1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_VIRTUAL 13 select ARCH_HAS_DEVMEM_IS_ALLOWED 14 select ARCH_HAS_DMA_PREP_COHERENT 15 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 16 select ARCH_HAS_FAST_MULTIPLIER 17 select ARCH_HAS_FORTIFY_SOURCE 18 select ARCH_HAS_GCOV_PROFILE_ALL 19 select ARCH_HAS_GIGANTIC_PAGE 20 select ARCH_HAS_KCOV 21 select ARCH_HAS_KEEPINITRD 22 select ARCH_HAS_MEMBARRIER_SYNC_CORE 23 select ARCH_HAS_PTE_DEVMAP 24 select ARCH_HAS_PTE_SPECIAL 25 select ARCH_HAS_SETUP_DMA_OPS 26 select ARCH_HAS_SET_DIRECT_MAP 27 select ARCH_HAS_SET_MEMORY 28 select ARCH_HAS_STRICT_KERNEL_RWX 29 select ARCH_HAS_STRICT_MODULE_RWX 30 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 31 select ARCH_HAS_SYNC_DMA_FOR_CPU 32 select ARCH_HAS_SYSCALL_WRAPPER 33 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 34 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 35 select ARCH_HAVE_NMI_SAFE_CMPXCHG 36 select ARCH_INLINE_READ_LOCK if !PREEMPTION 37 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 38 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 39 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 40 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 41 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 42 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 43 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 44 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 45 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 46 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 47 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 48 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 49 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 50 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 51 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 52 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 53 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 54 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 55 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 56 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 57 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 58 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 59 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 60 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 61 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 62 select ARCH_KEEP_MEMBLOCK 63 select ARCH_USE_CMPXCHG_LOCKREF 64 select ARCH_USE_QUEUED_RWLOCKS 65 select ARCH_USE_QUEUED_SPINLOCKS 66 select ARCH_SUPPORTS_MEMORY_FAILURE 67 select ARCH_SUPPORTS_ATOMIC_RMW 68 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG) 69 select ARCH_SUPPORTS_NUMA_BALANCING 70 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 71 select ARCH_WANT_DEFAULT_BPF_JIT 72 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 73 select ARCH_WANT_FRAME_POINTERS 74 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 75 select ARCH_HAS_UBSAN_SANITIZE_ALL 76 select ARM_AMBA 77 select ARM_ARCH_TIMER 78 select ARM_GIC 79 select AUDIT_ARCH_COMPAT_GENERIC 80 select ARM_GIC_V2M if PCI 81 select ARM_GIC_V3 82 select ARM_GIC_V3_ITS if PCI 83 select ARM_PSCI_FW 84 select BUILDTIME_TABLE_SORT 85 select CLONE_BACKWARDS 86 select COMMON_CLK 87 select CPU_PM if (SUSPEND || CPU_IDLE) 88 select CRC32 89 select DCACHE_WORD_ACCESS 90 select DMA_DIRECT_REMAP 91 select EDAC_SUPPORT 92 select FRAME_POINTER 93 select GENERIC_ALLOCATOR 94 select GENERIC_ARCH_TOPOLOGY 95 select GENERIC_CLOCKEVENTS 96 select GENERIC_CLOCKEVENTS_BROADCAST 97 select GENERIC_CPU_AUTOPROBE 98 select GENERIC_CPU_VULNERABILITIES 99 select GENERIC_EARLY_IOREMAP 100 select GENERIC_IDLE_POLL_SETUP 101 select GENERIC_IRQ_MULTI_HANDLER 102 select GENERIC_IRQ_PROBE 103 select GENERIC_IRQ_SHOW 104 select GENERIC_IRQ_SHOW_LEVEL 105 select GENERIC_PCI_IOMAP 106 select GENERIC_PTDUMP 107 select GENERIC_SCHED_CLOCK 108 select GENERIC_SMP_IDLE_THREAD 109 select GENERIC_STRNCPY_FROM_USER 110 select GENERIC_STRNLEN_USER 111 select GENERIC_TIME_VSYSCALL 112 select GENERIC_GETTIMEOFDAY 113 select HANDLE_DOMAIN_IRQ 114 select HARDIRQS_SW_RESEND 115 select HAVE_PCI 116 select HAVE_ACPI_APEI if (ACPI && EFI) 117 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 118 select HAVE_ARCH_AUDITSYSCALL 119 select HAVE_ARCH_BITREVERSE 120 select HAVE_ARCH_COMPILER_H 121 select HAVE_ARCH_HUGE_VMAP 122 select HAVE_ARCH_JUMP_LABEL 123 select HAVE_ARCH_JUMP_LABEL_RELATIVE 124 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 125 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 126 select HAVE_ARCH_KGDB 127 select HAVE_ARCH_MMAP_RND_BITS 128 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 129 select HAVE_ARCH_PREL32_RELOCATIONS 130 select HAVE_ARCH_SECCOMP_FILTER 131 select HAVE_ARCH_STACKLEAK 132 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 133 select HAVE_ARCH_TRACEHOOK 134 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 135 select HAVE_ARCH_VMAP_STACK 136 select HAVE_ARM_SMCCC 137 select HAVE_ASM_MODVERSIONS 138 select HAVE_EBPF_JIT 139 select HAVE_C_RECORDMCOUNT 140 select HAVE_CMPXCHG_DOUBLE 141 select HAVE_CMPXCHG_LOCAL 142 select HAVE_CONTEXT_TRACKING 143 select HAVE_COPY_THREAD_TLS 144 select HAVE_DEBUG_BUGVERBOSE 145 select HAVE_DEBUG_KMEMLEAK 146 select HAVE_DMA_CONTIGUOUS 147 select HAVE_DYNAMIC_FTRACE 148 select HAVE_DYNAMIC_FTRACE_WITH_REGS \ 149 if $(cc-option,-fpatchable-function-entry=2) 150 select HAVE_EFFICIENT_UNALIGNED_ACCESS 151 select HAVE_FAST_GUP 152 select HAVE_FTRACE_MCOUNT_RECORD 153 select HAVE_FUNCTION_TRACER 154 select HAVE_FUNCTION_ERROR_INJECTION 155 select HAVE_FUNCTION_GRAPH_TRACER 156 select HAVE_GCC_PLUGINS 157 select HAVE_HW_BREAKPOINT if PERF_EVENTS 158 select HAVE_IRQ_TIME_ACCOUNTING 159 select HAVE_MEMBLOCK_NODE_MAP if NUMA 160 select HAVE_NMI 161 select HAVE_PATA_PLATFORM 162 select HAVE_PERF_EVENTS 163 select HAVE_PERF_REGS 164 select HAVE_PERF_USER_STACK_DUMP 165 select HAVE_REGS_AND_STACK_ACCESS_API 166 select HAVE_FUNCTION_ARG_ACCESS_API 167 select HAVE_FUTEX_CMPXCHG if FUTEX 168 select MMU_GATHER_RCU_TABLE_FREE 169 select HAVE_RSEQ 170 select HAVE_STACKPROTECTOR 171 select HAVE_SYSCALL_TRACEPOINTS 172 select HAVE_KPROBES 173 select HAVE_KRETPROBES 174 select HAVE_GENERIC_VDSO 175 select IOMMU_DMA if IOMMU_SUPPORT 176 select IRQ_DOMAIN 177 select IRQ_FORCED_THREADING 178 select MODULES_USE_ELF_RELA 179 select NEED_DMA_MAP_STATE 180 select NEED_SG_DMA_LENGTH 181 select OF 182 select OF_EARLY_FLATTREE 183 select PCI_DOMAINS_GENERIC if PCI 184 select PCI_ECAM if (ACPI && PCI) 185 select PCI_SYSCALL if PCI 186 select POWER_RESET 187 select POWER_SUPPLY 188 select SPARSE_IRQ 189 select SWIOTLB 190 select SYSCTL_EXCEPTION_TRACE 191 select THREAD_INFO_IN_TASK 192 help 193 ARM 64-bit (AArch64) Linux support. 194 195config 64BIT 196 def_bool y 197 198config MMU 199 def_bool y 200 201config ARM64_PAGE_SHIFT 202 int 203 default 16 if ARM64_64K_PAGES 204 default 14 if ARM64_16K_PAGES 205 default 12 206 207config ARM64_CONT_SHIFT 208 int 209 default 5 if ARM64_64K_PAGES 210 default 7 if ARM64_16K_PAGES 211 default 4 212 213config ARCH_MMAP_RND_BITS_MIN 214 default 14 if ARM64_64K_PAGES 215 default 16 if ARM64_16K_PAGES 216 default 18 217 218# max bits determined by the following formula: 219# VA_BITS - PAGE_SHIFT - 3 220config ARCH_MMAP_RND_BITS_MAX 221 default 19 if ARM64_VA_BITS=36 222 default 24 if ARM64_VA_BITS=39 223 default 27 if ARM64_VA_BITS=42 224 default 30 if ARM64_VA_BITS=47 225 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 226 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 227 default 33 if ARM64_VA_BITS=48 228 default 14 if ARM64_64K_PAGES 229 default 16 if ARM64_16K_PAGES 230 default 18 231 232config ARCH_MMAP_RND_COMPAT_BITS_MIN 233 default 7 if ARM64_64K_PAGES 234 default 9 if ARM64_16K_PAGES 235 default 11 236 237config ARCH_MMAP_RND_COMPAT_BITS_MAX 238 default 16 239 240config NO_IOPORT_MAP 241 def_bool y if !PCI 242 243config STACKTRACE_SUPPORT 244 def_bool y 245 246config ILLEGAL_POINTER_VALUE 247 hex 248 default 0xdead000000000000 249 250config LOCKDEP_SUPPORT 251 def_bool