point of persistence). 1466 1467config ARM64_RAS_EXTN 1468 bool "Enable support for RAS CPU Extensions" 1469 default y 1470 help 1471 CPUs that support the Reliability, Availability and Serviceability 1472 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1473 errors, classify them and report them to software. 1474 1475 On CPUs with these extensions system software can use additional 1476 barriers to determine if faults are pending and read the 1477 classification from a new set of registers. 1478 1479 Selecting this feature will allow the kernel to use these barriers 1480 and access the new registers if the system supports the extension. 1481 Platform RAS features may additionally depend on firmware support. 1482 1483config ARM64_CNP 1484 bool "Enable support for Common Not Private (CNP) translations" 1485 default y 1486 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1487 help 1488 Common Not Private (CNP) allows translation table entries to 1489 be shared between different PEs in the same inner shareable 1490 domain, so the hardware can use this fact to optimise the 1491 caching of such entries in the TLB. 1492 1493 Selecting this option allows the CNP feature to be detected 1494 at runtime, and does not affect PEs that do not implement 1495 this feature. 1496 1497endmenu 1498 1499menu "ARMv8.3 architectural features" 1500 1501config ARM64_PTR_AUTH 1502 bool "Enable support for pointer authentication" 1503 default y 1504 depends on !KVM || ARM64_VHE 1505 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1506 # GCC 9.1 and later inserts a .note.gnu.property section note for PAC 1507 # which is only understood by binutils starting with version 2.33.1. 1508 depends on !CC_IS_GCC || GCC_VERSION < 90100 || LD_VERSION >= 233010000 1509 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1510 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1511 help 1512 Pointer authentication (part of the ARMv8.3 Extensions) provides 1513 instructions for signing and authenticating pointers against secret 1514 keys, which can be used to mitigate Return Oriented Programming (ROP) 1515 and other attacks. 1516 1517 This option enables these instructions at EL0 (i.e. for userspace). 1518 Choosing this option will cause the kernel to initialise secret keys 1519 for each process at exec() time, with these keys being 1520 context-switched along with the process. 1521 1522 If the compiler supports the -mbranch-protection or 1523 -msign-return-address flag (e.g. GCC 7 or later), then this option 1524 will also cause the kernel itself to be compiled with return address 1525 protection. In this case, and if the target hardware is known to 1526 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1527 disabled with minimal loss of protection. 1528 1529 The feature is detected at runtime. If the feature is not present in 1530 hardware it will not be advertised to userspace/KVM guest nor will it 1531 be enabled. However, KVM guest also require VHE mode and hence 1532 CONFIG_ARM64_VHE=y option to use this feature. 1533 1534 If the feature is present on the boot CPU but not on a late CPU, then 1535 the late CPU will be parked. Also, if the boot CPU does not have 1536 address auth and the late CPU has then the late CPU will still boot 1537 but with the feature disabled. On such a system, this option should 1538 not be selected. 1539 1540 This feature works with FUNCTION_GRAPH_TRACER option only if 1541 DYNAMIC_FTRACE_WITH_REGS is enabled. 1542 1543config CC_HAS_BRANCH_PROT_PAC_RET 1544 # GCC 9 or later, clang 8 or later 1545 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1546 1547config CC_HAS_SIGN_RETURN_ADDRESS 1548 # GCC 7, 8 1549 def_bool $(cc-option,-msign-return-address=all) 1550 1551config AS_HAS_PAC 1552 def_bool $(as-option,-Wa$(comma)-march=armv8.3-a) 1553 1554config AS_HAS_CFI_NEGATE_RA_STATE 1555 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1556 1557endmenu 1558 1559menu "ARMv8.4 architectural features" 1560 1561config ARM64_AMU_EXTN 1562 bool "Enable support for the Activity Monitors Unit CPU extension" 1563 default y 1564 help 1565 The activity monitors extension is an optional extension introduced 1566 by the ARMv8.4 CPU architecture. This enables support for version 1 1567 of the activity monitors architecture, AMUv1. 1568 1569 To enable the use of this extension on CPUs that implement it, say Y. 1570 1571 Note that for architectural reasons, firmware _must_ implement AMU 1572 support when running on CPUs that present the activity monitors 1573 extension. The required support is present in: 1574 * Version 1.5 and later of the ARM Trusted Firmware 1575 1576 For kernels that have this configuration enabled but boot with broken 1577 firmware, you may need to say N here until the firmware is fixed. 