xref: /openbmc/linux/arch/arm64/Kconfig (revision 2d6b01bd)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_VIRTUAL
13	select ARCH_HAS_DEVMEM_IS_ALLOWED
14	select ARCH_HAS_DMA_PREP_COHERENT
15	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
16	select ARCH_HAS_FAST_MULTIPLIER
17	select ARCH_HAS_FORTIFY_SOURCE
18	select ARCH_HAS_GCOV_PROFILE_ALL
19	select ARCH_HAS_GIGANTIC_PAGE
20	select ARCH_HAS_KCOV
21	select ARCH_HAS_KEEPINITRD
22	select ARCH_HAS_MEMBARRIER_SYNC_CORE
23	select ARCH_HAS_PTE_DEVMAP
24	select ARCH_HAS_PTE_SPECIAL
25	select ARCH_HAS_SETUP_DMA_OPS
26	select ARCH_HAS_SET_DIRECT_MAP
27	select ARCH_HAS_SET_MEMORY
28	select ARCH_HAS_STRICT_KERNEL_RWX
29	select ARCH_HAS_STRICT_MODULE_RWX
30	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
31	select ARCH_HAS_SYNC_DMA_FOR_CPU
32	select ARCH_HAS_SYSCALL_WRAPPER
33	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
34	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
35	select ARCH_HAVE_NMI_SAFE_CMPXCHG
36	select ARCH_INLINE_READ_LOCK if !PREEMPTION
37	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
38	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
39	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
40	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
41	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
42	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
43	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
44	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
45	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
46	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
47	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
48	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
49	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
50	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
51	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
52	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
53	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
54	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
55	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
56	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
57	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
58	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
59	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
60	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
61	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
62	select ARCH_KEEP_MEMBLOCK
63	select ARCH_USE_CMPXCHG_LOCKREF
64	select ARCH_USE_QUEUED_RWLOCKS
65	select ARCH_USE_QUEUED_SPINLOCKS
66	select ARCH_SUPPORTS_MEMORY_FAILURE
67	select ARCH_SUPPORTS_ATOMIC_RMW
68	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG)
69	select ARCH_SUPPORTS_NUMA_BALANCING
70	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
71	select ARCH_WANT_DEFAULT_BPF_JIT
72	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
73	select ARCH_WANT_FRAME_POINTERS
74	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
75	select ARCH_HAS_UBSAN_SANITIZE_ALL
76	select ARM_AMBA
77	select ARM_ARCH_TIMER
78	select ARM_GIC
79	select AUDIT_ARCH_COMPAT_GENERIC
80	select ARM_GIC_V2M if PCI
81	select ARM_GIC_V3
82	select ARM_GIC_V3_ITS if PCI
83	select ARM_PSCI_FW
84	select BUILDTIME_TABLE_SORT
85	select CLONE_BACKWARDS
86	select COMMON_CLK
87	select CPU_PM if (SUSPEND || CPU_IDLE)
88	select CRC32
89	select DCACHE_WORD_ACCESS
90	select DMA_DIRECT_REMAP
91	select EDAC_SUPPORT
92	select FRAME_POINTER
93	select GENERIC_ALLOCATOR
94	select GENERIC_ARCH_TOPOLOGY
95	select GENERIC_CLOCKEVENTS
96	select GENERIC_CLOCKEVENTS_BROADCAST
97	select GENERIC_CPU_AUTOPROBE
98	select GENERIC_CPU_VULNERABILITIES
99	select GENERIC_EARLY_IOREMAP
100	select GENERIC_IDLE_POLL_SETUP
101	select GENERIC_IRQ_MULTI_HANDLER
102	select GENERIC_IRQ_PROBE
103	select GENERIC_IRQ_SHOW
104	select GENERIC_IRQ_SHOW_LEVEL
105	select GENERIC_PCI_IOMAP
106	select GENERIC_PTDUMP
107	select GENERIC_SCHED_CLOCK
108	select GENERIC_SMP_IDLE_THREAD
109	select GENERIC_STRNCPY_FROM_USER
110	select GENERIC_STRNLEN_USER
111	select GENERIC_TIME_VSYSCALL
112	select GENERIC_GETTIMEOFDAY
113	select HANDLE_DOMAIN_IRQ
114	select HARDIRQS_SW_RESEND
115	select HAVE_PCI
116	select HAVE_ACPI_APEI if (ACPI && EFI)
117	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
118	select HAVE_ARCH_AUDITSYSCALL
119	select HAVE_ARCH_BITREVERSE
120	select HAVE_ARCH_HUGE_VMAP
121	select HAVE_ARCH_JUMP_LABEL
122	select HAVE_ARCH_JUMP_LABEL_RELATIVE
123	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
124	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
125	select HAVE_ARCH_KGDB
126	select HAVE_ARCH_MMAP_RND_BITS
127	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
128	select HAVE_ARCH_PREL32_RELOCATIONS
129	select HAVE_ARCH_SECCOMP_FILTER
130	select HAVE_ARCH_STACKLEAK
131	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
132	select HAVE_ARCH_TRACEHOOK
133	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
134	select HAVE_ARCH_VMAP_STACK
135	select HAVE_ARM_SMCCC
136	select HAVE_ASM_MODVERSIONS
137	select HAVE_EBPF_JIT
138	select HAVE_C_RECORDMCOUNT
139	select HAVE_CMPXCHG_DOUBLE
140	select HAVE_CMPXCHG_LOCAL
141	select HAVE_CONTEXT_TRACKING
142	select HAVE_COPY_THREAD_TLS
143	select HAVE_DEBUG_BUGVERBOSE
144	select HAVE_DEBUG_KMEMLEAK
145	select HAVE_DMA_CONTIGUOUS
146	select HAVE_DYNAMIC_FTRACE
147	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
148		if $(cc-option,-fpatchable-function-entry=2)
149	select HAVE_EFFICIENT_UNALIGNED_ACCESS
150	select HAVE_FAST_GUP
151	select HAVE_FTRACE_MCOUNT_RECORD
152	select HAVE_FUNCTION_TRACER
153	select HAVE_FUNCTION_ERROR_INJECTION
154	select HAVE_FUNCTION_GRAPH_TRACER
155	select HAVE_GCC_PLUGINS
156	select HAVE_HW_BREAKPOINT if PERF_EVENTS
157	select HAVE_IRQ_TIME_ACCOUNTING
158	select HAVE_MEMBLOCK_NODE_MAP if NUMA
159	select HAVE_NMI
160	select HAVE_PATA_PLATFORM
161	select HAVE_PERF_EVENTS
162	select HAVE_PERF_REGS
163	select HAVE_PERF_USER_STACK_DUMP
164	select HAVE_REGS_AND_STACK_ACCESS_API
165	select HAVE_FUNCTION_ARG_ACCESS_API
166	select HAVE_FUTEX_CMPXCHG if FUTEX
167	select MMU_GATHER_RCU_TABLE_FREE
168	select HAVE_RSEQ
169	select HAVE_STACKPROTECTOR
170	select HAVE_SYSCALL_TRACEPOINTS
171	select HAVE_KPROBES
172	select HAVE_KRETPROBES
173	select HAVE_GENERIC_VDSO
174	select IOMMU_DMA if IOMMU_SUPPORT
175	select IRQ_DOMAIN
176	select IRQ_FORCED_THREADING
177	select MODULES_USE_ELF_RELA
178	select NEED_DMA_MAP_STATE
179	select NEED_SG_DMA_LENGTH
180	select OF
181	select OF_EARLY_FLATTREE
182	select PCI_DOMAINS_GENERIC if PCI
183	select PCI_ECAM if (ACPI && PCI)