y 252 253config TRACE_IRQFLAGS_SUPPORT 254 def_bool y 255 256config GENERIC_BUG 257 def_bool y 258 depends on BUG 259 260config GENERIC_BUG_RELATIVE_POINTERS 261 def_bool y 262 depends on GENERIC_BUG 263 264config GENERIC_HWEIGHT 265 def_bool y 266 267config GENERIC_CSUM 268 def_bool y 269 270config GENERIC_CALIBRATE_DELAY 271 def_bool y 272 273config ZONE_DMA 274 bool "Support DMA zone" if EXPERT 275 default y 276 277config ZONE_DMA32 278 bool "Support DMA32 zone" if EXPERT 279 default y 280 281config ARCH_ENABLE_MEMORY_HOTPLUG 282 def_bool y 283 284config ARCH_ENABLE_MEMORY_HOTREMOVE 285 def_bool y 286 287config SMP 288 def_bool y 289 290config KERNEL_MODE_NEON 291 def_bool y 292 293config FIX_EARLYCON_MEM 294 def_bool y 295 296config PGTABLE_LEVELS 297 int 298 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 299 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 300 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 301 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 302 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 303 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 304 305config ARCH_SUPPORTS_UPROBES 306 def_bool y 307 308config ARCH_PROC_KCORE_TEXT 309 def_bool y 310 311config BROKEN_GAS_INST 312 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 313 314config KASAN_SHADOW_OFFSET 315 hex 316 depends on KASAN 317 default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 318 default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 319 default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 320 default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 321 default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 322 default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 323 default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 324 default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 325 default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 326 default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 327 default 0xffffffffffffffff 328 329source "arch/arm64/Kconfig.platforms" 330 331menu "Kernel Features" 332 333menu "ARM errata workarounds via the alternatives framework" 334 335config ARM64_WORKAROUND_CLEAN_CACHE 336 bool 337 338config ARM64_ERRATUM_826319 339 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 340 default y 341 select ARM64_WORKAROUND_CLEAN_CACHE 342 help 343 This option adds an alternative code sequence to work around ARM 344 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 345 AXI master interface and an L2 cache. 346 347 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 348 and is unable to accept a certain write via this interface, it will 349 not progress on read data presented on the read data channel and the 350 system can deadlock. 351 352 The workaround promotes data cache clean instructions to 353 data cache clean-and-invalidate. 354 Please note that this does not necessarily enable the workaround, 355 as it depends on the alternative framework, which will only patch 356 the kernel if an affected CPU is detected. 357 358 If unsure, say Y. 359 360config ARM64_ERRATUM_827319 361 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 362 default y 363 select ARM64_WORKAROUND_CLEAN_CACHE 364 help 365 This option adds an alternative code sequence to work around ARM 366 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 367 master interface and an L2 cache. 368 369 Under certain conditions this erratum can cause a clean line eviction 370 to occur at the same time as another transaction to the same address 371 on the AMBA 5 CHI interface, which can cause data corruption if the 372 interconnect reorders the two transactions. 373 374 The workaround promotes data cache clean instructions to 375 data cache clean-and-invalidate. 376 Please note that this does not necessarily enable the workaround, 377 as it depends on the alternative framework, which will only patch 378 the kernel if an affected CPU is detected. 379 380 If unsure, say Y. 381 382config ARM64_ERRATUM_824069 383 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 384 default y 385 select ARM64_WORKAROUND_CLEAN_CACHE 386 help 387 This option adds an alternative code sequence to work around ARM 388 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 389 to a coherent interconnect. 390 391 If a Cortex-A53 processor is executing a store or prefetch for 392 write instruction at the same time as a processor in another 393 cluster is executing a cache maintenance operation to the same 394 address, then this erratum might cause a clean cache line to be 395 incorrectly marked as dirty. 396 397 The workaround promotes data cache clean instructions to 398 data cache clean-and-invalidate. 399 Please note that this option does not necessarily enable the 400 workaround, as it depends on the alternative framework, which will 401 only patch the kernel if an affected CPU is detected. 402 403 If unsure, say Y. 404 405config ARM64_ERRATUM_819472 406 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 407 default y 408 select ARM64_WORKAROUND_CLEAN_CACHE 409 help 410 This option adds an alternative code sequence to work around ARM 411 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 412 present when it is connected to a coherent interconnect. 413 414 If the processor is executing a load and store exclusive sequence at 415 the same time as a processor in another cluster is executing a cache 416 maintenance operation to the same address, then this erratum might 417 cause data corruption. 418 419 The workaround promotes data cache clean instructions to 420 data cache clean-and-invalidate. 421 Please note that this does not necessarily enable the workaround, 422 as it depends on the alternative framework, which will only patch 423 the kernel if an affected CPU is detected. 424 425 If unsure, say Y. 426 427config ARM64_ERRATUM_832075 428 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 429 default y 430 help 431 This option adds an alternative code sequence to work around ARM 432 erratum 832075 on Cortex-A57 parts up to r1p2. 433 434 Affected Cortex-A57 parts might deadlock when exclusive load/store 435 instructions to Write-Back memory are mixed with Device loads. 436 437 The workaround is to promote device loads to use Load-Acquire 438 semantics. 439 Please note that this does not necessarily enable the workaround, 440 as it depends on the alternative framework, which will only patch 441 the kernel if an affected CPU is detected. 442 443 If unsure, say Y. 444 445config ARM64_ERRATUM_834220 446 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 447 depends on KVM 448 default y 449 help 450 This option adds an alternative code sequence to work around ARM 451 erratum 834220 on Cortex-A57 parts up to r1p2. 452 453 Affected Cortex-A57 parts might report a Stage 2 translation 454 fault as the result of a Stage 1 fault for load crossing a 455 page boundary when there is a permission or device memory 456 alignment fault at Stage 1 and a translation fault at Stage 2. 457 458 The workaround is to verify that the Stage 1 translation 459 doesn't generate a fault before handling the Stage 2 fault. 460 Please note that this does not necessarily enable the workaround, 461 as it depends on the alternative framework, which will only patch 462 the kernel if an affected CPU is detected. 463 464 If unsure, say Y. 465 466config ARM64_ERRATUM_845719 467 bool "Cortex-A53: 845719: a load might read incorrect data" 468 depends on COMPAT 469 default y 470 help 471 This option adds an alternative code sequence to work around ARM 472 erratum 845719 on Cortex-A53 parts up to r0p4. 473 474 When running a compat (AArch32) userspace on an affected Cortex-A53 475 part, a load at EL0 from a virtual address that matches the bottom 32 476 bits of the virtual address used by a recent load at (AArch64) EL1 477 might return incorrect data. 478 479 The workaround is to write the contextidr_el1 register on exception 480 return to a 32-bit task. 481 Please note that this does not necessarily enable the workaround, 482 as it depends on the alternative framework, which will only patch 483 the kernel if an affected CPU is detected. 