1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_WX 13 select ARCH_BINFMT_ELF_STATE 14 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 15 select ARCH_ENABLE_MEMORY_HOTPLUG 16 select ARCH_ENABLE_MEMORY_HOTREMOVE 17 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 18 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 19 select ARCH_HAS_CACHE_LINE_SIZE 20 select ARCH_HAS_DEBUG_VIRTUAL 21 select ARCH_HAS_DEBUG_VM_PGTABLE 22 select ARCH_HAS_DMA_PREP_COHERENT 23 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 24 select ARCH_HAS_FAST_MULTIPLIER 25 select ARCH_HAS_FORTIFY_SOURCE 26 select ARCH_HAS_GCOV_PROFILE_ALL 27 select ARCH_HAS_GIGANTIC_PAGE 28 select ARCH_HAS_KCOV 29 select ARCH_HAS_KEEPINITRD 30 select ARCH_HAS_MEMBARRIER_SYNC_CORE 31 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 32 select ARCH_HAS_PTE_DEVMAP 33 select ARCH_HAS_PTE_SPECIAL 34 select ARCH_HAS_SETUP_DMA_OPS 35 select ARCH_HAS_SET_DIRECT_MAP 36 select ARCH_HAS_SET_MEMORY 37 select ARCH_STACKWALK 38 select ARCH_HAS_STRICT_KERNEL_RWX 39 select ARCH_HAS_STRICT_MODULE_RWX 40 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 41 select ARCH_HAS_SYNC_DMA_FOR_CPU 42 select ARCH_HAS_SYSCALL_WRAPPER 43 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 44 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 45 select ARCH_HAVE_ELF_PROT 46 select ARCH_HAVE_NMI_SAFE_CMPXCHG 47 select ARCH_INLINE_READ_LOCK if !PREEMPTION 48 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 49 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 50 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 51 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 52 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 53 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 54 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 55 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 56 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 57 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 58 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 59 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 60 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 61 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 62 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 63 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 64 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 65 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 66 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 67 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 68 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 69 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 70 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 71 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 72 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 73 select ARCH_KEEP_MEMBLOCK 74 select ARCH_USE_CMPXCHG_LOCKREF 75 select ARCH_USE_GNU_PROPERTY 76 select ARCH_USE_MEMTEST 77 select ARCH_USE_QUEUED_RWLOCKS 78 select ARCH_USE_QUEUED_SPINLOCKS 79 select ARCH_USE_SYM_ANNOTATIONS 80 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 81 select ARCH_SUPPORTS_HUGETLBFS 82 select ARCH_SUPPORTS_MEMORY_FAILURE 83 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 84 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 85 select ARCH_SUPPORTS_LTO_CLANG_THIN 86 select ARCH_SUPPORTS_CFI_CLANG 87 select ARCH_SUPPORTS_ATOMIC_RMW 88 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG) 89 select ARCH_SUPPORTS_NUMA_BALANCING 90 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 91 select ARCH_WANT_DEFAULT_BPF_JIT 92 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 93 select ARCH_WANT_FRAME_POINTERS 94 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 95 select ARCH_WANT_LD_ORPHAN_WARN 96 select ARCH_WANTS_NO_INSTR 97 select ARCH_HAS_UBSAN_SANITIZE_ALL 98 select ARM_AMBA 99 select ARM_ARCH_TIMER 100 select ARM_GIC 101 select AUDIT_ARCH_COMPAT_GENERIC 102 select ARM_GIC_V2M if PCI 103 select ARM_GIC_V3 104 select ARM_GIC_V3_ITS if PCI 105 select ARM_PSCI_FW 106 select BUILDTIME_TABLE_SORT 107 select CLONE_BACKWARDS 108 select COMMON_CLK 109 select CPU_PM if (SUSPEND || CPU_IDLE) 110 select CRC32 111 select DCACHE_WORD_ACCESS 112 select DMA_DIRECT_REMAP 113 select EDAC_SUPPORT 114 select FRAME_POINTER 115 select GENERIC_ALLOCATOR 116 select GENERIC_ARCH_TOPOLOGY 117 select GENERIC_CLOCKEVENTS_BROADCAST 118 select GENERIC_CPU_AUTOPROBE 119 select GENERIC_CPU_VULNERABILITIES 120 select GENERIC_EARLY_IOREMAP 121 select GENERIC_FIND_FIRST_BIT 122 select GENERIC_IDLE_POLL_SETUP 123 select GENERIC_IRQ_IPI 124 select GENERIC_IRQ_PROBE 125 select GENERIC_IRQ_SHOW 126 select GENERIC_IRQ_SHOW_LEVEL 127 select GENERIC_LIB_DEVMEM_IS_ALLOWED 128 select GENERIC_PCI_IOMAP 129 select GENERIC_PTDUMP 130 select GENERIC_SCHED_CLOCK 131 select GENERIC_SMP_IDLE_THREAD 132 select GENERIC_STRNCPY_FROM_USER 133 select GENERIC_STRNLEN_USER 134 select GENERIC_TIME_VSYSCALL 135 select GENERIC_GETTIMEOFDAY 136 select GENERIC_VDSO_TIME_NS 137 select HANDLE_DOMAIN_IRQ 138 select HARDIRQS_SW_RESEND 139 select HAVE_MOVE_PMD 140 select HAVE_MOVE_PUD 141 select HAVE_PCI 142 select HAVE_ACPI_APEI if (ACPI && EFI) 143 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 144 select HAVE_ARCH_AUDITSYSCALL 145 select HAVE_ARCH_BITREVERSE 146 select HAVE_ARCH_COMPILER_H 147 select HAVE_ARCH_HUGE_VMAP 148 select HAVE_ARCH_JUMP_LABEL 149 select HAVE_ARCH_JUMP_LABEL_RELATIVE 150 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 151 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN 152 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 153 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE) 154 select HAVE_ARCH_KFENCE 155 select HAVE_ARCH_KGDB 156 select HAVE_ARCH_MMAP_RND_BITS 157 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 158 select HAVE_ARCH_PFN_VALID 159 select HAVE_ARCH_PREL32_RELOCATIONS 160 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 161 select HAVE_ARCH_SECCOMP_FILTER 162 select HAVE_ARCH_STACKLEAK 163 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 164 select HAVE_ARCH_TRACEHOOK 165 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 166 select HAVE_ARCH_VMAP_STACK 167 select HAVE_ARM_SMCCC 168 select HAVE_ASM_MODVERSIONS 169 select HAVE_EBPF_JIT 170 select HAVE_C_RECORDMCOUNT 171 select HAVE_CMPXCHG_DOUBLE 172 select HAVE_CMPXCHG_LOCAL 173 select HAVE_CONTEXT_TRACKING 174 select HAVE_DEBUG_KMEMLEAK 175 select HAVE_DMA_CONTIGUOUS 176 select HAVE_DYNAMIC_FTRACE 177 select HAVE_DYNAMIC_FTRACE_WITH_REGS \ 178 if $(cc-option,-fpatchable-function-entry=2) 179 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 180 if DYNAMIC_FTRACE_WITH_REGS 181 select HAVE_EFFICIENT_UNALIGNED_ACCESS 182 select HAVE_FAST_GUP 183 select HAVE_FTRACE_MCOUNT_RECORD 184 select HAVE_FUNCTION_TRACER 185 select HAVE_FUNCTION_ERROR_INJECTION 186 select HAVE_FUNCTION_GRAPH_TRACER 187 select HAVE_GCC_PLUGINS 188 select HAVE_HW_BREAKPOINT if PERF_EVENTS 189 select HAVE_IRQ_TIME_ACCOUNTING 190 select HAVE_NMI 191 select HAVE_PATA_PLATFORM 192 select HAVE_PERF_EVENTS 193 select HAVE_PERF_REGS 194 select HAVE_PERF_USER_STACK_DUMP 195 select HAVE_REGS_AND_STACK_ACCESS_API 196 select HAVE_FUNCTION_ARG_ACCESS_API 197 select HAVE_FUTEX_CMPXCHG if FUTEX 198 select MMU_GATHER_RCU_TABLE_FREE 199 select HAVE_RSEQ 200 select HAVE_STACKPROTECTOR 201 select HAVE_SYSCALL_TRACEPOINTS 202 select HAVE_KPROBES 203 select HAVE_KRETPROBES 204 select HAVE_GENERIC_VDSO 205 select IOMMU_DMA if IOMMU_SUPPORT 206 select IRQ_DOMAIN 207 select IRQ_FORCED_THREADING 208 select KASAN_VMALLOC if KASAN_GENERIC 209 select MODULES_USE_ELF_RELA 210 select NEED_DMA_MAP_STATE 211 select NEED_SG_DMA_LENGTH 212 select OF 213 select OF_EARLY_FLATTREE 214 select PCI_DOMAINS_GENERIC if PCI 215 select PCI_ECAM if (ACPI && PCI) 216 select PCI_SYSCALL if PCI 217 select POWER_RESET 218 select POWER_SUPPLY 219 select SPARSE_IRQ 220 select SWIOTLB 221 select SYSCTL_EXCEPTION_TRACE 222 select THREAD_INFO_IN_TASK 223 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 224 help 225 ARM 64-bit (AArch64) Linux support. 