184	select PCI_SYSCALL if PCI
185	select POWER_RESET
186	select POWER_SUPPLY
187	select SPARSE_IRQ
188	select SWIOTLB
189	select SYSCTL_EXCEPTION_TRACE
190	select THREAD_INFO_IN_TASK
191	help
192	  ARM 64-bit (AArch64) Linux support.
193
194config 64BIT
195	def_bool y
196
197config MMU
198	def_bool y
199
200config ARM64_PAGE_SHIFT
201	int
202	default 16 if ARM64_64K_PAGES
203	default 14 if ARM64_16K_PAGES
204	default 12
205
206config ARM64_CONT_SHIFT
207	int
208	default 5 if ARM64_64K_PAGES
209	default 7 if ARM64_16K_PAGES
210	default 4
211
212config ARCH_MMAP_RND_BITS_MIN
213       default 14 if ARM64_64K_PAGES
214       default 16 if ARM64_16K_PAGES
215       default 18
216
217# max bits determined by the following formula:
218#  VA_BITS - PAGE_SHIFT - 3
219config ARCH_MMAP_RND_BITS_MAX
220       default 19 if ARM64_VA_BITS=36
221       default 24 if ARM64_VA_BITS=39
222       default 27 if ARM64_VA_BITS=42
223       default 30 if ARM64_VA_BITS=47
224       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
225       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
226       default 33 if ARM64_VA_BITS=48
227       default 14 if ARM64_64K_PAGES
228       default 16 if ARM64_16K_PAGES
229       default 18
230
231config ARCH_MMAP_RND_COMPAT_BITS_MIN
232       default 7 if ARM64_64K_PAGES
233       default 9 if ARM64_16K_PAGES
234       default 11
235
236config ARCH_MMAP_RND_COMPAT_BITS_MAX
237       default 16
238
239config NO_IOPORT_MAP
240	def_bool y if !PCI
241
242config STACKTRACE_SUPPORT
243	def_bool y
244
245config ILLEGAL_POINTER_VALUE
246	hex
247	default 0xdead000000000000
248
249config LOCKDEP_SUPPORT
250	def_bool y
251
252config TRACE_IRQFLAGS_SUPPORT
253	def_bool y
254
255config GENERIC_BUG
256	def_bool y
257	depends on BUG
258
259config GENERIC_BUG_RELATIVE_POINTERS
260	def_bool y
261	depends on GENERIC_BUG
262
263config GENERIC_HWEIGHT
264	def_bool y
265
266config GENERIC_CSUM
267        def_bool y
268
269config GENERIC_CALIBRATE_DELAY
270	def_bool y
271
272config ZONE_DMA
273	bool "Support DMA zone" if EXPERT
274	default y
275
276config ZONE_DMA32
277	bool "Support DMA32 zone" if EXPERT
278	default y
279
280config ARCH_ENABLE_MEMORY_HOTPLUG
281	def_bool y
282
283config SMP
284	def_bool y
285
286config KERNEL_MODE_NEON
287	def_bool y
288
289config FIX_EARLYCON_MEM
290	def_bool y
291
292config PGTABLE_LEVELS
293	int
294	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
295	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
296	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
297	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
298	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
299	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
300
301config ARCH_SUPPORTS_UPROBES
302	def_bool y
303
304config ARCH_PROC_KCORE_TEXT
305	def_bool y
306
307config BROKEN_GAS_INST
308	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
309
310config KASAN_SHADOW_OFFSET
311	hex
312	depends on KASAN
313	default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
314	default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
315	default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
316	default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
317	default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
318	default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
319	default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
320	default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
321	default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
322	default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
323	default 0xffffffffffffffff
324
325source "arch/arm64/Kconfig.platforms"
326
327menu "Kernel Features"
328
329menu "ARM errata workarounds via the alternatives framework"
330
331config ARM64_WORKAROUND_CLEAN_CACHE
332	bool
333
334config ARM64_ERRATUM_826319
335	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
336	default y
337	select ARM64_WORKAROUND_CLEAN_CACHE
338	help
339	  This option adds an alternative code sequence to work around ARM
340	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
341	  AXI master interface and an L2 cache.
342
343	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
344	  and is unable to accept a certain write via this interface, it will
345	  not progress on read data presented on the read data channel and the
346	  system can deadlock.
347
348	  The workaround promotes data cache clean instructions to
349	  data cache clean-and-invalidate.
350	  Please note that this does not necessarily enable the workaround,
351	  as it depends on the alternative framework, which will only patch
352	  the kernel if an affected CPU is detected.
353
354	  If unsure, say Y.
355
356config ARM64_ERRATUM_827319
357	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
358	default y
359	select ARM64_WORKAROUND_CLEAN_CACHE
360	help
361	  This option adds an alternative code sequence to work around ARM
362	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
363	  master interface and an L2 cache.
364
365	  Under certain conditions this erratum can cause a clean line eviction
366	  to occur at the same time as another transaction to the same address
367	  on the AMBA 5 CHI interface, which can cause data corruption if the
368	  interconnect reorders the two transactions.
369
370	  The workaround promotes data cache clean instructions to
371	  data cache clean-and-invalidate.
372	  Please note that this does not necessarily enable the workaround,
373	  as it depends on the alternative framework, which will only patch
374	  the kernel if an affected CPU is detected.
375
376	  If unsure, say Y.
377
378config ARM64_ERRATUM_824069
379	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
380	default y
381	select ARM64_WORKAROUND_CLEAN_CACHE
382	help
383	  This option adds an alternative code sequence to work around ARM
384	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
385	  to a coherent interconnect.
386
387	  If a Cortex-A53 processor is executing a store or prefetch for
388	  write instruction at the same time as a processor in another
389	  cluster is executing a cache maintenance operation to the same
390	  address, then this erratum might cause a clean cache line to be
391	  incorrectly marked as dirty.
392
393	  The workaround promotes data cache clean instructions to
394	  data cache clean-and-invalidate.
395	  Please note that this option does not necessarily enable the
396	  workaround, as it depends on the alternative framework, which will
397	  only patch the kernel if an affected CPU is detected.
398
399	  If unsure, say Y.
400
401config ARM64_ERRATUM_819472
402	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
403	default y
404	select ARM64_WORKAROUND_CLEAN_CACHE
405	help
406	  This option adds an alternative code sequence to work around ARM
407	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
408	  present when it is connected to a coherent interconnect.
409
410	  If the processor is executing a load and store exclusive sequence at
411	  the same time as a processor in another cluster is executing a cache
412	  maintenance operation to the same address, then this erratum might
413	  cause data corruption.
414
415	  The workaround promotes data cache clean instructions to
416	  data cache clean-and-invalidate.
417	  Please note that this does not necessarily enable the workaround,
418	  as it depends on the alternative framework, which will only patch
419	  the kernel if an affected CPU is detected.
420
421	  If unsure, say Y.
422
423config ARM64_ERRATUM_832075
424	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
425	default y
426	help
427	  This option adds an alternative code sequence to work around ARM
428	  erratum 832075 on Cortex-A57 parts up to r1p2.
429
430	  Affected Cortex-A57 parts might deadlock when exclusive load/store
431	  instructions to Write-Back memory are mixed with Device loads.
432
433	  The workaround is to promote device loads to use Load-Acquire
434	  semantics.
435	  Please note that this does not necessarily enable the workaround,
436	  as it depends on the alternative framework, which will only patch
437	  the kernel if an affected CPU is detected.
438
439	  If unsure, say Y.
440
441config ARM64_ERRATUM_834220
442	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
443	depends on KVM
444	default y
445	help
446	  This option adds an alternative code sequence to work around ARM
447	  erratum 834220 on Cortex-A57 parts up to r1p2.