484 485 If unsure, say Y. 486 487config ARM64_ERRATUM_843419 488 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 489 default y 490 select ARM64_MODULE_PLTS if MODULES 491 help 492 This option links the kernel with '--fix-cortex-a53-843419' and 493 enables PLT support to replace certain ADRP instructions, which can 494 cause subsequent memory accesses to use an incorrect address on 495 Cortex-A53 parts up to r0p4. 496 497 If unsure, say Y. 498 499config ARM64_ERRATUM_1024718 500 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 501 default y 502 help 503 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 504 505 Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect 506 update of the hardware dirty bit when the DBM/AP bits are updated 507 without a break-before-make. The workaround is to disable the usage 508 of hardware DBM locally on the affected cores. CPUs not affected by 509 this erratum will continue to use the feature. 510 511 If unsure, say Y. 512 513config ARM64_ERRATUM_1418040 514 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 515 default y 516 depends on COMPAT 517 help 518 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 519 errata 1188873 and 1418040. 520 521 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 522 cause register corruption when accessing the timer registers 523 from AArch32 userspace. 524 525 If unsure, say Y. 526 527config ARM64_WORKAROUND_SPECULATIVE_AT_VHE 528 bool 529 530config ARM64_ERRATUM_1165522 531 bool "Cortex-A76: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 532 default y 533 select ARM64_WORKAROUND_SPECULATIVE_AT_VHE 534 help 535 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 536 537 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 538 corrupted TLBs by speculating an AT instruction during a guest 539 context switch. 540 541 If unsure, say Y. 542 543config ARM64_ERRATUM_1530923 544 bool "Cortex-A55: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 545 default y 546 select ARM64_WORKAROUND_SPECULATIVE_AT_VHE 547 help 548 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 549 550 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 551 corrupted TLBs by speculating an AT instruction during a guest 552 context switch. 553 554 If unsure, say Y. 555 556config ARM64_ERRATUM_1286807 557 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 558 default y 559 select ARM64_WORKAROUND_REPEAT_TLBI 560 help 561 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 562 563 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 564 address for a cacheable mapping of a location is being 565 accessed by a core while another core is remapping the virtual 566 address to a new physical page using the recommended 567 break-before-make sequence, then under very rare circumstances 568 TLBI+DSB completes before a read using the translation being 569 invalidated has been observed by other observers. The 570 workaround repeats the TLBI+DSB operation. 571 572config ARM64_WORKAROUND_SPECULATIVE_AT_NVHE 573 bool 574 575config ARM64_ERRATUM_1319367 576 bool "Cortex-A57/A72: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 577 default y 578 select ARM64_WORKAROUND_SPECULATIVE_AT_NVHE 579 help 580 This option adds work arounds for ARM Cortex-A57 erratum 1319537 581 and A72 erratum 1319367 582 583 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 584 speculating an AT instruction during a guest context switch. 585 586 If unsure, say Y. 587 588config ARM64_ERRATUM_1463225 589 bool "Cortex-A76: Software Step might prevent interrupt recognition" 590 default y 591 help 592 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 593 594 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 595 of a system call instruction (SVC) can prevent recognition of 596 subsequent interrupts when software stepping is disabled in the 597 exception handler of the system call and either kernel debugging 598 is enabled or VHE is in use. 599 600 Work around the erratum by triggering a dummy step exception 601 when handling a system call from a task that is being stepped 602 in a VHE configuration of the kernel. 603 604 If unsure, say Y. 605 606config ARM64_ERRATUM_1542419 607 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 608 default y 609 help 610 This option adds a workaround for ARM Neoverse-N1 erratum 611 1542419. 612 613 Affected Neoverse-N1 cores could execute a stale instruction when 614 modified by another CPU. The workaround depends on a firmware 615 counterpart. 616 617 Workaround the issue by hiding the DIC feature from EL0. This 618 forces user-space to perform cache maintenance. 619 620 If unsure, say Y. 621 622config CAVIUM_ERRATUM_22375 623 bool "Cavium erratum 22375, 24313" 624 default y 625 help 626 Enable workaround for errata 22375 and 24313. 627 628 This implements two gicv3-its errata workarounds for ThunderX. Both 629 with a small impact affecting only ITS table allocation. 630 631 erratum 22375: only alloc 8MB table size 632 erratum 24313: ignore memory access type 633 634 The fixes are in ITS initialization and basically ignore memory access 635 type and table size provided by the TYPER and BASER registers. 636 637 If unsure, say Y. 638 639config CAVIUM_ERRATUM_23144 640 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 641 depends on NUMA 642 default y 643 help 644 ITS SYNC command hang for cross node io and collections/cpu mapping. 645 646 If unsure, say Y. 647 648config CAVIUM_ERRATUM_23154 649 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" 650 default y 651 help 652 The gicv3 of ThunderX requires a modified version for 653 reading the IAR status to ensure data synchronization 654 (access to icc_iar1_el1 is not sync'ed before and after). 655 656 If unsure, say Y. 657 658config CAVIUM_ERRATUM_27456 659 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 660 default y 661 help 662 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 663 instructions may cause the icache to become corrupted if it 664 contains data for a non-current ASID. The fix is to 665 invalidate the icache when changing the mm context. 666 667 If unsure, say Y. 668 669config CAVIUM_ERRATUM_30115 670 bool "Cavium erratum 30115: Guest may disable interrupts in host" 671 default y 672 help 673 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 674 1.2, and T83 Pass 1.0, KVM guest execution may disable 675 interrupts in host. Trapping both GICv3 group-0 and group-1 676 accesses sidesteps the issue. 677 678 If unsure, say Y. 679 680config CAVIUM_TX2_ERRATUM_219 681 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 682 default y 683 help 684 On Cavium ThunderX2, a load, store or prefetch instruction between a 685 TTBR update and the corresponding context synchronizing operation can 686 cause a spurious Data Abort to be delivered to any hardware thread in 687 the CPU core. 688 689 Work around the issue by avoiding the problematic code sequence and 690 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 691 trap handler performs the corresponding register access, skips the 692 instruction and ensures context synchronization by virtue of the 693 exception return. 694 695 If unsure, say Y. 696 697config QCOM_FALKOR_ERRATUM_1003 698 bool "Falkor E1003: Incorrect translation due to ASID change" 699 default y 700 help 701 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 702 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 703 in TTBR1_EL1, this situation only occurs in the entry trampoline and 704 then only for entries in the walk cache, since the leaf translation 705 is unchanged. Work around the erratum by invalidating the walk cache 706 entries for the trampoline before entering the kernel proper. 707 708config ARM64_WORKAROUND_REPEAT_TLBI 709 bool 710 711config QCOM_FALKOR_ERRATUM_1009 712 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 713 default y 714 select ARM64_WORKAROUND_REPEAT_TLBI 715 help 716 On Falkor v1, the CPU may prematurely complete a DSB following a 717 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 718 one more time to fix the issue. 