226 227config 64BIT 228 def_bool y 229 230config MMU 231 def_bool y 232 233config ARM64_PAGE_SHIFT 234 int 235 default 16 if ARM64_64K_PAGES 236 default 14 if ARM64_16K_PAGES 237 default 12 238 239config ARM64_CONT_PTE_SHIFT 240 int 241 default 5 if ARM64_64K_PAGES 242 default 7 if ARM64_16K_PAGES 243 default 4 244 245config ARM64_CONT_PMD_SHIFT 246 int 247 default 5 if ARM64_64K_PAGES 248 default 5 if ARM64_16K_PAGES 249 default 4 250 251config ARCH_MMAP_RND_BITS_MIN 252 default 14 if ARM64_64K_PAGES 253 default 16 if ARM64_16K_PAGES 254 default 18 255 256# max bits determined by the following formula: 257# VA_BITS - PAGE_SHIFT - 3 258config ARCH_MMAP_RND_BITS_MAX 259 default 19 if ARM64_VA_BITS=36 260 default 24 if ARM64_VA_BITS=39 261 default 27 if ARM64_VA_BITS=42 262 default 30 if ARM64_VA_BITS=47 263 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 264 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 265 default 33 if ARM64_VA_BITS=48 266 default 14 if ARM64_64K_PAGES 267 default 16 if ARM64_16K_PAGES 268 default 18 269 270config ARCH_MMAP_RND_COMPAT_BITS_MIN 271 default 7 if ARM64_64K_PAGES 272 default 9 if ARM64_16K_PAGES 273 default 11 274 275config ARCH_MMAP_RND_COMPAT_BITS_MAX 276 default 16 277 278config NO_IOPORT_MAP 279 def_bool y if !PCI 280 281config STACKTRACE_SUPPORT 282 def_bool y 283 284config ILLEGAL_POINTER_VALUE 285 hex 286 default 0xdead000000000000 287 288config LOCKDEP_SUPPORT 289 def_bool y 290 291config TRACE_IRQFLAGS_SUPPORT 292 def_bool y 293 294config GENERIC_BUG 295 def_bool y 296 depends on BUG 297 298config GENERIC_BUG_RELATIVE_POINTERS 299 def_bool y 300 depends on GENERIC_BUG 301 302config GENERIC_HWEIGHT 303 def_bool y 304 305config GENERIC_CSUM 306 def_bool y 307 308config GENERIC_CALIBRATE_DELAY 309 def_bool y 310 311config ZONE_DMA 312 bool "Support DMA zone" if EXPERT 313 default y 314 315config ZONE_DMA32 316 bool "Support DMA32 zone" if EXPERT 317 default y 318 319config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 320 def_bool y 321 322config SMP 323 def_bool y 324 325config KERNEL_MODE_NEON 326 def_bool y 327 328config FIX_EARLYCON_MEM 329 def_bool y 330 331config PGTABLE_LEVELS 332 int 333 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 334 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 335 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 336 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 337 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 338 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 339 340config ARCH_SUPPORTS_UPROBES 341 def_bool y 342 343config ARCH_PROC_KCORE_TEXT 344 def_bool y 345 346config BROKEN_GAS_INST 347 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 348 349config KASAN_SHADOW_OFFSET 350 hex 351 depends on KASAN_GENERIC || KASAN_SW_TAGS 352 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 353 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 354 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 355 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 356 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 357 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 358 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 359 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 360 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 361 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 362 default 0xffffffffffffffff 363 364source "arch/arm64/Kconfig.platforms" 365 366menu "Kernel Features" 367 368menu "ARM errata workarounds via the alternatives framework" 369 370config ARM64_WORKAROUND_CLEAN_CACHE 371 bool 372 373config ARM64_ERRATUM_826319 374 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 375 default y 376 select ARM64_WORKAROUND_CLEAN_CACHE 377 help 378 This option adds an alternative code sequence to work around ARM 379 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 380 AXI master interface and an L2 cache. 381 382 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 383 and is unable to accept a certain write via this interface, it will 384 not progress on read data presented on the read data channel and the 385 system can deadlock. 386 387 The workaround promotes data cache clean instructions to 388 data cache clean-and-invalidate. 389 Please note that this does not necessarily enable the workaround, 390 as it depends on the alternative framework, which will only patch 391 the kernel if an affected CPU is detected. 392 393 If unsure, say Y. 394 395config ARM64_ERRATUM_827319 396 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 397 default y 398 select ARM64_WORKAROUND_CLEAN_CACHE 399 help 400 This option adds an alternative code sequence to work around ARM 401 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 402 master interface and an L2 cache. 403 404 Under certain conditions this erratum can cause a clean line eviction 405 to occur at the same time as another transaction to the same address 406 on the AMBA 5 CHI interface, which can cause data corruption if the 407 interconnect reorders the two transactions. 408 409 The workaround promotes data cache clean instructions to 410 data cache clean-and-invalidate. 411 Please note that this does not necessarily enable the workaround, 412 as it depends on the alternative framework, which will only patch 413 the kernel if an affected CPU is detected. 414 415 If unsure, say Y. 416 417config ARM64_ERRATUM_824069 418 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 419 default y 420 select ARM64_WORKAROUND_CLEAN_CACHE 421 help 422 This option adds an alternative code sequence to work around ARM 423 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 424 to a coherent interconnect. 425 426 If a Cortex-A53 processor is executing a store or prefetch for 427 write instruction at the same time as a processor in another 428 cluster is executing a cache maintenance operation to the same 429 address, then this erratum might cause a clean cache line to be 430 incorrectly marked as dirty. 431 432 The workaround promotes data cache clean instructions to 433 data cache clean-and-invalidate. 434 Please note that this option does not necessarily enable the 435 workaround, as it depends on the alternative framework, which will 436 only patch the kernel if an affected CPU is detected. 437 438 If unsure, say Y. 439 440config ARM64_ERRATUM_819472 441 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 442 default y 443 select ARM64_WORKAROUND_CLEAN_CACHE 444 help 445 This option adds an alternative code sequence to work around ARM 446 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 447 present when it is connected to a coherent interconnect. 448 449 If the processor is executing a load and store exclusive sequence at 450 the same time as a processor in another cluster is executing a cache 451 maintenance operation to the same address, then this erratum might 452 cause data corruption. 453 454 The workaround promotes data cache clean instructions to 455 data cache clean-and-invalidate. 456 Please note that this does not necessarily enable the workaround, 457 as it depends on the alternative framework, which will only patch 458 the kernel if an affected CPU is detected. 459 460 If unsure, say Y. 461 462config ARM64_ERRATUM_832075 463 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 464 default y 465 help 466 This option adds an alternative code sequence to work around ARM 467 erratum 832075 on Cortex-A57 parts up to r1p2. 468 469 Affected Cortex-A57 parts might deadlock when exclusive load/store 470 instructions to Write-Back memory are mixed with Device loads. 471 472 The workaround is to promote device loads to use Load-Acquire 473 semantics. 474 Please note that this does not necessarily enable the workaround, 475 as it depends on the alternative framework, which will only patch 476 the kernel if an affected CPU is detected. 477 478 If unsure, say Y. 479 480config ARM64_ERRATUM_834220 481 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 482 depends on KVM 483 default y 484 help 485 This option adds an alternative code sequence to work around ARM 486 erratum 834220 on Cortex-A57 parts up to r1p2. 487 488 Affected Cortex-A57 parts might report a Stage 2 translation 489 fault as the result of a Stage 1 fault for load crossing a 490 page boundary when there is a permission or device memory 491 alignment fault at Stage 1 and a translation fault at Stage 2. 492 493 The workaround is to verify that the Stage 1 translation 494 doesn't generate a fault before handling the Stage 2 fault. 495 Please note that this does not necessarily enable the workaround, 496 as it depends on the alternative framework, which will only patch 497 the kernel if an affected CPU is detected. 498 499 If unsure, say Y. 500 501config ARM64_ERRATUM_845719 502 bool "Cortex-A53: 845719: a load might read incorrect data" 503 depends on COMPAT 504 default y 505 help 506 This option adds an alternative code sequence to work around ARM 507 erratum 845719 on Cortex-A53 parts up to r0p4. 