448
449	  Affected Cortex-A57 parts might report a Stage 2 translation
450	  fault as the result of a Stage 1 fault for load crossing a
451	  page boundary when there is a permission or device memory
452	  alignment fault at Stage 1 and a translation fault at Stage 2.
453
454	  The workaround is to verify that the Stage 1 translation
455	  doesn't generate a fault before handling the Stage 2 fault.
456	  Please note that this does not necessarily enable the workaround,
457	  as it depends on the alternative framework, which will only patch
458	  the kernel if an affected CPU is detected.
459
460	  If unsure, say Y.
461
462config ARM64_ERRATUM_845719
463	bool "Cortex-A53: 845719: a load might read incorrect data"
464	depends on COMPAT
465	default y
466	help
467	  This option adds an alternative code sequence to work around ARM
468	  erratum 845719 on Cortex-A53 parts up to r0p4.
469
470	  When running a compat (AArch32) userspace on an affected Cortex-A53
471	  part, a load at EL0 from a virtual address that matches the bottom 32
472	  bits of the virtual address used by a recent load at (AArch64) EL1
473	  might return incorrect data.
474
475	  The workaround is to write the contextidr_el1 register on exception
476	  return to a 32-bit task.
477	  Please note that this does not necessarily enable the workaround,
478	  as it depends on the alternative framework, which will only patch
479	  the kernel if an affected CPU is detected.
480
481	  If unsure, say Y.
482
483config ARM64_ERRATUM_843419
484	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
485	default y
486	select ARM64_MODULE_PLTS if MODULES
487	help
488	  This option links the kernel with '--fix-cortex-a53-843419' and
489	  enables PLT support to replace certain ADRP instructions, which can
490	  cause subsequent memory accesses to use an incorrect address on
491	  Cortex-A53 parts up to r0p4.
492
493	  If unsure, say Y.
494
495config ARM64_ERRATUM_1024718
496	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
497	default y
498	help
499	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
500
501	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect
502	  update of the hardware dirty bit when the DBM/AP bits are updated
503	  without a break-before-make. The workaround is to disable the usage
504	  of hardware DBM locally on the affected cores. CPUs not affected by
505	  this erratum will continue to use the feature.
506
507	  If unsure, say Y.
508
509config ARM64_ERRATUM_1418040
510	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
511	default y
512	depends on COMPAT
513	help
514	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
515	  errata 1188873 and 1418040.
516
517	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
518	  cause register corruption when accessing the timer registers
519	  from AArch32 userspace.
520
521	  If unsure, say Y.
522
523config ARM64_WORKAROUND_SPECULATIVE_AT_VHE
524	bool
525
526config ARM64_ERRATUM_1165522
527	bool "Cortex-A76: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
528	default y
529	select ARM64_WORKAROUND_SPECULATIVE_AT_VHE
530	help
531	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
532
533	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
534	  corrupted TLBs by speculating an AT instruction during a guest
535	  context switch.
536
537	  If unsure, say Y.
538
539config ARM64_ERRATUM_1530923
540	bool "Cortex-A55: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
541	default y
542	select ARM64_WORKAROUND_SPECULATIVE_AT_VHE
543	help
544	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
545
546	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
547	  corrupted TLBs by speculating an AT instruction during a guest
548	  context switch.
549
550	  If unsure, say Y.
551
552config ARM64_ERRATUM_1286807
553	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
554	default y
555	select ARM64_WORKAROUND_REPEAT_TLBI
556	help
557	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
558
559	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
560	  address for a cacheable mapping of a location is being
561	  accessed by a core while another core is remapping the virtual
562	  address to a new physical page using the recommended
563	  break-before-make sequence, then under very rare circumstances
564	  TLBI+DSB completes before a read using the translation being
565	  invalidated has been observed by other observers. The
566	  workaround repeats the TLBI+DSB operation.
567
568config ARM64_WORKAROUND_SPECULATIVE_AT_NVHE
569	bool
570
571config ARM64_ERRATUM_1319367
572	bool "Cortex-A57/A72: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
573	default y
574	select ARM64_WORKAROUND_SPECULATIVE_AT_NVHE
575	help
576	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
577	  and A72 erratum 1319367
578
579	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
580	  speculating an AT instruction during a guest context switch.
581
582	  If unsure, say Y.
583
584config ARM64_ERRATUM_1463225
585	bool "Cortex-A76: Software Step might prevent interrupt recognition"
586	default y
587	help
588	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
589
590	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
591	  of a system call instruction (SVC) can prevent recognition of
592	  subsequent interrupts when software stepping is disabled in the
593	  exception handler of the system call and either kernel debugging
594	  is enabled or VHE is in use.
595
596	  Work around the erratum by triggering a dummy step exception
597	  when handling a system call from a task that is being stepped
598	  in a VHE configuration of the kernel.
599
600	  If unsure, say Y.
601
602config ARM64_ERRATUM_1542419
603	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
604	default y
605	help
606	  This option adds a workaround for ARM Neoverse-N1 erratum
607	  1542419.
608
609	  Affected Neoverse-N1 cores could execute a stale instruction when
610	  modified by another CPU. The workaround depends on a firmware
611	  counterpart.
612
613	  Workaround the issue by hiding the DIC feature from EL0. This
614	  forces user-space to perform cache maintenance.
615
616	  If unsure, say Y.
617
618config CAVIUM_ERRATUM_22375
619	bool "Cavium erratum 22375, 24313"
620	default y
621	help
622	  Enable workaround for errata 22375 and 24313.
623
624	  This implements two gicv3-its errata workarounds for ThunderX. Both
625	  with a small impact affecting only ITS table allocation.
626
627	    erratum 22375: only alloc 8MB table size
628	    erratum 24313: ignore memory access type
629
630	  The fixes are in ITS initialization and basically ignore memory access
631	  type and table size provided by the TYPER and BASER registers.
632
633	  If unsure, say Y.
634
635config CAVIUM_ERRATUM_23144
636	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
637	depends on NUMA
638	default y
639	help
640	  ITS SYNC command hang for cross node io and collections/cpu mapping.
641
642	  If unsure, say Y.
643
644config CAVIUM_ERRATUM_23154
645	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
646	default y
647	help
648	  The gicv3 of ThunderX requires a modified version for
649	  reading the IAR status to ensure data synchronization
650	  (access to icc_iar1_el1 is not sync'ed before and after).
651
652	  If unsure, say Y.
653
654config CAVIUM_ERRATUM_27456
655	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
656	default y
657	help
658	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
659	  instructions may cause the icache to become corrupted if it
660	  contains data for a non-current ASID.  The fix is to
661	  invalidate the icache when changing the mm context.
662
663	  If unsure, say Y.
664
665config CAVIUM_ERRATUM_30115
666	bool "Cavium erratum 30115: Guest may disable interrupts in host"
667	default y
668	help
669	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
670	  1.2, and T83 Pass 1.0, KVM guest execution may disable
671	  interrupts in host. Trapping both GICv3 group-0 and group-1
672	  accesses sidesteps the issue.
673
674	  If unsure, say Y.
675
676config CAVIUM_TX2_ERRATUM_219
677	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
678	default y
679	help
680	  On Cavium ThunderX2, a load, store or prefetch instruction between a
681	  TTBR update and the corresponding context synchronizing operation can
682	  cause a spurious Data Abort to be delivered to any hardware thread in
683	  the CPU core.
684
685	  Work around the issue by avoiding the problematic code sequence and
686	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
687	  trap handler performs the corresponding register access, skips the
688	  instruction and ensures context synchronization by virtue of the
689	  exception return.