719 720 If unsure, say Y. 721 722config QCOM_QDF2400_ERRATUM_0065 723 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 724 default y 725 help 726 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 727 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 728 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 729 730 If unsure, say Y. 731 732config SOCIONEXT_SYNQUACER_PREITS 733 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 734 default y 735 help 736 Socionext Synquacer SoCs implement a separate h/w block to generate 737 MSI doorbell writes with non-zero values for the device ID. 738 739 If unsure, say Y. 740 741config HISILICON_ERRATUM_161600802 742 bool "Hip07 161600802: Erroneous redistributor VLPI base" 743 default y 744 help 745 The HiSilicon Hip07 SoC uses the wrong redistributor base 746 when issued ITS commands such as VMOVP and VMAPP, and requires 747 a 128kB offset to be applied to the target address in this commands. 748 749 If unsure, say Y. 750 751config QCOM_FALKOR_ERRATUM_E1041 752 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 753 default y 754 help 755 Falkor CPU may speculatively fetch instructions from an improper 756 memory location when MMU translation is changed from SCTLR_ELn[M]=1 757 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 758 759 If unsure, say Y. 760 761config FUJITSU_ERRATUM_010001 762 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 763 default y 764 help 765 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 766 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 767 accesses may cause undefined fault (Data abort, DFSC=0b111111). 768 This fault occurs under a specific hardware condition when a 769 load/store instruction performs an address translation using: 770 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 771 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 772 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 773 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 774 775 The workaround is to ensure these bits are clear in TCR_ELx. 776 The workaround only affects the Fujitsu-A64FX. 777 778 If unsure, say Y. 779 780endmenu 781 782 783choice 784 prompt "Page size" 785 default ARM64_4K_PAGES 786 help 787 Page size (translation granule) configuration. 788 789config ARM64_4K_PAGES 790 bool "4KB" 791 help 792 This feature enables 4KB pages support. 793 794config ARM64_16K_PAGES 795 bool "16KB" 796 help 797 The system will use 16KB pages support. AArch32 emulation 798 requires applications compiled with 16K (or a multiple of 16K) 799 aligned segments. 800 801config ARM64_64K_PAGES 802 bool "64KB" 803 help 804 This feature enables 64KB pages support (4KB by default) 805 allowing only two levels of page tables and faster TLB 806 look-up. AArch32 emulation requires applications compiled 807 with 64K aligned segments. 808 809endchoice 810 811choice 812 prompt "Virtual address space size" 813 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 814 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 815 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 816 help 817 Allows choosing one of multiple possible virtual address 818 space sizes. The level of translation table is determined by 819 a combination of page size and virtual address space size. 820 821config ARM64_VA_BITS_36 822 bool "36-bit" if EXPERT 823 depends on ARM64_16K_PAGES 824 825config ARM64_VA_BITS_39 826 bool "39-bit" 827 depends on ARM64_4K_PAGES 828 829config ARM64_VA_BITS_42 830 bool "42-bit" 831 depends on ARM64_64K_PAGES 832 833config ARM64_VA_BITS_47 834 bool "47-bit" 835 depends on ARM64_16K_PAGES 836 837config ARM64_VA_BITS_48 838 bool "48-bit" 839 840config ARM64_VA_BITS_52 841 bool "52-bit" 842 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 843 help 844 Enable 52-bit virtual addressing for userspace when explicitly 845 requested via a hint to mmap(). The kernel will also use 52-bit 846 virtual addresses for its own mappings (provided HW support for 847 this feature is available, otherwise it reverts to 48-bit). 848 849 NOTE: Enabling 52-bit virtual addressing in conjunction with 850 ARMv8.3 Pointer Authentication will result in the PAC being 851 reduced from 7 bits to 3 bits, which may have a significant 852 impact on its susceptibility to brute-force attacks. 853 854 If unsure, select 48-bit virtual addressing instead. 855 856endchoice 857 858config ARM64_FORCE_52BIT 859 bool "Force 52-bit virtual addresses for userspace" 860 depends on ARM64_VA_BITS_52 && EXPERT 861 help 862 For systems with 52-bit userspace VAs enabled, the kernel will attempt 863 to maintain compatibility with older software by providing 48-bit VAs 864 unless a hint is supplied to mmap. 865 866 This configuration option disables the 48-bit compatibility logic, and 867 forces all userspace addresses to be 52-bit on HW that supports it. One 868 should only enable this configuration option for stress testing userspace 869 memory management code. If unsure say N here. 870 871config ARM64_VA_BITS 872 int 873 default 36 if ARM64_VA_BITS_36 874 default 39 if ARM64_VA_BITS_39 875 default 42 if ARM64_VA_BITS_42 876 default 47 if ARM64_VA_BITS_47 877 default 48 if ARM64_VA_BITS_48 878 default 52 if ARM64_VA_BITS_52 879 880choice 881 prompt "Physical address space size" 882 default ARM64_PA_BITS_48 883 help 884 Choose the maximum physical address range that the kernel will 885 support. 886 887config ARM64_PA_BITS_48 888 bool "48-bit" 889 890config ARM64_PA_BITS_52 891 bool "52-bit (ARMv8.2)" 892 depends on ARM64_64K_PAGES 893 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 894 help 895 Enable support for a 52-bit physical address space, introduced as 896 part of the ARMv8.2-LPA extension. 897 898 With this enabled, the kernel will also continue to work on CPUs that 899 do not support ARMv8.2-LPA, but with some added memory overhead (and 900 minor performance overhead). 901 902endchoice 903 904config ARM64_PA_BITS 905 int 906 default 48 if ARM64_PA_BITS_48 907 default 52 if ARM64_PA_BITS_52 908 909choice 910 prompt "Endianness" 911 default CPU_LITTLE_ENDIAN 912 help 913 Select the endianness of data accesses performed by the CPU. Userspace 914 applications will need to be compiled and linked for the endianness 915 that is selected here. 916 917config CPU_BIG_ENDIAN 918 bool "Build big-endian kernel" 919 help 920 Say Y if you plan on running a kernel with a big-endian userspace. 921 922config CPU_LITTLE_ENDIAN 923 bool "Build little-endian kernel" 924 help 925 Say Y if you plan on running a kernel with a little-endian userspace. 926 This is usually the case for distributions targeting arm64. 927 928endchoice 929 930config SCHED_MC 931 bool "Multi-core scheduler support" 932 help 933 Multi-core scheduler support improves the CPU scheduler's decision 934 making when dealing with multi-core CPU chips at a cost of slightly 935 increased overhead in some places. If unsure say N here. 936 937config SCHED_SMT 938 bool "SMT scheduler support" 939 help 940 Improves the CPU scheduler's decision making when dealing with 941 MultiThreading at a cost of slightly increased overhead in some 942 places. If unsure say N here. 943 944config NR_CPUS 945 int "Maximum number of CPUs (2-4096)" 946 range 2 4096 947 default "256" 948 949config HOTPLUG_CPU 950 bool "Support for hot-pluggable CPUs" 951 select GENERIC_IRQ_MIGRATION 952 help 953 Say Y here to experiment with turning CPUs off and on. CPUs 954 can be controlled through /sys/devices/system/cpu. 955 956# Common NUMA Features 957config NUMA 958 bool "NUMA Memory Allocation and Scheduler Support" 959 select ACPI_NUMA if ACPI 960 select OF_NUMA 961 help 962 Enable NUMA (Non-Uniform Memory Access) support. 963 964 The kernel will try to allocate memory used by a CPU on the 965 local memory of the CPU and add some more 966 NUMA awareness to the kernel. 967 968config NODES_SHIFT 969 int "Maximum NUMA Nodes (as a power of 2)" 970 range 1 10 971 default "2" 972 depends on NEED_MULTIPLE_NODES 973 help 974 Specify the maximum number of NUMA Nodes available on the target 975 system. Increases memory reserved to accommodate various tables. 