508 509 When running a compat (AArch32) userspace on an affected Cortex-A53 510 part, a load at EL0 from a virtual address that matches the bottom 32 511 bits of the virtual address used by a recent load at (AArch64) EL1 512 might return incorrect data. 513 514 The workaround is to write the contextidr_el1 register on exception 515 return to a 32-bit task. 516 Please note that this does not necessarily enable the workaround, 517 as it depends on the alternative framework, which will only patch 518 the kernel if an affected CPU is detected. 519 520 If unsure, say Y. 521 522config ARM64_ERRATUM_843419 523 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 524 default y 525 select ARM64_MODULE_PLTS if MODULES 526 help 527 This option links the kernel with '--fix-cortex-a53-843419' and 528 enables PLT support to replace certain ADRP instructions, which can 529 cause subsequent memory accesses to use an incorrect address on 530 Cortex-A53 parts up to r0p4. 531 532 If unsure, say Y. 533 534config ARM64_LD_HAS_FIX_ERRATUM_843419 535 def_bool $(ld-option,--fix-cortex-a53-843419) 536 537config ARM64_ERRATUM_1024718 538 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 539 default y 540 help 541 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 542 543 Affected Cortex-A55 cores (all revisions) could cause incorrect 544 update of the hardware dirty bit when the DBM/AP bits are updated 545 without a break-before-make. The workaround is to disable the usage 546 of hardware DBM locally on the affected cores. CPUs not affected by 547 this erratum will continue to use the feature. 548 549 If unsure, say Y. 550 551config ARM64_ERRATUM_1418040 552 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 553 default y 554 depends on COMPAT 555 help 556 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 557 errata 1188873 and 1418040. 558 559 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 560 cause register corruption when accessing the timer registers 561 from AArch32 userspace. 562 563 If unsure, say Y. 564 565config ARM64_WORKAROUND_SPECULATIVE_AT 566 bool 567 568config ARM64_ERRATUM_1165522 569 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 570 default y 571 select ARM64_WORKAROUND_SPECULATIVE_AT 572 help 573 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 574 575 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 576 corrupted TLBs by speculating an AT instruction during a guest 577 context switch. 578 579 If unsure, say Y. 580 581config ARM64_ERRATUM_1319367 582 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 583 default y 584 select ARM64_WORKAROUND_SPECULATIVE_AT 585 help 586 This option adds work arounds for ARM Cortex-A57 erratum 1319537 587 and A72 erratum 1319367 588 589 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 590 speculating an AT instruction during a guest context switch. 591 592 If unsure, say Y. 593 594config ARM64_ERRATUM_1530923 595 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 596 default y 597 select ARM64_WORKAROUND_SPECULATIVE_AT 598 help 599 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 600 601 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 602 corrupted TLBs by speculating an AT instruction during a guest 603 context switch. 604 605 If unsure, say Y. 606 607config ARM64_WORKAROUND_REPEAT_TLBI 608 bool 609 610config ARM64_ERRATUM_1286807 611 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 612 default y 613 select ARM64_WORKAROUND_REPEAT_TLBI 614 help 615 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 616 617 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 618 address for a cacheable mapping of a location is being 619 accessed by a core while another core is remapping the virtual 620 address to a new physical page using the recommended 621 break-before-make sequence, then under very rare circumstances 622 TLBI+DSB completes before a read using the translation being 623 invalidated has been observed by other observers. The 624 workaround repeats the TLBI+DSB operation. 625 626config ARM64_ERRATUM_1463225 627 bool "Cortex-A76: Software Step might prevent interrupt recognition" 628 default y 629 help 630 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 631 632 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 633 of a system call instruction (SVC) can prevent recognition of 634 subsequent interrupts when software stepping is disabled in the 635 exception handler of the system call and either kernel debugging 636 is enabled or VHE is in use. 637 638 Work around the erratum by triggering a dummy step exception 639 when handling a system call from a task that is being stepped 640 in a VHE configuration of the kernel. 641 642 If unsure, say Y. 643 644config ARM64_ERRATUM_1542419 645 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 646 default y 647 help 648 This option adds a workaround for ARM Neoverse-N1 erratum 649 1542419. 650 651 Affected Neoverse-N1 cores could execute a stale instruction when 652 modified by another CPU. The workaround depends on a firmware 653 counterpart. 654 655 Workaround the issue by hiding the DIC feature from EL0. This 656 forces user-space to perform cache maintenance. 657 658 If unsure, say Y. 659 660config ARM64_ERRATUM_1508412 661 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 662 default y 663 help 664 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 665 666 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 667 of a store-exclusive or read of PAR_EL1 and a load with device or 668 non-cacheable memory attributes. The workaround depends on a firmware 669 counterpart. 670 671 KVM guests must also have the workaround implemented or they can 672 deadlock the system. 673 674 Work around the issue by inserting DMB SY barriers around PAR_EL1 675 register reads and warning KVM users. The DMB barrier is sufficient 676 to prevent a speculative PAR_EL1 read. 677 678 If unsure, say Y. 679 680config CAVIUM_ERRATUM_22375 681 bool "Cavium erratum 22375, 24313" 682 default y 683 help 684 Enable workaround for errata 22375 and 24313. 685 686 This implements two gicv3-its errata workarounds for ThunderX. Both 687 with a small impact affecting only ITS table allocation. 688 689 erratum 22375: only alloc 8MB table size 690 erratum 24313: ignore memory access type 691 692 The fixes are in ITS initialization and basically ignore memory access 693 type and table size provided by the TYPER and BASER registers. 694 695 If unsure, say Y. 696 697config CAVIUM_ERRATUM_23144 698 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 699 depends on NUMA 700 default y 701 help 702 ITS SYNC command hang for cross node io and collections/cpu mapping. 703 704 If unsure, say Y. 705 706config CAVIUM_ERRATUM_23154 707 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" 708 default y 709 help 710 The gicv3 of ThunderX requires a modified version for 711 reading the IAR status to ensure data synchronization 712 (access to icc_iar1_el1 is not sync'ed before and after). 713 714 If unsure, say Y. 715 716config CAVIUM_ERRATUM_27456 717 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 718 default y 719 help 720 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 721 instructions may cause the icache to become corrupted if it 722 contains data for a non-current ASID. The fix is to 723 invalidate the icache when changing the mm context. 724 725 If unsure, say Y. 726 727config CAVIUM_ERRATUM_30115 728 bool "Cavium erratum 30115: Guest may disable interrupts in host" 729 default y 730 help 731 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 732 1.2, and T83 Pass 1.0, KVM guest execution may disable 733 interrupts in host. Trapping both GICv3 group-0 and group-1 734 accesses sidesteps the issue. 735 736 If unsure, say Y. 737 738config CAVIUM_TX2_ERRATUM_219 739 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 740 default y 741 help 742 On Cavium ThunderX2, a load, store or prefetch instruction between a 743 TTBR update and the corresponding context synchronizing operation can 744 cause a spurious Data Abort to be delivered to any hardware thread in 745 the CPU core. 746 747 Work around the issue by avoiding the problematic code sequence and 748 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 749 trap handler performs the corresponding register access, skips the 750 instruction and ensures context synchronization by virtue of the 751 exception return. 