690
691	  If unsure, say Y.
692
693config QCOM_FALKOR_ERRATUM_1003
694	bool "Falkor E1003: Incorrect translation due to ASID change"
695	default y
696	help
697	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
698	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
699	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
700	  then only for entries in the walk cache, since the leaf translation
701	  is unchanged. Work around the erratum by invalidating the walk cache
702	  entries for the trampoline before entering the kernel proper.
703
704config ARM64_WORKAROUND_REPEAT_TLBI
705	bool
706
707config QCOM_FALKOR_ERRATUM_1009
708	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
709	default y
710	select ARM64_WORKAROUND_REPEAT_TLBI
711	help
712	  On Falkor v1, the CPU may prematurely complete a DSB following a
713	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
714	  one more time to fix the issue.
715
716	  If unsure, say Y.
717
718config QCOM_QDF2400_ERRATUM_0065
719	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
720	default y
721	help
722	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
723	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
724	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
725
726	  If unsure, say Y.
727
728config SOCIONEXT_SYNQUACER_PREITS
729	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
730	default y
731	help
732	  Socionext Synquacer SoCs implement a separate h/w block to generate
733	  MSI doorbell writes with non-zero values for the device ID.
734
735	  If unsure, say Y.
736
737config HISILICON_ERRATUM_161600802
738	bool "Hip07 161600802: Erroneous redistributor VLPI base"
739	default y
740	help
741	  The HiSilicon Hip07 SoC uses the wrong redistributor base
742	  when issued ITS commands such as VMOVP and VMAPP, and requires
743	  a 128kB offset to be applied to the target address in this commands.
744
745	  If unsure, say Y.
746
747config QCOM_FALKOR_ERRATUM_E1041
748	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
749	default y
750	help
751	  Falkor CPU may speculatively fetch instructions from an improper
752	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
753	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
754
755	  If unsure, say Y.
756
757config FUJITSU_ERRATUM_010001
758	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
759	default y
760	help
761	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
762	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
763	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
764	  This fault occurs under a specific hardware condition when a
765	  load/store instruction performs an address translation using:
766	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
767	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
768	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
769	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
770
771	  The workaround is to ensure these bits are clear in TCR_ELx.
772	  The workaround only affects the Fujitsu-A64FX.
773
774	  If unsure, say Y.
775
776endmenu
777
778
779choice
780	prompt "Page size"
781	default ARM64_4K_PAGES
782	help
783	  Page size (translation granule) configuration.
784
785config ARM64_4K_PAGES
786	bool "4KB"
787	help
788	  This feature enables 4KB pages support.
789
790config ARM64_16K_PAGES
791	bool "16KB"
792	help
793	  The system will use 16KB pages support. AArch32 emulation
794	  requires applications compiled with 16K (or a multiple of 16K)
795	  aligned segments.
796
797config ARM64_64K_PAGES
798	bool "64KB"
799	help
800	  This feature enables 64KB pages support (4KB by default)
801	  allowing only two levels of page tables and faster TLB
802	  look-up. AArch32 emulation requires applications compiled
803	  with 64K aligned segments.
804
805endchoice
806
807choice
808	prompt "Virtual address space size"
809	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
810	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
811	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
812	help
813	  Allows choosing one of multiple possible virtual address
814	  space sizes. The level of translation table is determined by
815	  a combination of page size and virtual address space size.
816
817config ARM64_VA_BITS_36
818	bool "36-bit" if EXPERT
819	depends on ARM64_16K_PAGES
820
821config ARM64_VA_BITS_39
822	bool "39-bit"
823	depends on ARM64_4K_PAGES
824
825config ARM64_VA_BITS_42
826	bool "42-bit"
827	depends on ARM64_64K_PAGES
828
829config ARM64_VA_BITS_47
830	bool "47-bit"
831	depends on ARM64_16K_PAGES
832
833config ARM64_VA_BITS_48
834	bool "48-bit"
835
836config ARM64_VA_BITS_52
837	bool "52-bit"
838	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
839	help
840	  Enable 52-bit virtual addressing for userspace when explicitly
841	  requested via a hint to mmap(). The kernel will also use 52-bit
842	  virtual addresses for its own mappings (provided HW support for
843	  this feature is available, otherwise it reverts to 48-bit).
844
845	  NOTE: Enabling 52-bit virtual addressing in conjunction with
846	  ARMv8.3 Pointer Authentication will result in the PAC being
847	  reduced from 7 bits to 3 bits, which may have a significant
848	  impact on its susceptibility to brute-force attacks.
849
850	  If unsure, select 48-bit virtual addressing instead.
851
852endchoice
853
854config ARM64_FORCE_52BIT
855	bool "Force 52-bit virtual addresses for userspace"
856	depends on ARM64_VA_BITS_52 && EXPERT
857	help
858	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
859	  to maintain compatibility with older software by providing 48-bit VAs
860	  unless a hint is supplied to mmap.
861
862	  This configuration option disables the 48-bit compatibility logic, and
863	  forces all userspace addresses to be 52-bit on HW that supports it. One
864	  should only enable this configuration option for stress testing userspace
865	  memory management code. If unsure say N here.
866
867config ARM64_VA_BITS
868	int
869	default 36 if ARM64_VA_BITS_36
870	default 39 if ARM64_VA_BITS_39
871	default 42 if ARM64_VA_BITS_42
872	default 47 if ARM64_VA_BITS_47
873	default 48 if ARM64_VA_BITS_48
874	default 52 if ARM64_VA_BITS_52
875
876choice
877	prompt "Physical address space size"
878	default ARM64_PA_BITS_48
879	help
880	  Choose the maximum physical address range that the kernel will
881	  support.
882
883config ARM64_PA_BITS_48
884	bool "48-bit"
885
886config ARM64_PA_BITS_52
887	bool "52-bit (ARMv8.2)"
888	depends on ARM64_64K_PAGES
889	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
890	help
891	  Enable support for a 52-bit physical address space, introduced as
892	  part of the ARMv8.2-LPA extension.
893
894	  With this enabled, the kernel will also continue to work on CPUs that
895	  do not support ARMv8.2-LPA, but with some added memory overhead (and
896	  minor performance overhead).
897
898endchoice
899
900config ARM64_PA_BITS
901	int
902	default 48 if ARM64_PA_BITS_48
903	default 52 if ARM64_PA_BITS_52
904
905choice
906	prompt "Endianness"
907	default CPU_LITTLE_ENDIAN
908	help
909	  Select the endianness of data accesses performed by the CPU. Userspace
910	  applications will need to be compiled and linked for the endianness
911	  that is selected here.
912
913config CPU_BIG_ENDIAN
914       bool "Build big-endian kernel"
915       help
916	  Say Y if you plan on running a kernel with a big-endian userspace.
917
918config CPU_LITTLE_ENDIAN
919	bool "Build little-endian kernel"
920	help
921	  Say Y if you plan on running a kernel with a little-endian userspace.
922	  This is usually the case for distributions targeting arm64.
923
924endchoice
925
926config SCHED_MC
927	bool "Multi-core scheduler support"
928	help
929	  Multi-core scheduler support improves the CPU scheduler's decision
930	  making when dealing with multi-core CPU chips at a cost of slightly
931	  increased overhead in some places. If unsure say N here.
932
933config SCHED_SMT
934	bool "SMT scheduler support"
935	help
936	  Improves the CPU scheduler's decision making when dealing with
937	  MultiThreading at a cost of slightly increased overhead in some
938	  places. If unsure say N here.