976 977config USE_PERCPU_NUMA_NODE_ID 978 def_bool y 979 depends on NUMA 980 981config HAVE_SETUP_PER_CPU_AREA 982 def_bool y 983 depends on NUMA 984 985config NEED_PER_CPU_EMBED_FIRST_CHUNK 986 def_bool y 987 depends on NUMA 988 989config HOLES_IN_ZONE 990 def_bool y 991 992source "kernel/Kconfig.hz" 993 994config ARCH_SUPPORTS_DEBUG_PAGEALLOC 995 def_bool y 996 997config ARCH_SPARSEMEM_ENABLE 998 def_bool y 999 select SPARSEMEM_VMEMMAP_ENABLE 1000 1001config ARCH_SPARSEMEM_DEFAULT 1002 def_bool ARCH_SPARSEMEM_ENABLE 1003 1004config ARCH_SELECT_MEMORY_MODEL 1005 def_bool ARCH_SPARSEMEM_ENABLE 1006 1007config ARCH_FLATMEM_ENABLE 1008 def_bool !NUMA 1009 1010config HAVE_ARCH_PFN_VALID 1011 def_bool y 1012 1013config HW_PERF_EVENTS 1014 def_bool y 1015 depends on ARM_PMU 1016 1017config SYS_SUPPORTS_HUGETLBFS 1018 def_bool y 1019 1020config ARCH_WANT_HUGE_PMD_SHARE 1021 1022config ARCH_HAS_CACHE_LINE_SIZE 1023 def_bool y 1024 1025config ARCH_ENABLE_SPLIT_PMD_PTLOCK 1026 def_bool y if PGTABLE_LEVELS > 2 1027 1028config SECCOMP 1029 bool "Enable seccomp to safely compute untrusted bytecode" 1030 ---help--- 1031 This kernel feature is useful for number crunching applications 1032 that may need to compute untrusted bytecode during their 1033 execution. By using pipes or other transports made available to 1034 the process as file descriptors supporting the read/write 1035 syscalls, it's possible to isolate those applications in 1036 their own address space using seccomp. Once seccomp is 1037 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled 1038 and the task is only allowed to execute a few safe syscalls 1039 defined by each seccomp mode. 1040 1041config PARAVIRT 1042 bool "Enable paravirtualization code" 1043 help 1044 This changes the kernel so it can modify itself when it is run 1045 under a hypervisor, potentially improving performance significantly 1046 over full virtualization. 1047 1048config PARAVIRT_TIME_ACCOUNTING 1049 bool "Paravirtual steal time accounting" 1050 select PARAVIRT 1051 help 1052 Select this option to enable fine granularity task steal time 1053 accounting. Time spent executing other tasks in parallel with 1054 the current vCPU is discounted from the vCPU power. To account for 1055 that, there can be a small performance impact. 1056 1057 If in doubt, say N here. 1058 1059config KEXEC 1060 depends on PM_SLEEP_SMP 1061 select KEXEC_CORE 1062 bool "kexec system call" 1063 ---help--- 1064 kexec is a system call that implements the ability to shutdown your 1065 current kernel, and to start another kernel. It is like a reboot 1066 but it is independent of the system firmware. And like a reboot 1067 you can start any kernel with it, not just Linux. 1068 1069config KEXEC_FILE 1070 bool "kexec file based system call" 1071 select KEXEC_CORE 1072 help 1073 This is new version of kexec system call. This system call is 1074 file based and takes file descriptors as system call argument 1075 for kernel and initramfs as opposed to list of segments as 1076 accepted by previous system call. 1077 1078config KEXEC_SIG 1079 bool "Verify kernel signature during kexec_file_load() syscall" 1080 depends on KEXEC_FILE 1081 help 1082 Select this option to verify a signature with loaded kernel 1083 image. If configured, any attempt of loading a image without 1084 valid signature will fail. 1085 1086 In addition to that option, you need to enable signature 1087 verification for the corresponding kernel image type being 1088 loaded in order for this to work. 1089 1090config KEXEC_IMAGE_VERIFY_SIG 1091 bool "Enable Image signature verification support" 1092 default y 1093 depends on KEXEC_SIG 1094 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1095 help 1096 Enable Image signature verification support. 1097 1098comment "Support for PE file signature verification disabled" 1099 depends on KEXEC_SIG 1100 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1101 1102config CRASH_DUMP 1103 bool "Build kdump crash kernel" 1104 help 1105 Generate crash dump after being started by kexec. This should 1106 be normally only set in special crash dump kernels which are 1107 loaded in the main kernel with kexec-tools into a specially 1108 reserved region and then later executed after a crash by 1109 kdump/kexec. 1110 1111 For more details see Documentation/admin-guide/kdump/kdump.rst 1112 1113config XEN_DOM0 1114 def_bool y 1115 depends on XEN 1116 1117config XEN 1118 bool "Xen guest support on ARM64" 1119 depends on ARM64 && OF 1120 select SWIOTLB_XEN 1121 select PARAVIRT 1122 help 1123 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1124 1125config FORCE_MAX_ZONEORDER 1126 int 1127 default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE) 1128 default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE) 1129 default "11" 1130 help 1131 The kernel memory allocator divides physically contiguous memory 1132 blocks into "zones", where each zone is a power of two number of 1133 pages. This option selects the largest power of two that the kernel 1134 keeps in the memory allocator. If you need to allocate very large 1135 blocks of physically contiguous memory, then you may need to 1136 increase this value. 1137 1138 This config option is actually maximum order plus one. For example, 1139 a value of 11 means that the largest free memory block is 2^10 pages. 1140 1141 We make sure that we can allocate upto a HugePage size for each configuration. 1142 Hence we have : 1143 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1144 1145 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1146 4M allocations matching the default size used by generic code. 1147 1148config UNMAP_KERNEL_AT_EL0 1149 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1150 default y 1151 help 1152 Speculation attacks against some high-performance processors can 1153 be used to bypass MMU permission checks and leak kernel data to 1154 userspace. This can be defended against by unmapping the kernel 1155 when running in userspace, mapping it back in on exception entry 1156 via a trampoline page in the vector table. 1157 1158 If unsure, say Y. 1159 1160config HARDEN_BRANCH_PREDICTOR 1161 bool "Harden the branch predictor against aliasing attacks" if EXPERT 1162 default y 1163 help 1164 Speculation attacks against some high-performance processors rely on 1165 being able to manipulate the branch predictor for a victim context by 1166 executing aliasing branches in the attacker context. Such attacks 1167 can be partially mitigated against by clearing internal branch 1168 predictor state and limiting the prediction logic in some situations. 1169 1170 This config option will take CPU-specific actions to harden the 1171 branch predictor against aliasing attacks and may rely on specific 1172 instruction sequences or control bits being set by the system 1173 firmware. 1174 1175 If unsure, say Y. 1176 1177config HARDEN_EL2_VECTORS 1178 bool "Harden EL2 vector mapping against system register leak" if EXPERT 1179 default y 1180 help 1181 Speculation attacks against some high-performance processors can 1182 be used to leak privileged information such as the vector base 1183 register, resulting in a potential defeat of the EL2 layout 1184 randomization. 1185 1186 This config option will map the vectors to a fixed location, 1187 independent of the EL2 code mapping, so that revealing VBAR_EL2 1188 to an attacker does not give away any extra information. This 1189 only gets enabled on affected CPUs. 1190 1191 If unsure, say Y. 1192 1193config ARM64_SSBD 1194 bool "Speculative Store Bypass Disable" if EXPERT 1195 default y 1196 help 1197 This enables mitigation of the bypassing of previous stores 1198 by speculative loads. 