752 753 If unsure, say Y. 754 755config FUJITSU_ERRATUM_010001 756 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 757 default y 758 help 759 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 760 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 761 accesses may cause undefined fault (Data abort, DFSC=0b111111). 762 This fault occurs under a specific hardware condition when a 763 load/store instruction performs an address translation using: 764 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 765 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 766 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 767 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 768 769 The workaround is to ensure these bits are clear in TCR_ELx. 770 The workaround only affects the Fujitsu-A64FX. 771 772 If unsure, say Y. 773 774config HISILICON_ERRATUM_161600802 775 bool "Hip07 161600802: Erroneous redistributor VLPI base" 776 default y 777 help 778 The HiSilicon Hip07 SoC uses the wrong redistributor base 779 when issued ITS commands such as VMOVP and VMAPP, and requires 780 a 128kB offset to be applied to the target address in this commands. 781 782 If unsure, say Y. 783 784config QCOM_FALKOR_ERRATUM_1003 785 bool "Falkor E1003: Incorrect translation due to ASID change" 786 default y 787 help 788 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 789 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 790 in TTBR1_EL1, this situation only occurs in the entry trampoline and 791 then only for entries in the walk cache, since the leaf translation 792 is unchanged. Work around the erratum by invalidating the walk cache 793 entries for the trampoline before entering the kernel proper. 794 795config QCOM_FALKOR_ERRATUM_1009 796 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 797 default y 798 select ARM64_WORKAROUND_REPEAT_TLBI 799 help 800 On Falkor v1, the CPU may prematurely complete a DSB following a 801 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 802 one more time to fix the issue. 803 804 If unsure, say Y. 805 806config QCOM_QDF2400_ERRATUM_0065 807 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 808 default y 809 help 810 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 811 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 812 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 813 814 If unsure, say Y. 815 816config QCOM_FALKOR_ERRATUM_E1041 817 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 818 default y 819 help 820 Falkor CPU may speculatively fetch instructions from an improper 821 memory location when MMU translation is changed from SCTLR_ELn[M]=1 822 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 823 824 If unsure, say Y. 825 826config NVIDIA_CARMEL_CNP_ERRATUM 827 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 828 default y 829 help 830 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 831 invalidate shared TLB entries installed by a different core, as it would 832 on standard ARM cores. 833 834 If unsure, say Y. 835 836config SOCIONEXT_SYNQUACER_PREITS 837 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 838 default y 839 help 840 Socionext Synquacer SoCs implement a separate h/w block to generate 841 MSI doorbell writes with non-zero values for the device ID. 842 843 If unsure, say Y. 844 845endmenu 846 847 848choice 849 prompt "Page size" 850 default ARM64_4K_PAGES 851 help 852 Page size (translation granule) configuration. 853 854config ARM64_4K_PAGES 855 bool "4KB" 856 help 857 This feature enables 4KB pages support. 858 859config ARM64_16K_PAGES 860 bool "16KB" 861 help 862 The system will use 16KB pages support. AArch32 emulation 863 requires applications compiled with 16K (or a multiple of 16K) 864 aligned segments. 865 866config ARM64_64K_PAGES 867 bool "64KB" 868 help 869 This feature enables 64KB pages support (4KB by default) 870 allowing only two levels of page tables and faster TLB 871 look-up. AArch32 emulation requires applications compiled 872 with 64K aligned segments. 873 874endchoice 875 876choice 877 prompt "Virtual address space size" 878 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 879 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 880 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 881 help 882 Allows choosing one of multiple possible virtual address 883 space sizes. The level of translation table is determined by 884 a combination of page size and virtual address space size. 885 886config ARM64_VA_BITS_36 887 bool "36-bit" if EXPERT 888 depends on ARM64_16K_PAGES 889 890config ARM64_VA_BITS_39 891 bool "39-bit" 892 depends on ARM64_4K_PAGES 893 894config ARM64_VA_BITS_42 895 bool "42-bit" 896 depends on ARM64_64K_PAGES 897 898config ARM64_VA_BITS_47 899 bool "47-bit" 900 depends on ARM64_16K_PAGES 901 902config ARM64_VA_BITS_48 903 bool "48-bit" 904 905config ARM64_VA_BITS_52 906 bool "52-bit" 907 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 908 help 909 Enable 52-bit virtual addressing for userspace when explicitly 910 requested via a hint to mmap(). The kernel will also use 52-bit 911 virtual addresses for its own mappings (provided HW support for 912 this feature is available, otherwise it reverts to 48-bit). 913 914 NOTE: Enabling 52-bit virtual addressing in conjunction with 915 ARMv8.3 Pointer Authentication will result in the PAC being 916 reduced from 7 bits to 3 bits, which may have a significant 917 impact on its susceptibility to brute-force attacks. 918 919 If unsure, select 48-bit virtual addressing instead. 920 921endchoice 922 923config ARM64_FORCE_52BIT 924 bool "Force 52-bit virtual addresses for userspace" 925 depends on ARM64_VA_BITS_52 && EXPERT 926 help 927 For systems with 52-bit userspace VAs enabled, the kernel will attempt 928 to maintain compatibility with older software by providing 48-bit VAs 929 unless a hint is supplied to mmap. 930 931 This configuration option disables the 48-bit compatibility logic, and 932 forces all userspace addresses to be 52-bit on HW that supports it. One 933 should only enable this configuration option for stress testing userspace 934 memory management code. If unsure say N here. 935 936config ARM64_VA_BITS 937 int 938 default 36 if ARM64_VA_BITS_36 939 default 39 if ARM64_VA_BITS_39 940 default 42 if ARM64_VA_BITS_42 941 default 47 if ARM64_VA_BITS_47 942 default 48 if ARM64_VA_BITS_48 943 default 52 if ARM64_VA_BITS_52 944 945choice 946 prompt "Physical address space size" 947 default ARM64_PA_BITS_48 948 help 949 Choose the maximum physical address range that the kernel will 950 support. 951 952config ARM64_PA_BITS_48 953 bool "48-bit" 954 955config ARM64_PA_BITS_52 956 bool "52-bit (ARMv8.2)" 957 depends on ARM64_64K_PAGES 958 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 959 help 960 Enable support for a 52-bit physical address space, introduced as 961 part of the ARMv8.2-LPA extension. 962 963 With this enabled, the kernel will also continue to work on CPUs that 964 do not support ARMv8.2-LPA, but with some added memory overhead (and 965 minor performance overhead). 966 967endchoice 968 969config ARM64_PA_BITS 970 int 971 default 48 if ARM64_PA_BITS_48 972 default 52 if ARM64_PA_BITS_52 973 974choice 975 prompt "Endianness" 976 default CPU_LITTLE_ENDIAN 977 help 978 Select the endianness of data accesses performed by the CPU. Userspace 979 applications will need to be compiled and linked for the endianness 980 that is selected here. 981 982config CPU_BIG_ENDIAN 983 bool "Build big-endian kernel" 984 depends on !LD_IS_LLD || LLD_VERSION >= 130000 985 help 986 Say Y if you plan on running a kernel with a big-endian userspace. 987 988config CPU_LITTLE_ENDIAN 989 bool "Build little-endian kernel" 990 help 991 Say Y if you plan on running a kernel with a little-endian userspace. 992 This is usually the case for distributions targeting arm64. 993 994endchoice 995 996config SCHED_MC 997 bool "Multi-core scheduler support" 998 help 999 Multi-core scheduler support improves the CPU scheduler's decision 1000 making when dealing with multi-core CPU chips at a cost of slightly 1001 increased overhead in some places. If unsure say N here. 1002 1003config SCHED_SMT 1004 bool "SMT scheduler support" 1005 help 1006 Improves the CPU scheduler's decision making when dealing with 1007 MultiThreading at a cost of slightly increased overhead in some 1008 places. If unsure say N here. 1009 1010config NR_CPUS 1011 int "Maximum number of CPUs (2-4096)" 1012 range 2 4096 1013 default "256" 1014 1015config HOTPLUG_CPU 1016 bool "Support for hot-pluggable CPUs" 1017 select GENERIC_IRQ_MIGRATION 1018 help 1019 Say Y here to experiment with turning CPUs off and on. CPUs 1020 can be controlled through /sys/devices/system/cpu. 1021 1022# Common NUMA Features 1023config NUMA 1024 bool "NUMA Memory Allocation and Scheduler Support" 1025 select GENERIC_ARCH_NUMA 1026 select ACPI_NUMA if ACPI 1027 select OF_NUMA 1028 help 1029 Enable NUMA (Non-Uniform Memory Access) support. 