939
940config NR_CPUS
941	int "Maximum number of CPUs (2-4096)"
942	range 2 4096
943	default "256"
944
945config HOTPLUG_CPU
946	bool "Support for hot-pluggable CPUs"
947	select GENERIC_IRQ_MIGRATION
948	help
949	  Say Y here to experiment with turning CPUs off and on.  CPUs
950	  can be controlled through /sys/devices/system/cpu.
951
952# Common NUMA Features
953config NUMA
954	bool "Numa Memory Allocation and Scheduler Support"
955	select ACPI_NUMA if ACPI
956	select OF_NUMA
957	help
958	  Enable NUMA (Non Uniform Memory Access) support.
959
960	  The kernel will try to allocate memory used by a CPU on the
961	  local memory of the CPU and add some more
962	  NUMA awareness to the kernel.
963
964config NODES_SHIFT
965	int "Maximum NUMA Nodes (as a power of 2)"
966	range 1 10
967	default "2"
968	depends on NEED_MULTIPLE_NODES
969	help
970	  Specify the maximum number of NUMA Nodes available on the target
971	  system.  Increases memory reserved to accommodate various tables.
972
973config USE_PERCPU_NUMA_NODE_ID
974	def_bool y
975	depends on NUMA
976
977config HAVE_SETUP_PER_CPU_AREA
978	def_bool y
979	depends on NUMA
980
981config NEED_PER_CPU_EMBED_FIRST_CHUNK
982	def_bool y
983	depends on NUMA
984
985config HOLES_IN_ZONE
986	def_bool y
987
988source "kernel/Kconfig.hz"
989
990config ARCH_SUPPORTS_DEBUG_PAGEALLOC
991	def_bool y
992
993config ARCH_SPARSEMEM_ENABLE
994	def_bool y
995	select SPARSEMEM_VMEMMAP_ENABLE
996
997config ARCH_SPARSEMEM_DEFAULT
998	def_bool ARCH_SPARSEMEM_ENABLE
999
1000config ARCH_SELECT_MEMORY_MODEL
1001	def_bool ARCH_SPARSEMEM_ENABLE
1002
1003config ARCH_FLATMEM_ENABLE
1004	def_bool !NUMA
1005
1006config HAVE_ARCH_PFN_VALID
1007	def_bool y
1008
1009config HW_PERF_EVENTS
1010	def_bool y
1011	depends on ARM_PMU
1012
1013config SYS_SUPPORTS_HUGETLBFS
1014	def_bool y
1015
1016config ARCH_WANT_HUGE_PMD_SHARE
1017
1018config ARCH_HAS_CACHE_LINE_SIZE
1019	def_bool y
1020
1021config ARCH_ENABLE_SPLIT_PMD_PTLOCK
1022	def_bool y if PGTABLE_LEVELS > 2
1023
1024config SECCOMP
1025	bool "Enable seccomp to safely compute untrusted bytecode"
1026	---help---
1027	  This kernel feature is useful for number crunching applications
1028	  that may need to compute untrusted bytecode during their
1029	  execution. By using pipes or other transports made available to
1030	  the process as file descriptors supporting the read/write
1031	  syscalls, it's possible to isolate those applications in
1032	  their own address space using seccomp. Once seccomp is
1033	  enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
1034	  and the task is only allowed to execute a few safe syscalls
1035	  defined by each seccomp mode.
1036
1037config PARAVIRT
1038	bool "Enable paravirtualization code"
1039	help
1040	  This changes the kernel so it can modify itself when it is run
1041	  under a hypervisor, potentially improving performance significantly
1042	  over full virtualization.
1043
1044config PARAVIRT_TIME_ACCOUNTING
1045	bool "Paravirtual steal time accounting"
1046	select PARAVIRT
1047	help
1048	  Select this option to enable fine granularity task steal time
1049	  accounting. Time spent executing other tasks in parallel with
1050	  the current vCPU is discounted from the vCPU power. To account for
1051	  that, there can be a small performance impact.
1052
1053	  If in doubt, say N here.
1054
1055config KEXEC
1056	depends on PM_SLEEP_SMP
1057	select KEXEC_CORE
1058	bool "kexec system call"
1059	---help---
1060	  kexec is a system call that implements the ability to shutdown your
1061	  current kernel, and to start another kernel.  It is like a reboot
1062	  but it is independent of the system firmware.   And like a reboot
1063	  you can start any kernel with it, not just Linux.
1064
1065config KEXEC_FILE
1066	bool "kexec file based system call"
1067	select KEXEC_CORE
1068	help
1069	  This is new version of kexec system call. This system call is
1070	  file based and takes file descriptors as system call argument
1071	  for kernel and initramfs as opposed to list of segments as
1072	  accepted by previous system call.
1073
1074config KEXEC_SIG
1075	bool "Verify kernel signature during kexec_file_load() syscall"
1076	depends on KEXEC_FILE
1077	help
1078	  Select this option to verify a signature with loaded kernel
1079	  image. If configured, any attempt of loading a image without
1080	  valid signature will fail.
1081
1082	  In addition to that option, you need to enable signature
1083	  verification for the corresponding kernel image type being
1084	  loaded in order for this to work.
1085
1086config KEXEC_IMAGE_VERIFY_SIG
1087	bool "Enable Image signature verification support"
1088	default y
1089	depends on KEXEC_SIG
1090	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1091	help
1092	  Enable Image signature verification support.
1093
1094comment "Support for PE file signature verification disabled"
1095	depends on KEXEC_SIG
1096	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1097
1098config CRASH_DUMP
1099	bool "Build kdump crash kernel"
1100	help
1101	  Generate crash dump after being started by kexec. This should
1102	  be normally only set in special crash dump kernels which are
1103	  loaded in the main kernel with kexec-tools into a specially
1104	  reserved region and then later executed after a crash by
1105	  kdump/kexec.
1106
1107	  For more details see Documentation/admin-guide/kdump/kdump.rst
1108
1109config XEN_DOM0
1110	def_bool y
1111	depends on XEN
1112
1113config XEN
1114	bool "Xen guest support on ARM64"
1115	depends on ARM64 && OF
1116	select SWIOTLB_XEN
1117	select PARAVIRT
1118	help
1119	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1120
1121config FORCE_MAX_ZONEORDER
1122	int
1123	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
1124	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
1125	default "11"
1126	help
1127	  The kernel memory allocator divides physically contiguous memory
1128	  blocks into "zones", where each zone is a power of two number of
1129	  pages.  This option selects the largest power of two that the kernel
1130	  keeps in the memory allocator.  If you need to allocate very large
1131	  blocks of physically contiguous memory, then you may need to
1132	  increase this value.
1133
1134	  This config option is actually maximum order plus one. For example,
1135	  a value of 11 means that the largest free memory block is 2^10 pages.
1136
1137	  We make sure that we can allocate upto a HugePage size for each configuration.
1138	  Hence we have :
1139		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1140
1141	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1142	  4M allocations matching the default size used by generic code.
1143
1144config UNMAP_KERNEL_AT_EL0
1145	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1146	default y
1147	help
1148	  Speculation attacks against some high-performance processors can
1149	  be used to bypass MMU permission checks and leak kernel data to
1150	  userspace. This can be defended against by unmapping the kernel
1151	  when running in userspace, mapping it back in on exception entry
1152	  via a trampoline page in the vector table.
1153
1154	  If unsure, say Y.
1155
1156config HARDEN_BRANCH_PREDICTOR
1157	bool "Harden the branch predictor against aliasing attacks" if EXPERT
1158	default y
1159	help
1160	  Speculation attacks against some high-performance processors rely on
1161	  being able to manipulate the branch predictor for a victim context by
1162	  executing aliasing branches in the attacker context.  Such attacks
1163	  can be partially mitigated against by clearing internal branch
1164	  predictor state and limiting the prediction logic in some situations.