1199 1200 If unsure, say Y. 1201 1202config RODATA_FULL_DEFAULT_ENABLED 1203 bool "Apply r/o permissions of VM areas also to their linear aliases" 1204 default y 1205 help 1206 Apply read-only attributes of VM areas to the linear alias of 1207 the backing pages as well. This prevents code or read-only data 1208 from being modified (inadvertently or intentionally) via another 1209 mapping of the same memory page. This additional enhancement can 1210 be turned off at runtime by passing rodata=[off|on] (and turned on 1211 with rodata=full if this option is set to 'n') 1212 1213 This requires the linear region to be mapped down to pages, 1214 which may adversely affect performance in some cases. 1215 1216config ARM64_SW_TTBR0_PAN 1217 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1218 help 1219 Enabling this option prevents the kernel from accessing 1220 user-space memory directly by pointing TTBR0_EL1 to a reserved 1221 zeroed area and reserved ASID. The user access routines 1222 restore the valid TTBR0_EL1 temporarily. 1223 1224config ARM64_TAGGED_ADDR_ABI 1225 bool "Enable the tagged user addresses syscall ABI" 1226 default y 1227 help 1228 When this option is enabled, user applications can opt in to a 1229 relaxed ABI via prctl() allowing tagged addresses to be passed 1230 to system calls as pointer arguments. For details, see 1231 Documentation/arm64/tagged-address-abi.rst. 1232 1233menuconfig COMPAT 1234 bool "Kernel support for 32-bit EL0" 1235 depends on ARM64_4K_PAGES || EXPERT 1236 select COMPAT_BINFMT_ELF if BINFMT_ELF 1237 select HAVE_UID16 1238 select OLD_SIGSUSPEND3 1239 select COMPAT_OLD_SIGACTION 1240 help 1241 This option enables support for a 32-bit EL0 running under a 64-bit 1242 kernel at EL1. AArch32-specific components such as system calls, 1243 the user helper functions, VFP support and the ptrace interface are 1244 handled appropriately by the kernel. 1245 1246 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1247 that you will only be able to execute AArch32 binaries that were compiled 1248 with page size aligned segments. 1249 1250 If you want to execute 32-bit userspace applications, say Y. 1251 1252if COMPAT 1253 1254config KUSER_HELPERS 1255 bool "Enable kuser helpers page for 32-bit applications" 1256 default y 1257 help 1258 Warning: disabling this option may break 32-bit user programs. 1259 1260 Provide kuser helpers to compat tasks. The kernel provides 1261 helper code to userspace in read only form at a fixed location 1262 to allow userspace to be independent of the CPU type fitted to 1263 the system. This permits binaries to be run on ARMv4 through 1264 to ARMv8 without modification. 1265 1266 See Documentation/arm/kernel_user_helpers.rst for details. 1267 1268 However, the fixed address nature of these helpers can be used 1269 by ROP (return orientated programming) authors when creating 1270 exploits. 1271 1272 If all of the binaries and libraries which run on your platform 1273 are built specifically for your platform, and make no use of 1274 these helpers, then you can turn this option off to hinder 1275 such exploits. However, in that case, if a binary or library 1276 relying on those helpers is run, it will not function correctly. 1277 1278 Say N here only if you are absolutely certain that you do not 1279 need these helpers; otherwise, the safe option is to say Y. 1280 1281config COMPAT_VDSO 1282 bool "Enable vDSO for 32-bit applications" 1283 depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != "" 1284 select GENERIC_COMPAT_VDSO 1285 default y 1286 help 1287 Place in the process address space of 32-bit applications an 1288 ELF shared object providing fast implementations of gettimeofday 1289 and clock_gettime. 1290 1291 You must have a 32-bit build of glibc 2.22 or later for programs 1292 to seamlessly take advantage of this. 1293 1294menuconfig ARMV8_DEPRECATED 1295 bool "Emulate deprecated/obsolete ARMv8 instructions" 1296 depends on SYSCTL 1297 help 1298 Legacy software support may require certain instructions 1299 that have been deprecated or obsoleted in the architecture. 1300 1301 Enable this config to enable selective emulation of these 1302 features. 1303 1304 If unsure, say Y 1305 1306if ARMV8_DEPRECATED 1307 1308config SWP_EMULATION 1309 bool "Emulate SWP/SWPB instructions" 1310 help 1311 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1312 they are always undefined. Say Y here to enable software 1313 emulation of these instructions for userspace using LDXR/STXR. 1314 1315 In some older versions of glibc [<=2.8] SWP is used during futex 1316 trylock() operations with the assumption that the code will not 1317 be preempted. This invalid assumption may be more likely to fail 1318 with SWP emulation enabled, leading to deadlock of the user 1319 application. 1320 1321 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1322 on an external transaction monitoring block called a global 1323 monitor to maintain update atomicity. If your system does not 1324 implement a global monitor, this option can cause programs that 1325 perform SWP operations to uncached memory to deadlock. 1326 1327 If unsure, say Y 1328 1329config CP15_BARRIER_EMULATION 1330 bool "Emulate CP15 Barrier instructions" 1331 help 1332 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1333 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1334 strongly recommended to use the ISB, DSB, and DMB 1335 instructions instead. 1336 1337 Say Y here to enable software emulation of these 1338 instructions for AArch32 userspace code. When this option is 1339 enabled, CP15 barrier usage is traced which can help 1340 identify software that needs updating. 1341 1342 If unsure, say Y 1343 1344config SETEND_EMULATION 1345 bool "Emulate SETEND instruction" 1346 help 1347 The SETEND instruction alters the data-endianness of the 1348 AArch32 EL0, and is deprecated in ARMv8. 1349 1350 Say Y here to enable software emulation of the instruction 1351 for AArch32 userspace code. 1352 1353 Note: All the cpus on the system must have mixed endian support at EL0 1354 for this feature to be enabled. If a new CPU - which doesn't support mixed 1355 endian - is hotplugged in after this feature has been enabled, there could 1356 be unexpected results in the applications. 1357 1358 If unsure, say Y 1359endif 1360 1361endif 1362 1363menu "ARMv8.1 architectural features" 1364 1365config ARM64_HW_AFDBM 1366 bool "Support for hardware updates of the Access and Dirty page flags" 1367 default y 1368 help 1369 The ARMv8.1 architecture extensions introduce support for 1370 hardware updates of the access and dirty information in page 1371 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1372 capable processors, accesses to pages with PTE_AF cleared will 1373 set this bit instead of raising an access flag fault. 1374 Similarly, writes to read-only pages with the DBM bit set will 1375 clear the read-only bit (AP[2]) instead of raising a 1376 permission fault. 1377 1378 Kernels built with this configuration option enabled continue 1379 to work on pre-ARMv8.1 hardware and the performance impact is 1380 minimal. If unsure, say Y. 1381 1382config ARM64_PAN 1383 bool "Enable support for Privileged Access Never (PAN)" 1384 default y 1385 help 1386 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1387 prevents the kernel or hypervisor from accessing user-space (EL0) 1388 memory directly. 1389 1390 Choosing this option will cause any unprotected (not using 1391 copy_to_user et al) memory access to fail with a permission fault. 1392 1393 The feature is detected at runtime, and will remain as a 'nop' 1394 instruction if the cpu does not implement the feature. 1395 1396config ARM64_LSE_ATOMICS 1397 bool 1398 default ARM64_USE_LSE_ATOMICS 1399 depends on $(as-instr,.arch_extension lse) 1400 1401config ARM64_USE_LSE_ATOMICS 1402 bool "Atomic instructions" 1403 depends on JUMP_LABEL 1404 default y 1405 help 1406 As part of the Large System Extensions, ARMv8.1 introduces new 1407 atomic instructions that are designed specifically to scale in 1408 very large systems. 1409 1410 Say Y here to make use of these instructions for the in-kernel 1411 atomic routines. This incurs a small overhead on CPUs that do 1412 not support these instructions and requires the kernel to be 1413 built with binutils >= 2.25 in order for the new instructions 1414 to be used. 1415 1416config ARM64_VHE 1417 bool "Enable support for Virtualization Host Extensions (VHE)" 1418 default y 1419 help 1420 Virtualization Host Extensions (VHE) allow the kernel to run 1421 directly at EL2 (instead of EL1) on processors that support 1422 it. This leads to better performance for KVM, as they reduce 1423 the cost of the world switch. 