1030 1031 The kernel will try to allocate memory used by a CPU on the 1032 local memory of the CPU and add some more 1033 NUMA awareness to the kernel. 1034 1035config NODES_SHIFT 1036 int "Maximum NUMA Nodes (as a power of 2)" 1037 range 1 10 1038 default "4" 1039 depends on NUMA 1040 help 1041 Specify the maximum number of NUMA Nodes available on the target 1042 system. Increases memory reserved to accommodate various tables. 1043 1044config USE_PERCPU_NUMA_NODE_ID 1045 def_bool y 1046 depends on NUMA 1047 1048config HAVE_SETUP_PER_CPU_AREA 1049 def_bool y 1050 depends on NUMA 1051 1052config NEED_PER_CPU_EMBED_FIRST_CHUNK 1053 def_bool y 1054 depends on NUMA 1055 1056config HOLES_IN_ZONE 1057 def_bool y 1058 1059source "kernel/Kconfig.hz" 1060 1061config ARCH_SPARSEMEM_ENABLE 1062 def_bool y 1063 select SPARSEMEM_VMEMMAP_ENABLE 1064 select SPARSEMEM_VMEMMAP 1065 1066config HW_PERF_EVENTS 1067 def_bool y 1068 depends on ARM_PMU 1069 1070config ARCH_HAS_FILTER_PGPROT 1071 def_bool y 1072 1073# Supported by clang >= 7.0 1074config CC_HAVE_SHADOW_CALL_STACK 1075 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1076 1077config PARAVIRT 1078 bool "Enable paravirtualization code" 1079 help 1080 This changes the kernel so it can modify itself when it is run 1081 under a hypervisor, potentially improving performance significantly 1082 over full virtualization. 1083 1084config PARAVIRT_TIME_ACCOUNTING 1085 bool "Paravirtual steal time accounting" 1086 select PARAVIRT 1087 help 1088 Select this option to enable fine granularity task steal time 1089 accounting. Time spent executing other tasks in parallel with 1090 the current vCPU is discounted from the vCPU power. To account for 1091 that, there can be a small performance impact. 1092 1093 If in doubt, say N here. 1094 1095config KEXEC 1096 depends on PM_SLEEP_SMP 1097 select KEXEC_CORE 1098 bool "kexec system call" 1099 help 1100 kexec is a system call that implements the ability to shutdown your 1101 current kernel, and to start another kernel. It is like a reboot 1102 but it is independent of the system firmware. And like a reboot 1103 you can start any kernel with it, not just Linux. 1104 1105config KEXEC_FILE 1106 bool "kexec file based system call" 1107 select KEXEC_CORE 1108 select HAVE_IMA_KEXEC if IMA 1109 help 1110 This is new version of kexec system call. This system call is 1111 file based and takes file descriptors as system call argument 1112 for kernel and initramfs as opposed to list of segments as 1113 accepted by previous system call. 1114 1115config KEXEC_SIG 1116 bool "Verify kernel signature during kexec_file_load() syscall" 1117 depends on KEXEC_FILE 1118 help 1119 Select this option to verify a signature with loaded kernel 1120 image. If configured, any attempt of loading a image without 1121 valid signature will fail. 1122 1123 In addition to that option, you need to enable signature 1124 verification for the corresponding kernel image type being 1125 loaded in order for this to work. 1126 1127config KEXEC_IMAGE_VERIFY_SIG 1128 bool "Enable Image signature verification support" 1129 default y 1130 depends on KEXEC_SIG 1131 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1132 help 1133 Enable Image signature verification support. 1134 1135comment "Support for PE file signature verification disabled" 1136 depends on KEXEC_SIG 1137 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1138 1139config CRASH_DUMP 1140 bool "Build kdump crash kernel" 1141 help 1142 Generate crash dump after being started by kexec. This should 1143 be normally only set in special crash dump kernels which are 1144 loaded in the main kernel with kexec-tools into a specially 1145 reserved region and then later executed after a crash by 1146 kdump/kexec. 1147 1148 For more details see Documentation/admin-guide/kdump/kdump.rst 1149 1150config TRANS_TABLE 1151 def_bool y 1152 depends on HIBERNATION 1153 1154config XEN_DOM0 1155 def_bool y 1156 depends on XEN 1157 1158config XEN 1159 bool "Xen guest support on ARM64" 1160 depends on ARM64 && OF 1161 select SWIOTLB_XEN 1162 select PARAVIRT 1163 help 1164 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1165 1166config FORCE_MAX_ZONEORDER 1167 int 1168 default "14" if ARM64_64K_PAGES 1169 default "12" if ARM64_16K_PAGES 1170 default "11" 1171 help 1172 The kernel memory allocator divides physically contiguous memory 1173 blocks into "zones", where each zone is a power of two number of 1174 pages. This option selects the largest power of two that the kernel 1175 keeps in the memory allocator. If you need to allocate very large 1176 blocks of physically contiguous memory, then you may need to 1177 increase this value. 1178 1179 This config option is actually maximum order plus one. For example, 1180 a value of 11 means that the largest free memory block is 2^10 pages. 1181 1182 We make sure that we can allocate upto a HugePage size for each configuration. 1183 Hence we have : 1184 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1185 1186 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1187 4M allocations matching the default size used by generic code. 1188 1189config UNMAP_KERNEL_AT_EL0 1190 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1191 default y 1192 help 1193 Speculation attacks against some high-performance processors can 1194 be used to bypass MMU permission checks and leak kernel data to 1195 userspace. This can be defended against by unmapping the kernel 1196 when running in userspace, mapping it back in on exception entry 1197 via a trampoline page in the vector table. 1198 1199 If unsure, say Y. 1200 1201config RODATA_FULL_DEFAULT_ENABLED 1202 bool "Apply r/o permissions of VM areas also to their linear aliases" 1203 default y 1204 help 1205 Apply read-only attributes of VM areas to the linear alias of 1206 the backing pages as well. This prevents code or read-only data 1207 from being modified (inadvertently or intentionally) via another 1208 mapping of the same memory page. This additional enhancement can 1209 be turned off at runtime by passing rodata=[off|on] (and turned on 1210 with rodata=full if this option is set to 'n') 1211 1212 This requires the linear region to be mapped down to pages, 1213 which may adversely affect performance in some cases. 1214 1215config ARM64_SW_TTBR0_PAN 1216 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1217 help 1218 Enabling this option prevents the kernel from accessing 1219 user-space memory directly by pointing TTBR0_EL1 to a reserved 1220 zeroed area and reserved ASID. The user access routines 1221 restore the valid TTBR0_EL1 temporarily. 1222 1223config ARM64_TAGGED_ADDR_ABI 1224 bool "Enable the tagged user addresses syscall ABI" 1225 default y 1226 help 1227 When this option is enabled, user applications can opt in to a 1228 relaxed ABI via prctl() allowing tagged addresses to be passed 1229 to system calls as pointer arguments. For details, see 1230 Documentation/arm64/tagged-address-abi.rst. 1231 1232menuconfig COMPAT 1233 bool "Kernel support for 32-bit EL0" 1234 depends on ARM64_4K_PAGES || EXPERT 1235 select HAVE_UID16 1236 select OLD_SIGSUSPEND3 1237 select COMPAT_OLD_SIGACTION 1238 help 1239 This option enables support for a 32-bit EL0 running under a 64-bit 1240 kernel at EL1. AArch32-specific components such as system calls, 1241 the user helper functions, VFP support and the ptrace interface are 1242 handled appropriately by the kernel. 1243 1244 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1245 that you will only be able to execute AArch32 binaries that were compiled 1246 with page size aligned segments. 1247 1248 If you want to execute 32-bit userspace applications, say Y. 1249 1250if COMPAT 1251 1252config KUSER_HELPERS 1253 bool "Enable kuser helpers page for 32-bit applications" 1254 default y 1255 help 1256 Warning: disabling this option may break 32-bit user programs. 