1165
1166	  This config option will take CPU-specific actions to harden the
1167	  branch predictor against aliasing attacks and may rely on specific
1168	  instruction sequences or control bits being set by the system
1169	  firmware.
1170
1171	  If unsure, say Y.
1172
1173config HARDEN_EL2_VECTORS
1174	bool "Harden EL2 vector mapping against system register leak" if EXPERT
1175	default y
1176	help
1177	  Speculation attacks against some high-performance processors can
1178	  be used to leak privileged information such as the vector base
1179	  register, resulting in a potential defeat of the EL2 layout
1180	  randomization.
1181
1182	  This config option will map the vectors to a fixed location,
1183	  independent of the EL2 code mapping, so that revealing VBAR_EL2
1184	  to an attacker does not give away any extra information. This
1185	  only gets enabled on affected CPUs.
1186
1187	  If unsure, say Y.
1188
1189config ARM64_SSBD
1190	bool "Speculative Store Bypass Disable" if EXPERT
1191	default y
1192	help
1193	  This enables mitigation of the bypassing of previous stores
1194	  by speculative loads.
1195
1196	  If unsure, say Y.
1197
1198config RODATA_FULL_DEFAULT_ENABLED
1199	bool "Apply r/o permissions of VM areas also to their linear aliases"
1200	default y
1201	help
1202	  Apply read-only attributes of VM areas to the linear alias of
1203	  the backing pages as well. This prevents code or read-only data
1204	  from being modified (inadvertently or intentionally) via another
1205	  mapping of the same memory page. This additional enhancement can
1206	  be turned off at runtime by passing rodata=[off|on] (and turned on
1207	  with rodata=full if this option is set to 'n')
1208
1209	  This requires the linear region to be mapped down to pages,
1210	  which may adversely affect performance in some cases.
1211
1212config ARM64_SW_TTBR0_PAN
1213	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1214	help
1215	  Enabling this option prevents the kernel from accessing
1216	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1217	  zeroed area and reserved ASID. The user access routines
1218	  restore the valid TTBR0_EL1 temporarily.
1219
1220config ARM64_TAGGED_ADDR_ABI
1221	bool "Enable the tagged user addresses syscall ABI"
1222	default y
1223	help
1224	  When this option is enabled, user applications can opt in to a
1225	  relaxed ABI via prctl() allowing tagged addresses to be passed
1226	  to system calls as pointer arguments. For details, see
1227	  Documentation/arm64/tagged-address-abi.rst.
1228
1229menuconfig COMPAT
1230	bool "Kernel support for 32-bit EL0"
1231	depends on ARM64_4K_PAGES || EXPERT
1232	select COMPAT_BINFMT_ELF if BINFMT_ELF
1233	select HAVE_UID16
1234	select OLD_SIGSUSPEND3
1235	select COMPAT_OLD_SIGACTION
1236	help
1237	  This option enables support for a 32-bit EL0 running under a 64-bit
1238	  kernel at EL1. AArch32-specific components such as system calls,
1239	  the user helper functions, VFP support and the ptrace interface are
1240	  handled appropriately by the kernel.
1241
1242	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1243	  that you will only be able to execute AArch32 binaries that were compiled
1244	  with page size aligned segments.
1245
1246	  If you want to execute 32-bit userspace applications, say Y.
1247
1248if COMPAT
1249
1250config KUSER_HELPERS
1251	bool "Enable kuser helpers page for 32-bit applications"
1252	default y
1253	help
1254	  Warning: disabling this option may break 32-bit user programs.
1255
1256	  Provide kuser helpers to compat tasks. The kernel provides
1257	  helper code to userspace in read only form at a fixed location
1258	  to allow userspace to be independent of the CPU type fitted to
1259	  the system. This permits binaries to be run on ARMv4 through
1260	  to ARMv8 without modification.
1261
1262	  See Documentation/arm/kernel_user_helpers.rst for details.
1263
1264	  However, the fixed address nature of these helpers can be used
1265	  by ROP (return orientated programming) authors when creating
1266	  exploits.
1267
1268	  If all of the binaries and libraries which run on your platform
1269	  are built specifically for your platform, and make no use of
1270	  these helpers, then you can turn this option off to hinder
1271	  such exploits. However, in that case, if a binary or library
1272	  relying on those helpers is run, it will not function correctly.
1273
1274	  Say N here only if you are absolutely certain that you do not
1275	  need these helpers; otherwise, the safe option is to say Y.
1276
1277config COMPAT_VDSO
1278	bool "Enable vDSO for 32-bit applications"
1279	depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != ""
1280	select GENERIC_COMPAT_VDSO
1281	default y
1282	help
1283	  Place in the process address space of 32-bit applications an
1284	  ELF shared object providing fast implementations of gettimeofday
1285	  and clock_gettime.
1286
1287	  You must have a 32-bit build of glibc 2.22 or later for programs
1288	  to seamlessly take advantage of this.
1289
1290menuconfig ARMV8_DEPRECATED
1291	bool "Emulate deprecated/obsolete ARMv8 instructions"
1292	depends on SYSCTL
1293	help
1294	  Legacy software support may require certain instructions
1295	  that have been deprecated or obsoleted in the architecture.
1296
1297	  Enable this config to enable selective emulation of these
1298	  features.
1299
1300	  If unsure, say Y
1301
1302if ARMV8_DEPRECATED
1303
1304config SWP_EMULATION
1305	bool "Emulate SWP/SWPB instructions"
1306	help
1307	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1308	  they are always undefined. Say Y here to enable software
1309	  emulation of these instructions for userspace using LDXR/STXR.
1310
1311	  In some older versions of glibc [<=2.8] SWP is used during futex
1312	  trylock() operations with the assumption that the code will not
1313	  be preempted. This invalid assumption may be more likely to fail
1314	  with SWP emulation enabled, leading to deadlock of the user
1315	  application.
1316
1317	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1318	  on an external transaction monitoring block called a global
1319	  monitor to maintain update atomicity. If your system does not
1320	  implement a global monitor, this option can cause programs that
1321	  perform SWP operations to uncached memory to deadlock.
1322
1323	  If unsure, say Y
1324
1325config CP15_BARRIER_EMULATION
1326	bool "Emulate CP15 Barrier instructions"
1327	help
1328	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1329	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1330	  strongly recommended to use the ISB, DSB, and DMB
1331	  instructions instead.
1332
1333	  Say Y here to enable software emulation of these
1334	  instructions for AArch32 userspace code. When this option is
1335	  enabled, CP15 barrier usage is traced which can help
1336	  identify software that needs updating.
1337
1338	  If unsure, say Y
1339
1340config SETEND_EMULATION
1341	bool "Emulate SETEND instruction"
1342	help
1343	  The SETEND instruction alters the data-endianness of the
1344	  AArch32 EL0, and is deprecated in ARMv8.
1345
1346	  Say Y here to enable software emulation of the instruction
1347	  for AArch32 userspace code.
1348
1349	  Note: All the cpus on the system must have mixed endian support at EL0
1350	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1351	  endian - is hotplugged in after this feature has been enabled, there could
1352	  be unexpected results in the applications.
1353
1354	  If unsure, say Y
1355endif
1356
1357endif
1358
1359menu "ARMv8.1 architectural features"
1360
1361config ARM64_HW_AFDBM
1362	bool "Support for hardware updates of the Access and Dirty page flags"
1363	default y
1364	help
1365	  The ARMv8.1 architecture extensions introduce support for
1366	  hardware updates of the access and dirty information in page
1367	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1368	  capable processors, accesses to pages with PTE_AF cleared will
1369	  set this bit instead of raising an access flag fault.