1578 Otherwise you may experience firmware panics or lockups when 1579 accessing the counter registers. Even if you are not observing these 1580 symptoms, the values returned by the register reads might not 1581 correctly reflect reality. Most commonly, the value read will be 0, 1582 indicating that the counter is not enabled. 1583 1584endmenu 1585 1586menu "ARMv8.5 architectural features" 1587 1588config ARM64_E0PD 1589 bool "Enable support for E0PD" 1590 default y 1591 help 1592 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1593 that EL0 accesses made via TTBR1 always fault in constant time, 1594 providing similar benefits to KASLR as those provided by KPTI, but 1595 with lower overhead and without disrupting legitimate access to 1596 kernel memory such as SPE. 1597 1598 This option enables E0PD for TTBR1 where available. 1599 1600config ARCH_RANDOM 1601 bool "Enable support for random number generation" 1602 default y 1603 help 1604 Random number generation (part of the ARMv8.5 Extensions) 1605 provides a high bandwidth, cryptographically secure 1606 hardware random number generator. 1607 1608endmenu 1609 1610config ARM64_SVE 1611 bool "ARM Scalable Vector Extension support" 1612 default y 1613 depends on !KVM || ARM64_VHE 1614 help 1615 The Scalable Vector Extension (SVE) is an extension to the AArch64 1616 execution state which complements and extends the SIMD functionality 1617 of the base architecture to support much larger vectors and to enable 1618 additional vectorisation opportunities. 1619 1620 To enable use of this extension on CPUs that implement it, say Y. 1621 1622 On CPUs that support the SVE2 extensions, this option will enable 1623 those too. 1624 1625 Note that for architectural reasons, firmware _must_ implement SVE 1626 support when running on SVE capable hardware. The required support 1627 is present in: 1628 1629 * version 1.5 and later of the ARM Trusted Firmware 1630 * the AArch64 boot wrapper since commit 5e1261e08abf 1631 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1632 1633 For other firmware implementations, consult the firmware documentation 1634 or vendor. 1635 1636 If you need the kernel to boot on SVE-capable hardware with broken 1637 firmware, you may need to say N here until you get your firmware 1638 fixed. Otherwise, you may experience firmware panics or lockups when 1639 booting the kernel. If unsure and you are not observing these 1640 symptoms, you should assume that it is safe to say Y. 1641 1642 CPUs that support SVE are architecturally required to support the 1643 Virtualization Host Extensions (VHE), so the kernel makes no 1644 provision for supporting SVE alongside KVM without VHE enabled. 1645 Thus, you will need to enable CONFIG_ARM64_VHE if you want to support 1646 KVM in the same kernel image. 1647 1648config ARM64_MODULE_PLTS 1649 bool "Use PLTs to allow module memory to spill over into vmalloc area" 1650 depends on MODULES 1651 select HAVE_MOD_ARCH_SPECIFIC 1652 help 1653 Allocate PLTs when loading modules so that jumps and calls whose 1654 targets are too far away for their relative offsets to be encoded 1655 in the instructions themselves can be bounced via veneers in the 1656 module's PLT. This allows modules to be allocated in the generic 1657 vmalloc area after the dedicated module memory area has been 1658 exhausted. 1659 1660 When running with address space randomization (KASLR), the module 1661 region itself may be too far away for ordinary relative jumps and 1662 calls, and so in that case, module PLTs are required and cannot be 1663 disabled. 1664 1665 Specific errata workaround(s) might also force module PLTs to be 1666 enabled (ARM64_ERRATUM_843419). 1667 1668config ARM64_PSEUDO_NMI 1669 bool "Support for NMI-like interrupts" 1670 select ARM_GIC_V3 1671 help 1672 Adds support for mimicking Non-Maskable Interrupts through the use of 1673 GIC interrupt priority. This support requires version 3 or later of 1674 ARM GIC. 1675 1676 This high priority configuration for interrupts needs to be 1677 explicitly enabled by setting the kernel parameter 1678 "irqchip.gicv3_pseudo_nmi" to 1. 1679 1680 If unsure, say N 1681 1682if ARM64_PSEUDO_NMI 1683config ARM64_DEBUG_PRIORITY_MASKING 1684 bool "Debug interrupt priority masking" 1685 help 1686 This adds runtime checks to functions enabling/disabling 1687 interrupts when using priority masking. The additional checks verify 1688 the validity of ICC_PMR_EL1 when calling concerned functions. 