1257 1258 Provide kuser helpers to compat tasks. The kernel provides 1259 helper code to userspace in read only form at a fixed location 1260 to allow userspace to be independent of the CPU type fitted to 1261 the system. This permits binaries to be run on ARMv4 through 1262 to ARMv8 without modification. 1263 1264 See Documentation/arm/kernel_user_helpers.rst for details. 1265 1266 However, the fixed address nature of these helpers can be used 1267 by ROP (return orientated programming) authors when creating 1268 exploits. 1269 1270 If all of the binaries and libraries which run on your platform 1271 are built specifically for your platform, and make no use of 1272 these helpers, then you can turn this option off to hinder 1273 such exploits. However, in that case, if a binary or library 1274 relying on those helpers is run, it will not function correctly. 1275 1276 Say N here only if you are absolutely certain that you do not 1277 need these helpers; otherwise, the safe option is to say Y. 1278 1279config COMPAT_VDSO 1280 bool "Enable vDSO for 32-bit applications" 1281 depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != "" 1282 select GENERIC_COMPAT_VDSO 1283 default y 1284 help 1285 Place in the process address space of 32-bit applications an 1286 ELF shared object providing fast implementations of gettimeofday 1287 and clock_gettime. 1288 1289 You must have a 32-bit build of glibc 2.22 or later for programs 1290 to seamlessly take advantage of this. 1291 1292config THUMB2_COMPAT_VDSO 1293 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1294 depends on COMPAT_VDSO 1295 default y 1296 help 1297 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1298 otherwise with '-marm'. 1299 1300menuconfig ARMV8_DEPRECATED 1301 bool "Emulate deprecated/obsolete ARMv8 instructions" 1302 depends on SYSCTL 1303 help 1304 Legacy software support may require certain instructions 1305 that have been deprecated or obsoleted in the architecture. 1306 1307 Enable this config to enable selective emulation of these 1308 features. 1309 1310 If unsure, say Y 1311 1312if ARMV8_DEPRECATED 1313 1314config SWP_EMULATION 1315 bool "Emulate SWP/SWPB instructions" 1316 help 1317 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1318 they are always undefined. Say Y here to enable software 1319 emulation of these instructions for userspace using LDXR/STXR. 1320 This feature can be controlled at runtime with the abi.swp 1321 sysctl which is disabled by default. 1322 1323 In some older versions of glibc [<=2.8] SWP is used during futex 1324 trylock() operations with the assumption that the code will not 1325 be preempted. This invalid assumption may be more likely to fail 1326 with SWP emulation enabled, leading to deadlock of the user 1327 application. 1328 1329 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1330 on an external transaction monitoring block called a global 1331 monitor to maintain update atomicity. If your system does not 1332 implement a global monitor, this option can cause programs that 1333 perform SWP operations to uncached memory to deadlock. 1334 1335 If unsure, say Y 1336 1337config CP15_BARRIER_EMULATION 1338 bool "Emulate CP15 Barrier instructions" 1339 help 1340 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1341 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1342 strongly recommended to use the ISB, DSB, and DMB 1343 instructions instead. 1344 1345 Say Y here to enable software emulation of these 1346 instructions for AArch32 userspace code. When this option is 1347 enabled, CP15 barrier usage is traced which can help 1348 identify software that needs updating. This feature can be 1349 controlled at runtime with the abi.cp15_barrier sysctl. 1350 1351 If unsure, say Y 1352 1353config SETEND_EMULATION 1354 bool "Emulate SETEND instruction" 1355 help 1356 The SETEND instruction alters the data-endianness of the 1357 AArch32 EL0, and is deprecated in ARMv8. 1358 1359 Say Y here to enable software emulation of the instruction 1360 for AArch32 userspace code. This feature can be controlled 1361 at runtime with the abi.setend sysctl. 1362 1363 Note: All the cpus on the system must have mixed endian support at EL0 1364 for this feature to be enabled. If a new CPU - which doesn't support mixed 1365 endian - is hotplugged in after this feature has been enabled, there could 1366 be unexpected results in the applications. 1367 1368 If unsure, say Y 1369endif 1370 1371endif 1372 1373menu "ARMv8.1 architectural features" 1374 1375config ARM64_HW_AFDBM 1376 bool "Support for hardware updates of the Access and Dirty page flags" 1377 default y 1378 help 1379 The ARMv8.1 architecture extensions introduce support for 1380 hardware updates of the access and dirty information in page 1381 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1382 capable processors, accesses to pages with PTE_AF cleared will 1383 set this bit instead of raising an access flag fault. 1384 Similarly, writes to read-only pages with the DBM bit set will 1385 clear the read-only bit (AP[2]) instead of raising a 1386 permission fault. 1387 1388 Kernels built with this configuration option enabled continue 1389 to work on pre-ARMv8.1 hardware and the performance impact is 1390 minimal. If unsure, say Y. 1391 1392config ARM64_PAN 1393 bool "Enable support for Privileged Access Never (PAN)" 1394 default y 1395 help 1396 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1397 prevents the kernel or hypervisor from accessing user-space (EL0) 1398 memory directly. 1399 1400 Choosing this option will cause any unprotected (not using 1401 copy_to_user et al) memory access to fail with a permission fault. 1402 1403 The feature is detected at runtime, and will remain as a 'nop' 1404 instruction if the cpu does not implement the feature. 1405 1406config AS_HAS_LDAPR 1407 def_bool $(as-instr,.arch_extension rcpc) 1408 1409config AS_HAS_LSE_ATOMICS 1410 def_bool $(as-instr,.arch_extension lse) 1411 1412config ARM64_LSE_ATOMICS 1413 bool 1414 default ARM64_USE_LSE_ATOMICS 1415 depends on AS_HAS_LSE_ATOMICS 1416 1417config ARM64_USE_LSE_ATOMICS 1418 bool "Atomic instructions" 1419 depends on JUMP_LABEL 1420 default y 1421 help 1422 As part of the Large System Extensions, ARMv8.1 introduces new 1423 atomic instructions that are designed specifically to scale in 1424 very large systems. 1425 1426 Say Y here to make use of these instructions for the in-kernel 1427 atomic routines. This incurs a small overhead on CPUs that do 1428 not support these instructions and requires the kernel to be 1429 built with binutils >= 2.25 in order for the new instructions 1430 to be used. 1431 1432endmenu 1433 1434menu "ARMv8.2 architectural features" 1435 1436config ARM64_PMEM 1437 bool "Enable support for persistent memory" 1438 select ARCH_HAS_PMEM_API 1439 select ARCH_HAS_UACCESS_FLUSHCACHE 1440 help 1441 Say Y to enable support for the persistent memory API based on the 1442 ARMv8.2 DCPoP feature. 1443 1444 The feature is detected at runtime, and the kernel will use DC CVAC 1445 operations if DC CVAP is not supported (following the behaviour of 1446 DC CVAP itself if the system does not define a point of persistence). 1447 1448config ARM64_RAS_EXTN 1449 bool "Enable support for RAS CPU Extensions" 1450 default y 1451 help 1452 CPUs that support the Reliability, Availability and Serviceability 1453 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1454 errors, classify them and report them to software. 1455 1456 On CPUs with these extensions system software can use additional 1457 barriers to determine if faults are pending and read the 1458 classification from a new set of registers. 1459 1460 Selecting this feature will allow the kernel to use these barriers 1461 and access the new registers if the system supports the extension. 1462 Platform RAS features may additionally depend on firmware support. 1463 1464config ARM64_CNP 1465 bool "Enable support for Common Not Private (CNP) translations" 1466 default y 1467 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1468 help 1469 Common Not Private (CNP) allows translation table entries to 1470 be shared between different PEs in the same inner shareable 1471 domain, so the hardware can use this fact to optimise the 1472 caching of such entries in the TLB. 1473 1474 Selecting this option allows the CNP feature to be detected 1475 at runtime, and does not affect PEs that do not implement 1476 this feature. 