1424 1425 Selecting this option allows the VHE feature to be detected 1426 at runtime, and does not affect processors that do not 1427 implement this feature. 1428 1429endmenu 1430 1431menu "ARMv8.2 architectural features" 1432 1433config ARM64_UAO 1434 bool "Enable support for User Access Override (UAO)" 1435 default y 1436 help 1437 User Access Override (UAO; part of the ARMv8.2 Extensions) 1438 causes the 'unprivileged' variant of the load/store instructions to 1439 be overridden to be privileged. 1440 1441 This option changes get_user() and friends to use the 'unprivileged' 1442 variant of the load/store instructions. This ensures that user-space 1443 really did have access to the supplied memory. When addr_limit is 1444 set to kernel memory the UAO bit will be set, allowing privileged 1445 access to kernel memory. 1446 1447 Choosing this option will cause copy_to_user() et al to use user-space 1448 memory permissions. 1449 1450 The feature is detected at runtime, the kernel will use the 1451 regular load/store instructions if the cpu does not implement the 1452 feature. 1453 1454config ARM64_PMEM 1455 bool "Enable support for persistent memory" 1456 select ARCH_HAS_PMEM_API 1457 select ARCH_HAS_UACCESS_FLUSHCACHE 1458 help 1459 Say Y to enable support for the persistent memory API based on the 1460 ARMv8.2 DCPoP feature. 1461 1462 The feature is detected at runtime, and the kernel will use DC CVAC 1463 operations if DC CVAP is not supported (following the behaviour of 1464 DC CVAP itself if the system does not define a point of persistence). 1465 1466config ARM64_RAS_EXTN 1467 bool "Enable support for RAS CPU Extensions" 1468 default y 1469 help 1470 CPUs that support the Reliability, Availability and Serviceability 1471 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1472 errors, classify them and report them to software. 1473 1474 On CPUs with these extensions system software can use additional 1475 barriers to determine if faults are pending and read the 1476 classification from a new set of registers. 1477 1478 Selecting this feature will allow the kernel to use these barriers 1479 and access the new registers if the system supports the extension. 1480 Platform RAS features may additionally depend on firmware support. 1481 1482config ARM64_CNP 1483 bool "Enable support for Common Not Private (CNP) translations" 1484 default y 1485 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1486 help 1487 Common Not Private (CNP) allows translation table entries to 1488 be shared between different PEs in the same inner shareable 1489 domain, so the hardware can use this fact to optimise the 1490 caching of such entries in the TLB. 1491 1492 Selecting this option allows the CNP feature to be detected 1493 at runtime, and does not affect PEs that do not implement 1494 this feature. 1495 1496endmenu 1497 1498menu "ARMv8.3 architectural features" 1499 1500config ARM64_PTR_AUTH 1501 bool "Enable support for pointer authentication" 1502 default y 1503 depends on !KVM || ARM64_VHE 1504 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1505 # GCC 9.1 and later inserts a .note.gnu.property section note for PAC 1506 # which is only understood by binutils starting with version 2.33.1. 1507 depends on !CC_IS_GCC || GCC_VERSION < 90100 || LD_VERSION >= 233010000 1508 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1509 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1510 help 1511 Pointer authentication (part of the ARMv8.3 Extensions) provides 1512 instructions for signing and authenticating pointers against secret 1513 keys, which can be used to mitigate Return Oriented Programming (ROP) 1514 and other attacks. 1515 1516 This option enables these instructions at EL0 (i.e. for userspace). 1517 Choosing this option will cause the kernel to initialise secret keys 1518 for each process at exec() time, with these keys being 1519 context-switched along with the process. 1520 1521 If the compiler supports the -mbranch-protection or 1522 -msign-return-address flag (e.g. GCC 7 or later), then this option 1523 will also cause the kernel itself to be compiled with return address 1524 protection. In this case, and if the target hardware is known to 1525 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1526 disabled with minimal loss of protection. 1527 1528 The feature is detected at runtime. If the feature is not present in 1529 hardware it will not be advertised to userspace/KVM guest nor will it 1530 be enabled. However, KVM guest also require VHE mode and hence 1531 CONFIG_ARM64_VHE=y option to use this feature. 1532 1533 If the feature is present on the boot CPU but not on a late CPU, then 1534 the late CPU will be parked. Also, if the boot CPU does not have 1535 address auth and the late CPU has then the late CPU will still boot 1536 but with the feature disabled. On such a system, this option should 1537 not be selected. 1538 1539 This feature works with FUNCTION_GRAPH_TRACER option only if 1540 DYNAMIC_FTRACE_WITH_REGS is enabled. 1541 1542config CC_HAS_BRANCH_PROT_PAC_RET 1543 # GCC 9 or later, clang 8 or later 1544 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1545 1546config CC_HAS_SIGN_RETURN_ADDRESS 1547 # GCC 7, 8 1548 def_bool $(cc-option,-msign-return-address=all) 1549 1550config AS_HAS_PAC 1551 def_bool $(as-option,-Wa$(comma)-march=armv8.3-a) 1552 1553config AS_HAS_CFI_NEGATE_RA_STATE 1554 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1555 1556endmenu 1557 1558menu "ARMv8.4 architectural features" 1559 1560config ARM64_AMU_EXTN 1561 bool "Enable support for the Activity Monitors Unit CPU extension" 1562 default y 1563 help 1564 The activity monitors extension is an optional extension introduced 1565 by the ARMv8.4 CPU architecture. This enables support for version 1 1566 of the activity monitors architecture, AMUv1. 1567 1568 To enable the use of this extension on CPUs that implement it, say Y. 1569 1570 Note that for architectural reasons, firmware _must_ implement AMU 1571 support when running on CPUs that present the activity monitors 1572 extension. The required support is present in: 1573 * Version 1.5 and later of the ARM Trusted Firmware 1574 1575 For kernels that have this configuration enabled but boot with broken 1576 firmware, you may need to say N here until the firmware is fixed. 1577 Otherwise you may experience firmware panics or lockups when 1578 accessing the counter registers. Even if you are not observing these 1579 symptoms, the values returned by the register reads might not 1580 correctly reflect reality. Most commonly, the value read will be 0, 1581 indicating that the counter is not enabled. 1582 1583endmenu 1584 1585menu "ARMv8.5 architectural features" 1586 1587config ARM64_E0PD 1588 bool "Enable support for E0PD" 1589 default y 1590 help 1591 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1592 that EL0 accesses made via TTBR1 always fault in constant time, 1593 providing similar benefits to KASLR as those provided by KPTI, but 1594 with lower overhead and without disrupting legitimate access to 1595 kernel memory such as SPE. 1596 1597 This option enables E0PD for TTBR1 where available. 1598 1599config ARCH_RANDOM 1600 bool "Enable support for random number generation" 1601 default y 1602 help 1603 Random number generation (part of the ARMv8.5 Extensions) 1604 provides a high bandwidth, cryptographically secure 1605 hardware random number generator. 1606 1607endmenu 1608 1609config ARM64_SVE 1610 bool "ARM Scalable Vector Extension support" 1611 default y 1612 depends on !KVM || ARM64_VHE 1613 help 1614 The Scalable Vector Extension (SVE) is an extension to the AArch64 1615 execution state which complements and extends the SIMD functionality 1616 of the base architecture to support much larger vectors and to enable 1617 additional vectorisation opportunities. 