1689 1690 If unsure, say N 1691endif 1692 1693config RELOCATABLE 1694 bool 1695 select ARCH_HAS_RELR 1696 help 1697 This builds the kernel as a Position Independent Executable (PIE), 1698 which retains all relocation metadata required to relocate the 1699 kernel binary at runtime to a different virtual address than the 1700 address it was linked at. 1701 Since AArch64 uses the RELA relocation format, this requires a 1702 relocation pass at runtime even if the kernel is loaded at the 1703 same address it was linked at. 1704 1705config RANDOMIZE_BASE 1706 bool "Randomize the address of the kernel image" 1707 select ARM64_MODULE_PLTS if MODULES 1708 select RELOCATABLE 1709 help 1710 Randomizes the virtual address at which the kernel image is 1711 loaded, as a security feature that deters exploit attempts 1712 relying on knowledge of the location of kernel internals. 1713 1714 It is the bootloader's job to provide entropy, by passing a 1715 random u64 value in /chosen/kaslr-seed at kernel entry. 1716 1717 When booting via the UEFI stub, it will invoke the firmware's 1718 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 1719 to the kernel proper. In addition, it will randomise the physical 1720 location of the kernel Image as well. 1721 1722 If unsure, say N. 1723 1724config RANDOMIZE_MODULE_REGION_FULL 1725 bool "Randomize the module region over a 4 GB range" 1726 depends on RANDOMIZE_BASE 1727 default y 1728 help 1729 Randomizes the location of the module region inside a 4 GB window 1730 covering the core kernel. This way, it is less likely for modules 1731 to leak information about the location of core kernel data structures 1732 but it does imply that function calls between modules and the core 1733 kernel will need to be resolved via veneers in the module PLT. 1734 1735 When this option is not set, the module region will be randomized over 1736 a limited range that contains the [_stext, _etext] interval of the 1737 core kernel, so branch relocations are always in range. 1738 1739config CC_HAVE_STACKPROTECTOR_SYSREG 1740 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 1741 1742config STACKPROTECTOR_PER_TASK 1743 def_bool y 1744 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 1745 1746endmenu 1747 1748menu "Boot options" 1749 1750config ARM64_ACPI_PARKING_PROTOCOL 1751 bool "Enable support for the ARM64 ACPI parking protocol" 1752 depends on ACPI 1753 help 1754 Enable support for the ARM64 ACPI parking protocol. If disabled 1755 the kernel will not allow booting through the ARM64 ACPI parking 1756 protocol even if the corresponding data is present in the ACPI 1757 MADT table. 1758 1759config CMDLINE 1760 string "Default kernel command string" 1761 default "" 1762 help 1763 Provide a set of default command-line options at build time by 1764 entering them here. As a minimum, you should specify the the 1765 root device (e.g. root=/dev/nfs). 1766 1767config CMDLINE_FORCE 1768 bool "Always use the default kernel command string" 1769 depends on CMDLINE != "" 1770 help 1771 Always use the default kernel command string, even if the boot 1772 loader passes other arguments to the kernel. 1773 This is useful if you cannot or don't want to change the 1774 command-line options your boot loader passes to the kernel. 1775 1776config EFI_STUB 1777 bool 1778 1779config EFI 1780 bool "UEFI runtime support" 1781 depends on OF && !CPU_BIG_ENDIAN 1782 depends on KERNEL_MODE_NEON 1783 select ARCH_SUPPORTS_ACPI 1784 select LIBFDT 1785 select UCS2_STRING 1786 select EFI_PARAMS_FROM_FDT 1787 select EFI_RUNTIME_WRAPPERS 1788 select EFI_STUB 1789 select EFI_ARMSTUB 1790 default y 1791 help 1792 This option provides support for runtime services provided 1793 by UEFI firmware (such as non-volatile variables, realtime 1794 clock, and platform reset). A UEFI stub is also provided to 1795 allow the kernel to be booted as an EFI application. This 1796 is only useful on systems that have UEFI firmware. 1797 1798config DMI 1799 bool "Enable support for SMBIOS (DMI) tables" 1800 depends on EFI 1801 default y 1802 help 1803 This enables SMBIOS/DMI feature for systems. 1804 1805 This option is only useful on systems that have UEFI firmware. 1806 However, even with this option, the resultant kernel should 1807 continue to boot on existing non-UEFI platforms. 1808 1809endmenu 1810 1811config SYSVIPC_COMPAT 1812 def_bool y 1813 depends on COMPAT && SYSVIPC 1814 1815config ARCH_ENABLE_HUGEPAGE_MIGRATION 1816 def_bool y 1817 depends on HUGETLB_PAGE && MIGRATION 1818 1819menu "Power management options" 1820 1821source "kernel/power/Kconfig" 1822 1823config ARCH_HIBERNATION_POSSIBLE 1824 def_bool y 1825 depends on CPU_PM 1826 1827config ARCH_HIBERNATION_HEADER 1828 def_bool y 1829 depends on HIBERNATION 1830 1831config ARCH_SUSPEND_POSSIBLE 1832 def_bool y 1833 1834endmenu 1835 1836menu "CPU Power Management" 1837 1838source "drivers/cpuidle/Kconfig" 1839 1840source "drivers/cpufreq/Kconfig" 1841 1842endmenu 1843 1844source "drivers/firmware/Kconfig" 1845 1846source "drivers/acpi/Kconfig" 1847 1848source "arch/arm64/kvm/Kconfig" 1849 1850if CRYPTO 1851source "arch/arm64/crypto/Kconfig" 1852endif 1853