1477 1478endmenu 1479 1480menu "ARMv8.3 architectural features" 1481 1482config ARM64_PTR_AUTH 1483 bool "Enable support for pointer authentication" 1484 default y 1485 help 1486 Pointer authentication (part of the ARMv8.3 Extensions) provides 1487 instructions for signing and authenticating pointers against secret 1488 keys, which can be used to mitigate Return Oriented Programming (ROP) 1489 and other attacks. 1490 1491 This option enables these instructions at EL0 (i.e. for userspace). 1492 Choosing this option will cause the kernel to initialise secret keys 1493 for each process at exec() time, with these keys being 1494 context-switched along with the process. 1495 1496 The feature is detected at runtime. If the feature is not present in 1497 hardware it will not be advertised to userspace/KVM guest nor will it 1498 be enabled. 1499 1500 If the feature is present on the boot CPU but not on a late CPU, then 1501 the late CPU will be parked. Also, if the boot CPU does not have 1502 address auth and the late CPU has then the late CPU will still boot 1503 but with the feature disabled. On such a system, this option should 1504 not be selected. 1505 1506config ARM64_PTR_AUTH_KERNEL 1507 bool "Use pointer authentication for kernel" 1508 default y 1509 depends on ARM64_PTR_AUTH 1510 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1511 # Modern compilers insert a .note.gnu.property section note for PAC 1512 # which is only understood by binutils starting with version 2.33.1. 1513 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1514 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1515 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1516 help 1517 If the compiler supports the -mbranch-protection or 1518 -msign-return-address flag (e.g. GCC 7 or later), then this option 1519 will cause the kernel itself to be compiled with return address 1520 protection. In this case, and if the target hardware is known to 1521 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1522 disabled with minimal loss of protection. 1523 1524 This feature works with FUNCTION_GRAPH_TRACER option only if 1525 DYNAMIC_FTRACE_WITH_REGS is enabled. 1526 1527config CC_HAS_BRANCH_PROT_PAC_RET 1528 # GCC 9 or later, clang 8 or later 1529 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1530 1531config CC_HAS_SIGN_RETURN_ADDRESS 1532 # GCC 7, 8 1533 def_bool $(cc-option,-msign-return-address=all) 1534 1535config AS_HAS_PAC 1536 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1537 1538config AS_HAS_CFI_NEGATE_RA_STATE 1539 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1540 1541endmenu 1542 1543menu "ARMv8.4 architectural features" 1544 1545config ARM64_AMU_EXTN 1546 bool "Enable support for the Activity Monitors Unit CPU extension" 1547 default y 1548 help 1549 The activity monitors extension is an optional extension introduced 1550 by the ARMv8.4 CPU architecture. This enables support for version 1 1551 of the activity monitors architecture, AMUv1. 1552 1553 To enable the use of this extension on CPUs that implement it, say Y. 1554 1555 Note that for architectural reasons, firmware _must_ implement AMU 1556 support when running on CPUs that present the activity monitors 1557 extension. The required support is present in: 1558 * Version 1.5 and later of the ARM Trusted Firmware 1559 1560 For kernels that have this configuration enabled but boot with broken 1561 firmware, you may need to say N here until the firmware is fixed. 1562 Otherwise you may experience firmware panics or lockups when 1563 accessing the counter registers. Even if you are not observing these 1564 symptoms, the values returned by the register reads might not 1565 correctly reflect reality. Most commonly, the value read will be 0, 1566 indicating that the counter is not enabled. 1567 1568config AS_HAS_ARMV8_4 1569 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1570 1571config ARM64_TLB_RANGE 1572 bool "Enable support for tlbi range feature" 1573 default y 1574 depends on AS_HAS_ARMV8_4 1575 help 1576 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1577 range of input addresses. 1578 1579 The feature introduces new assembly instructions, and they were 1580 support when binutils >= 2.30. 1581 1582endmenu 1583 1584menu "ARMv8.5 architectural features" 1585 1586config AS_HAS_ARMV8_5 1587 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 1588 1589config ARM64_BTI 1590 bool "Branch Target Identification support" 1591 default y 1592 help 1593 Branch Target Identification (part of the ARMv8.5 Extensions) 1594 provides a mechanism to limit the set of locations to which computed 1595 branch instructions such as BR or BLR can jump. 1596 1597 To make use of BTI on CPUs that support it, say Y. 1598 1599 BTI is intended to provide complementary protection to other control 1600 flow integrity protection mechanisms, such as the Pointer 1601 authentication mechanism provided as part of the ARMv8.3 Extensions. 1602 For this reason, it does not make sense to enable this option without 1603 also enabling support for pointer authentication. Thus, when 1604 enabling this option you should also select ARM64_PTR_AUTH=y. 1605 1606 Userspace binaries must also be specifically compiled to make use of 1607 this mechanism. If you say N here or the hardware does not support 1608 BTI, such binaries can still run, but you get no additional 1609 enforcement of branch destinations. 1610 1611config ARM64_BTI_KERNEL 1612 bool "Use Branch Target Identification for kernel" 1613 default y 1614 depends on ARM64_BTI 1615 depends on ARM64_PTR_AUTH_KERNEL 1616 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 1617 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 1618 depends on !CC_IS_GCC || GCC_VERSION >= 100100 1619 depends on !(CC_IS_CLANG && GCOV_KERNEL) 1620 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1621 help 1622 Build the kernel with Branch Target Identification annotations 1623 and enable enforcement of this for kernel code. When this option 1624 is enabled and the system supports BTI all kernel code including 1625 modular code must have BTI enabled. 1626 1627config CC_HAS_BRANCH_PROT_PAC_RET_BTI 1628 # GCC 9 or later, clang 8 or later 1629 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 1630 1631config ARM64_E0PD 1632 bool "Enable support for E0PD" 1633 default y 1634 help 1635 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1636 that EL0 accesses made via TTBR1 always fault in constant time, 1637 providing similar benefits to KASLR as those provided by KPTI, but 1638 with lower overhead and without disrupting legitimate access to 1639 kernel memory such as SPE. 1640 1641 This option enables E0PD for TTBR1 where available. 1642 1643config ARCH_RANDOM 1644 bool "Enable support for random number generation" 1645 default y 1646 help 1647 Random number generation (part of the ARMv8.5 Extensions) 1648 provides a high bandwidth, cryptographically secure 1649 hardware random number generator. 1650 1651config ARM64_AS_HAS_MTE 1652 # Initial support for MTE went in binutils 2.32.0, checked with 1653 # ".arch armv8.5-a+memtag" below. However, this was incomplete 1654 # as a late addition to the final architecture spec (LDGM/STGM) 1655 # is only supported in the newer 2.32.x and 2.33 binutils 1656 # versions, hence the extra "stgm" instruction check below. 1657 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 1658 1659config ARM64_MTE 1660 bool "Memory Tagging Extension support" 1661 default y 1662 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 1663 depends on AS_HAS_ARMV8_5 1664 depends on AS_HAS_LSE_ATOMICS 1665 # Required for tag checking in the uaccess routines 1666 depends on ARM64_PAN 1667 select ARCH_USES_HIGH_VMA_FLAGS 1668 help 1669 Memory Tagging (part of the ARMv8.5 Extensions) provides 1670 architectural support for run-time, always-on detection of 1671 various classes of memory error to aid with software debugging 1672 to eliminate vulnerabilities arising from memory-unsafe 1673 languages. 1674 1675 This option enables the support for the Memory Tagging 1676 Extension at EL0 (i.e. for userspace). 1677 1678 Selecting this option allows the feature to be detected at 1679 runtime. Any secondary CPU not implementing this feature will 1680 not be allowed a late bring-up. 1681 1682 Userspace binaries that want to use this feature must 1683 explicitly opt in. The mechanism for the userspace is 1684 described in: 1685 1686 Documentation/arm64/memory-tagging-extension.rst. 1687 1688endmenu 1689 1690menu "ARMv8.7 architectural features" 1691 1692config ARM64_EPAN 1693 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 1694 default y 1695 depends on ARM64_PAN 1696 help 1697 Enhanced Privileged Access Never (EPAN) allows Privileged 1698 Access Never to be used with Execute-only mappings. 