1370	  Similarly, writes to read-only pages with the DBM bit set will
1371	  clear the read-only bit (AP[2]) instead of raising a
1372	  permission fault.
1373
1374	  Kernels built with this configuration option enabled continue
1375	  to work on pre-ARMv8.1 hardware and the performance impact is
1376	  minimal. If unsure, say Y.
1377
1378config ARM64_PAN
1379	bool "Enable support for Privileged Access Never (PAN)"
1380	default y
1381	help
1382	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1383	 prevents the kernel or hypervisor from accessing user-space (EL0)
1384	 memory directly.
1385
1386	 Choosing this option will cause any unprotected (not using
1387	 copy_to_user et al) memory access to fail with a permission fault.
1388
1389	 The feature is detected at runtime, and will remain as a 'nop'
1390	 instruction if the cpu does not implement the feature.
1391
1392config ARM64_LSE_ATOMICS
1393	bool
1394	default ARM64_USE_LSE_ATOMICS
1395	depends on $(as-instr,.arch_extension lse)
1396
1397config ARM64_USE_LSE_ATOMICS
1398	bool "Atomic instructions"
1399	depends on JUMP_LABEL
1400	default y
1401	help
1402	  As part of the Large System Extensions, ARMv8.1 introduces new
1403	  atomic instructions that are designed specifically to scale in
1404	  very large systems.
1405
1406	  Say Y here to make use of these instructions for the in-kernel
1407	  atomic routines. This incurs a small overhead on CPUs that do
1408	  not support these instructions and requires the kernel to be
1409	  built with binutils >= 2.25 in order for the new instructions
1410	  to be used.
1411
1412config ARM64_VHE
1413	bool "Enable support for Virtualization Host Extensions (VHE)"
1414	default y
1415	help
1416	  Virtualization Host Extensions (VHE) allow the kernel to run
1417	  directly at EL2 (instead of EL1) on processors that support
1418	  it. This leads to better performance for KVM, as they reduce
1419	  the cost of the world switch.
1420
1421	  Selecting this option allows the VHE feature to be detected
1422	  at runtime, and does not affect processors that do not
1423	  implement this feature.
1424
1425endmenu
1426
1427menu "ARMv8.2 architectural features"
1428
1429config ARM64_UAO
1430	bool "Enable support for User Access Override (UAO)"
1431	default y
1432	help
1433	  User Access Override (UAO; part of the ARMv8.2 Extensions)
1434	  causes the 'unprivileged' variant of the load/store instructions to
1435	  be overridden to be privileged.
1436
1437	  This option changes get_user() and friends to use the 'unprivileged'
1438	  variant of the load/store instructions. This ensures that user-space
1439	  really did have access to the supplied memory. When addr_limit is
1440	  set to kernel memory the UAO bit will be set, allowing privileged
1441	  access to kernel memory.
1442
1443	  Choosing this option will cause copy_to_user() et al to use user-space
1444	  memory permissions.
1445
1446	  The feature is detected at runtime, the kernel will use the
1447	  regular load/store instructions if the cpu does not implement the
1448	  feature.
1449
1450config ARM64_PMEM
1451	bool "Enable support for persistent memory"
1452	select ARCH_HAS_PMEM_API
1453	select ARCH_HAS_UACCESS_FLUSHCACHE
1454	help
1455	  Say Y to enable support for the persistent memory API based on the
1456	  ARMv8.2 DCPoP feature.
1457
1458	  The feature is detected at runtime, and the kernel will use DC CVAC
1459	  operations if DC CVAP is not supported (following the behaviour of
1460	  DC CVAP itself if the system does not define a point of persistence).
1461
1462config ARM64_RAS_EXTN
1463	bool "Enable support for RAS CPU Extensions"
1464	default y
1465	help
1466	  CPUs that support the Reliability, Availability and Serviceability
1467	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1468	  errors, classify them and report them to software.
1469
1470	  On CPUs with these extensions system software can use additional
1471	  barriers to determine if faults are pending and read the
1472	  classification from a new set of registers.
1473
1474	  Selecting this feature will allow the kernel to use these barriers
1475	  and access the new registers if the system supports the extension.
1476	  Platform RAS features may additionally depend on firmware support.
1477
1478config ARM64_CNP
1479	bool "Enable support for Common Not Private (CNP) translations"
1480	default y
1481	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1482	help
1483	  Common Not Private (CNP) allows translation table entries to
1484	  be shared between different PEs in the same inner shareable
1485	  domain, so the hardware can use this fact to optimise the
1486	  caching of such entries in the TLB.
1487
1488	  Selecting this option allows the CNP feature to be detected
1489	  at runtime, and does not affect PEs that do not implement
1490	  this feature.
1491
1492endmenu
1493
1494menu "ARMv8.3 architectural features"
1495
1496config ARM64_PTR_AUTH
1497	bool "Enable support for pointer authentication"
1498	default y
1499	depends on !KVM || ARM64_VHE
1500	help
1501	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1502	  instructions for signing and authenticating pointers against secret
1503	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1504	  and other attacks.
1505
1506	  This option enables these instructions at EL0 (i.e. for userspace).
1507
1508	  Choosing this option will cause the kernel to initialise secret keys
1509	  for each process at exec() time, with these keys being
1510	  context-switched along with the process.
1511
1512	  The feature is detected at runtime. If the feature is not present in
1513	  hardware it will not be advertised to userspace/KVM guest nor will it
1514	  be enabled. However, KVM guest also require VHE mode and hence
1515	  CONFIG_ARM64_VHE=y option to use this feature.
1516
1517endmenu
1518
1519menu "ARMv8.5 architectural features"
1520
1521config ARM64_E0PD
1522	bool "Enable support for E0PD"
1523	default y
1524	help
1525	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1526	  that EL0 accesses made via TTBR1 always fault in constant time,
1527	  providing similar benefits to KASLR as those provided by KPTI, but
1528	  with lower overhead and without disrupting legitimate access to
1529	  kernel memory such as SPE.
1530
1531	  This option enables E0PD for TTBR1 where available.
1532
1533config ARCH_RANDOM
1534	bool "Enable support for random number generation"
1535	default y
1536	help
1537	  Random number generation (part of the ARMv8.5 Extensions)
1538	  provides a high bandwidth, cryptographically secure
1539	  hardware random number generator.
1540
1541endmenu
1542
1543config ARM64_SVE
1544	bool "ARM Scalable Vector Extension support"
1545	default y
1546	depends on !KVM || ARM64_VHE
1547	help
1548	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1549	  execution state which complements and extends the SIMD functionality
1550	  of the base architecture to support much larger vectors and to enable
1551	  additional vectorisation opportunities.
1552
1553	  To enable use of this extension on CPUs that implement it, say Y.
1554
1555	  On CPUs that support the SVE2 extensions, this option will enable
1556	  those too.
1557
1558	  Note that for architectural reasons, firmware _must_ implement SVE
1559	  support when running on SVE capable hardware.  The required support
1560	  is present in:
1561
1562	    * version 1.5 and later of the ARM Trusted Firmware
1563	    * the AArch64 boot wrapper since commit 5e1261e08abf
1564	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1565
1566	  For other firmware implementations, consult the firmware documentation
1567	  or vendor.
1568
1569	  If you need the kernel to boot on SVE-capable hardware with broken
1570	  firmware, you may need to say N here until you get your firmware
1571	  fixed.  Otherwise, you may experience firmware panics or lockups when
1572	  booting the kernel.  If unsure and you are not observing these
1573	  symptoms, you should assume that it is safe to say Y.