1618 1619 To enable use of this extension on CPUs that implement it, say Y. 1620 1621 On CPUs that support the SVE2 extensions, this option will enable 1622 those too. 1623 1624 Note that for architectural reasons, firmware _must_ implement SVE 1625 support when running on SVE capable hardware. The required support 1626 is present in: 1627 1628 * version 1.5 and later of the ARM Trusted Firmware 1629 * the AArch64 boot wrapper since commit 5e1261e08abf 1630 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1631 1632 For other firmware implementations, consult the firmware documentation 1633 or vendor. 1634 1635 If you need the kernel to boot on SVE-capable hardware with broken 1636 firmware, you may need to say N here until you get your firmware 1637 fixed. Otherwise, you may experience firmware panics or lockups when 1638 booting the kernel. If unsure and you are not observing these 1639 symptoms, you should assume that it is safe to say Y. 1640 1641 CPUs that support SVE are architecturally required to support the 1642 Virtualization Host Extensions (VHE), so the kernel makes no 1643 provision for supporting SVE alongside KVM without VHE enabled. 1644 Thus, you will need to enable CONFIG_ARM64_VHE if you want to support 1645 KVM in the same kernel image. 1646 1647config ARM64_MODULE_PLTS 1648 bool "Use PLTs to allow module memory to spill over into vmalloc area" 1649 depends on MODULES 1650 select HAVE_MOD_ARCH_SPECIFIC 1651 help 1652 Allocate PLTs when loading modules so that jumps and calls whose 1653 targets are too far away for their relative offsets to be encoded 1654 in the instructions themselves can be bounced via veneers in the 1655 module's PLT. This allows modules to be allocated in the generic 1656 vmalloc area after the dedicated module memory area has been 1657 exhausted. 1658 1659 When running with address space randomization (KASLR), the module 1660 region itself may be too far away for ordinary relative jumps and 1661 calls, and so in that case, module PLTs are required and cannot be 1662 disabled. 1663 1664 Specific errata workaround(s) might also force module PLTs to be 1665 enabled (ARM64_ERRATUM_843419). 1666 1667config ARM64_PSEUDO_NMI 1668 bool "Support for NMI-like interrupts" 1669 select ARM_GIC_V3 1670 help 1671 Adds support for mimicking Non-Maskable Interrupts through the use of 1672 GIC interrupt priority. This support requires version 3 or later of 1673 ARM GIC. 1674 1675 This high priority configuration for interrupts needs to be 1676 explicitly enabled by setting the kernel parameter 1677 "irqchip.gicv3_pseudo_nmi" to 1. 1678 1679 If unsure, say N 1680 1681if ARM64_PSEUDO_NMI 1682config ARM64_DEBUG_PRIORITY_MASKING 1683 bool "Debug interrupt priority masking" 1684 help 1685 This adds runtime checks to functions enabling/disabling 1686 interrupts when using priority masking. The additional checks verify 1687 the validity of ICC_PMR_EL1 when calling concerned functions. 1688 1689 If unsure, say N 1690endif 1691 1692config RELOCATABLE 1693 bool 1694 select ARCH_HAS_RELR 1695 help 1696 This builds the kernel as a Position Independent Executable (PIE), 1697 which retains all relocation metadata required to relocate the 1698 kernel binary at runtime to a different virtual address than the 1699 address it was linked at. 1700 Since AArch64 uses the RELA relocation format, this requires a 1701 relocation pass at runtime even if the kernel is loaded at the 1702 same address it was linked at. 1703 1704config RANDOMIZE_BASE 1705 bool "Randomize the address of the kernel image" 1706 select ARM64_MODULE_PLTS if MODULES 1707 select RELOCATABLE 1708 help 1709 Randomizes the virtual address at which the kernel image is 1710 loaded, as a security feature that deters exploit attempts 1711 relying on knowledge of the location of kernel internals. 1712 1713 It is the bootloader's job to provide entropy, by passing a 1714 random u64 value in /chosen/kaslr-seed at kernel entry. 1715 1716 When booting via the UEFI stub, it will invoke the firmware's 1717 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 1718 to the kernel proper. In addition, it will randomise the physical 1719 location of the kernel Image as well. 1720 1721 If unsure, say N. 1722 1723config RANDOMIZE_MODULE_REGION_FULL 1724 bool "Randomize the module region over a 4 GB range" 1725 depends on RANDOMIZE_BASE 1726 default y 1727 help 1728 Randomizes the location of the module region inside a 4 GB window 1729 covering the core kernel. This way, it is less likely for modules 1730 to leak information about the location of core kernel data structures 1731 but it does imply that function calls between modules and the core 1732 kernel will need to be resolved via veneers in the module PLT. 1733 1734 When this option is not set, the module region will be randomized over 1735 a limited range that contains the [_stext, _etext] interval of the 1736 core kernel, so branch relocations are always in range. 1737 1738config CC_HAVE_STACKPROTECTOR_SYSREG 1739 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 1740 1741config STACKPROTECTOR_PER_TASK 1742 def_bool y 1743 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 1744 1745endmenu 1746 1747menu "Boot options" 1748 1749config ARM64_ACPI_PARKING_PROTOCOL 1750 bool "Enable support for the ARM64 ACPI parking protocol" 1751 depends on ACPI 1752 help 1753 Enable support for the ARM64 ACPI parking protocol. If disabled 1754 the kernel will not allow booting through the ARM64 ACPI parking 1755 protocol even if the corresponding data is present in the ACPI 1756 MADT table. 1757 1758config CMDLINE 1759 string "Default kernel command string" 1760 default "" 1761 help 1762 Provide a set of default command-line options at build time by 1763 entering them here. As a minimum, you should specify the the 1764 root device (e.g. root=/dev/nfs). 1765 1766config CMDLINE_FORCE 1767 bool "Always use the default kernel command string" 1768 depends on CMDLINE != "" 1769 help 1770 Always use the default kernel command string, even if the boot 1771 loader passes other arguments to the kernel. 1772 This is useful if you cannot or don't want to change the 1773 command-line options your boot loader passes to the kernel. 1774 1775config EFI_STUB 1776 bool 1777 1778config EFI 1779 bool "UEFI runtime support" 1780 depends on OF && !CPU_BIG_ENDIAN 1781 depends on KERNEL_MODE_NEON 1782 select ARCH_SUPPORTS_ACPI 1783 select LIBFDT 1784 select UCS2_STRING 1785 select EFI_PARAMS_FROM_FDT 1786 select EFI_RUNTIME_WRAPPERS 1787 select EFI_STUB 1788 select EFI_ARMSTUB 1789 default y 1790 help 1791 This option provides support for runtime services provided 1792 by UEFI firmware (such as non-volatile variables, realtime 1793 clock, and platform reset). A UEFI stub is also provided to 1794 allow the kernel to be booted as an EFI application. This 1795 is only useful on systems that have UEFI firmware. 1796 1797config DMI 1798 bool "Enable support for SMBIOS (DMI) tables" 1799 depends on EFI 1800 default y 1801 help 1802 This enables SMBIOS/DMI feature for systems. 1803 1804 This option is only useful on systems that have UEFI firmware. 1805 However, even with this option, the resultant kernel should 1806 continue to boot on existing non-UEFI platforms. 1807 1808endmenu 1809 1810config SYSVIPC_COMPAT 1811 def_bool y 1812 depends on COMPAT && SYSVIPC 1813 1814config ARCH_ENABLE_HUGEPAGE_MIGRATION 1815 def_bool y 1816 depends on HUGETLB_PAGE && MIGRATION 1817 1818menu "Power management options" 1819 1820source "kernel/power/Kconfig" 1821 1822config ARCH_HIBERNATION_POSSIBLE 1823 def_bool y 1824 depends on CPU_PM 1825 1826config ARCH_HIBERNATION_HEADER 1827 def_bool y 1828 depends on HIBERNATION 1829 1830config ARCH_SUSPEND_POSSIBLE 1831 def_bool y 1832 1833endmenu 1834 1835menu "CPU Power Management" 1836 1837source "drivers/cpuidle/Kconfig" 1838 1839source "drivers/cpufreq/Kconfig" 1840 1841endmenu 1842 1843source "drivers/firmware/Kconfig" 1844 1845source "drivers/acpi/Kconfig" 1846 1847source "arch/arm64/kvm/Kconfig" 1848 1849if CRYPTO 1850source "arch/arm64/crypto/Kconfig" 1851endif 1852