1574
1575	  CPUs that support SVE are architecturally required to support the
1576	  Virtualization Host Extensions (VHE), so the kernel makes no
1577	  provision for supporting SVE alongside KVM without VHE enabled.
1578	  Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
1579	  KVM in the same kernel image.
1580
1581config ARM64_MODULE_PLTS
1582	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1583	depends on MODULES
1584	select HAVE_MOD_ARCH_SPECIFIC
1585	help
1586	  Allocate PLTs when loading modules so that jumps and calls whose
1587	  targets are too far away for their relative offsets to be encoded
1588	  in the instructions themselves can be bounced via veneers in the
1589	  module's PLT. This allows modules to be allocated in the generic
1590	  vmalloc area after the dedicated module memory area has been
1591	  exhausted.
1592
1593	  When running with address space randomization (KASLR), the module
1594	  region itself may be too far away for ordinary relative jumps and
1595	  calls, and so in that case, module PLTs are required and cannot be
1596	  disabled.
1597
1598	  Specific errata workaround(s) might also force module PLTs to be
1599	  enabled (ARM64_ERRATUM_843419).
1600
1601config ARM64_PSEUDO_NMI
1602	bool "Support for NMI-like interrupts"
1603	select ARM_GIC_V3
1604	help
1605	  Adds support for mimicking Non-Maskable Interrupts through the use of
1606	  GIC interrupt priority. This support requires version 3 or later of
1607	  ARM GIC.
1608
1609	  This high priority configuration for interrupts needs to be
1610	  explicitly enabled by setting the kernel parameter
1611	  "irqchip.gicv3_pseudo_nmi" to 1.
1612
1613	  If unsure, say N
1614
1615if ARM64_PSEUDO_NMI
1616config ARM64_DEBUG_PRIORITY_MASKING
1617	bool "Debug interrupt priority masking"
1618	help
1619	  This adds runtime checks to functions enabling/disabling
1620	  interrupts when using priority masking. The additional checks verify
1621	  the validity of ICC_PMR_EL1 when calling concerned functions.
1622
1623	  If unsure, say N
1624endif
1625
1626config RELOCATABLE
1627	bool
1628	select ARCH_HAS_RELR
1629	help
1630	  This builds the kernel as a Position Independent Executable (PIE),
1631	  which retains all relocation metadata required to relocate the
1632	  kernel binary at runtime to a different virtual address than the
1633	  address it was linked at.
1634	  Since AArch64 uses the RELA relocation format, this requires a
1635	  relocation pass at runtime even if the kernel is loaded at the
1636	  same address it was linked at.
1637
1638config RANDOMIZE_BASE
1639	bool "Randomize the address of the kernel image"
1640	select ARM64_MODULE_PLTS if MODULES
1641	select RELOCATABLE
1642	help
1643	  Randomizes the virtual address at which the kernel image is
1644	  loaded, as a security feature that deters exploit attempts
1645	  relying on knowledge of the location of kernel internals.
1646
1647	  It is the bootloader's job to provide entropy, by passing a
1648	  random u64 value in /chosen/kaslr-seed at kernel entry.
1649
1650	  When booting via the UEFI stub, it will invoke the firmware's
1651	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1652	  to the kernel proper. In addition, it will randomise the physical
1653	  location of the kernel Image as well.
1654
1655	  If unsure, say N.
1656
1657config RANDOMIZE_MODULE_REGION_FULL
1658	bool "Randomize the module region over a 4 GB range"
1659	depends on RANDOMIZE_BASE
1660	default y
1661	help
1662	  Randomizes the location of the module region inside a 4 GB window
1663	  covering the core kernel. This way, it is less likely for modules
1664	  to leak information about the location of core kernel data structures
1665	  but it does imply that function calls between modules and the core
1666	  kernel will need to be resolved via veneers in the module PLT.
1667
1668	  When this option is not set, the module region will be randomized over
1669	  a limited range that contains the [_stext, _etext] interval of the
1670	  core kernel, so branch relocations are always in range.
1671
1672config CC_HAVE_STACKPROTECTOR_SYSREG
1673	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1674
1675config STACKPROTECTOR_PER_TASK
1676	def_bool y
1677	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1678
1679endmenu
1680
1681menu "Boot options"
1682
1683config ARM64_ACPI_PARKING_PROTOCOL
1684	bool "Enable support for the ARM64 ACPI parking protocol"
1685	depends on ACPI
1686	help
1687	  Enable support for the ARM64 ACPI parking protocol. If disabled
1688	  the kernel will not allow booting through the ARM64 ACPI parking
1689	  protocol even if the corresponding data is present in the ACPI
1690	  MADT table.
1691
1692config CMDLINE
1693	string "Default kernel command string"
1694	default ""
1695	help
1696	  Provide a set of default command-line options at build time by
1697	  entering them here. As a minimum, you should specify the the
1698	  root device (e.g. root=/dev/nfs).
1699
1700config CMDLINE_FORCE
1701	bool "Always use the default kernel command string"
1702	depends on CMDLINE != ""
1703	help
1704	  Always use the default kernel command string, even if the boot
1705	  loader passes other arguments to the kernel.
1706	  This is useful if you cannot or don't want to change the
1707	  command-line options your boot loader passes to the kernel.
1708
1709config EFI_STUB
1710	bool
1711
1712config EFI
1713	bool "UEFI runtime support"
1714	depends on OF && !CPU_BIG_ENDIAN
1715	depends on KERNEL_MODE_NEON
1716	select ARCH_SUPPORTS_ACPI
1717	select LIBFDT
1718	select UCS2_STRING
1719	select EFI_PARAMS_FROM_FDT
1720	select EFI_RUNTIME_WRAPPERS
1721	select EFI_STUB
1722	select EFI_ARMSTUB
1723	default y
1724	help
1725	  This option provides support for runtime services provided
1726	  by UEFI firmware (such as non-volatile variables, realtime
1727          clock, and platform reset). A UEFI stub is also provided to
1728	  allow the kernel to be booted as an EFI application. This
1729	  is only useful on systems that have UEFI firmware.
1730
1731config DMI
1732	bool "Enable support for SMBIOS (DMI) tables"
1733	depends on EFI
1734	default y
1735	help
1736	  This enables SMBIOS/DMI feature for systems.
1737
1738	  This option is only useful on systems that have UEFI firmware.
1739	  However, even with this option, the resultant kernel should
1740	  continue to boot on existing non-UEFI platforms.
1741
1742endmenu
1743
1744config SYSVIPC_COMPAT
1745	def_bool y
1746	depends on COMPAT && SYSVIPC
1747
1748config ARCH_ENABLE_HUGEPAGE_MIGRATION
1749	def_bool y
1750	depends on HUGETLB_PAGE && MIGRATION
1751
1752menu "Power management options"
1753
1754source "kernel/power/Kconfig"
1755
1756config ARCH_HIBERNATION_POSSIBLE
1757	def_bool y
1758	depends on CPU_PM
1759
1760config ARCH_HIBERNATION_HEADER
1761	def_bool y
1762	depends on HIBERNATION
1763
1764config ARCH_SUSPEND_POSSIBLE
1765	def_bool y
1766
1767endmenu
1768
1769menu "CPU Power Management"
1770
1771source "drivers/cpuidle/Kconfig"
1772
1773source "drivers/cpufreq/Kconfig"
1774
1775endmenu
1776
1777source "drivers/firmware/Kconfig"
1778
1779source "drivers/acpi/Kconfig"
1780
1781source "arch/arm64/kvm/Kconfig"
1782
1783if CRYPTO
1784source "arch/arm64/crypto/Kconfig"
1785endif
1786