1699 1700 The feature is detected at runtime, and will remain disabled 1701 if the cpu does not implement the feature. 1702endmenu 1703 1704config ARM64_SVE 1705 bool "ARM Scalable Vector Extension support" 1706 default y 1707 help 1708 The Scalable Vector Extension (SVE) is an extension to the AArch64 1709 execution state which complements and extends the SIMD functionality 1710 of the base architecture to support much larger vectors and to enable 1711 additional vectorisation opportunities. 1712 1713 To enable use of this extension on CPUs that implement it, say Y. 1714 1715 On CPUs that support the SVE2 extensions, this option will enable 1716 those too. 1717 1718 Note that for architectural reasons, firmware _must_ implement SVE 1719 support when running on SVE capable hardware. The required support 1720 is present in: 1721 1722 * version 1.5 and later of the ARM Trusted Firmware 1723 * the AArch64 boot wrapper since commit 5e1261e08abf 1724 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1725 1726 For other firmware implementations, consult the firmware documentation 1727 or vendor. 1728 1729 If you need the kernel to boot on SVE-capable hardware with broken 1730 firmware, you may need to say N here until you get your firmware 1731 fixed. Otherwise, you may experience firmware panics or lockups when 1732 booting the kernel. If unsure and you are not observing these 1733 symptoms, you should assume that it is safe to say Y. 1734 1735config ARM64_MODULE_PLTS 1736 bool "Use PLTs to allow module memory to spill over into vmalloc area" 1737 depends on MODULES 1738 select HAVE_MOD_ARCH_SPECIFIC 1739 help 1740 Allocate PLTs when loading modules so that jumps and calls whose 1741 targets are too far away for their relative offsets to be encoded 1742 in the instructions themselves can be bounced via veneers in the 1743 module's PLT. This allows modules to be allocated in the generic 1744 vmalloc area after the dedicated module memory area has been 1745 exhausted. 1746 1747 When running with address space randomization (KASLR), the module 1748 region itself may be too far away for ordinary relative jumps and 1749 calls, and so in that case, module PLTs are required and cannot be 1750 disabled. 1751 1752 Specific errata workaround(s) might also force module PLTs to be 1753 enabled (ARM64_ERRATUM_843419). 1754 1755config ARM64_PSEUDO_NMI 1756 bool "Support for NMI-like interrupts" 1757 select ARM_GIC_V3 1758 help 1759 Adds support for mimicking Non-Maskable Interrupts through the use of 1760 GIC interrupt priority. This support requires version 3 or later of 1761 ARM GIC. 1762 1763 This high priority configuration for interrupts needs to be 1764 explicitly enabled by setting the kernel parameter 1765 "irqchip.gicv3_pseudo_nmi" to 1. 1766 1767 If unsure, say N 1768 1769if ARM64_PSEUDO_NMI 1770config ARM64_DEBUG_PRIORITY_MASKING 1771 bool "Debug interrupt priority masking" 1772 help 1773 This adds runtime checks to functions enabling/disabling 1774 interrupts when using priority masking. The additional checks verify 1775 the validity of ICC_PMR_EL1 when calling concerned functions. 1776 1777 If unsure, say N 1778endif 1779 1780config RELOCATABLE 1781 bool "Build a relocatable kernel image" if EXPERT 1782 select ARCH_HAS_RELR 1783 default y 1784 help 1785 This builds the kernel as a Position Independent Executable (PIE), 1786 which retains all relocation metadata required to relocate the 1787 kernel binary at runtime to a different virtual address than the 1788 address it was linked at. 1789 Since AArch64 uses the RELA relocation format, this requires a 1790 relocation pass at runtime even if the kernel is loaded at the 1791 same address it was linked at. 1792 1793config RANDOMIZE_BASE 1794 bool "Randomize the address of the kernel image" 1795 select ARM64_MODULE_PLTS if MODULES 1796 select RELOCATABLE 1797 help 1798 Randomizes the virtual address at which the kernel image is 1799 loaded, as a security feature that deters exploit attempts 1800 relying on knowledge of the location of kernel internals. 1801 1802 It is the bootloader's job to provide entropy, by passing a 1803 random u64 value in /chosen/kaslr-seed at kernel entry. 1804 1805 When booting via the UEFI stub, it will invoke the firmware's 1806 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 1807 to the kernel proper. In addition, it will randomise the physical 1808 location of the kernel Image as well. 1809 1810 If unsure, say N. 1811 1812config RANDOMIZE_MODULE_REGION_FULL 1813 bool "Randomize the module region over a 4 GB range" 1814 depends on RANDOMIZE_BASE 1815 default y 1816 help 1817 Randomizes the location of the module region inside a 4 GB window 1818 covering the core kernel. This way, it is less likely for modules 1819 to leak information about the location of core kernel data structures 1820 but it does imply that function calls between modules and the core 1821 kernel will need to be resolved via veneers in the module PLT. 1822 1823 When this option is not set, the module region will be randomized over 1824 a limited range that contains the [_stext, _etext] interval of the 1825 core kernel, so branch relocations are always in range. 1826 1827config CC_HAVE_STACKPROTECTOR_SYSREG 1828 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 1829 1830config STACKPROTECTOR_PER_TASK 1831 def_bool y 1832 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 1833 1834endmenu 1835 1836menu "Boot options" 1837 1838config ARM64_ACPI_PARKING_PROTOCOL 1839 bool "Enable support for the ARM64 ACPI parking protocol" 1840 depends on ACPI 1841 help 1842 Enable support for the ARM64 ACPI parking protocol. If disabled 1843 the kernel will not allow booting through the ARM64 ACPI parking 1844 protocol even if the corresponding data is present in the ACPI 1845 MADT table. 1846 1847config CMDLINE 1848 string "Default kernel command string" 1849 default "" 1850 help 1851 Provide a set of default command-line options at build time by 1852 entering them here. As a minimum, you should specify the the 1853 root device (e.g. root=/dev/nfs). 1854 1855choice 1856 prompt "Kernel command line type" if CMDLINE != "" 1857 default CMDLINE_FROM_BOOTLOADER 1858 help 1859 Choose how the kernel will handle the provided default kernel 1860 command line string. 1861 1862config CMDLINE_FROM_BOOTLOADER 1863 bool "Use bootloader kernel arguments if available" 1864 help 1865 Uses the command-line options passed by the boot loader. If 1866 the boot loader doesn't provide any, the default kernel command 1867 string provided in CMDLINE will be used. 1868 1869config CMDLINE_FORCE 1870 bool "Always use the default kernel command string" 1871 help 1872 Always use the default kernel command string, even if the boot 1873 loader passes other arguments to the kernel. 1874 This is useful if you cannot or don't want to change the 1875 command-line options your boot loader passes to the kernel. 1876 1877endchoice 1878 1879config EFI_STUB 1880 bool 1881 1882config EFI 1883 bool "UEFI runtime support" 1884 depends on OF && !CPU_BIG_ENDIAN 1885 depends on KERNEL_MODE_NEON 1886 select ARCH_SUPPORTS_ACPI 1887 select LIBFDT 1888 select UCS2_STRING 1889 select EFI_PARAMS_FROM_FDT 1890 select EFI_RUNTIME_WRAPPERS 1891 select EFI_STUB 1892 select EFI_GENERIC_STUB 1893 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 1894 default y 1895 help 1896 This option provides support for runtime services provided 1897 by UEFI firmware (such as non-volatile variables, realtime 1898 clock, and platform reset). A UEFI stub is also provided to 1899 allow the kernel to be booted as an EFI application. This 1900 is only useful on systems that have UEFI firmware. 1901 1902config DMI 1903 bool "Enable support for SMBIOS (DMI) tables" 1904 depends on EFI 1905 default y 1906 help 1907 This enables SMBIOS/DMI feature for systems. 1908 1909 This option is only useful on systems that have UEFI firmware. 1910 However, even with this option, the resultant kernel should 1911 continue to boot on existing non-UEFI platforms. 1912 1913endmenu 1914 1915config SYSVIPC_COMPAT 1916 def_bool y 1917 depends on COMPAT && SYSVIPC 1918 1919menu "Power management options" 1920 1921source "kernel/power/Kconfig" 1922 1923config ARCH_HIBERNATION_POSSIBLE 1924 def_bool y 1925 depends on CPU_PM 1926 1927config ARCH_HIBERNATION_HEADER 1928 def_bool y 1929 depends on HIBERNATION 1930 1931config ARCH_SUSPEND_POSSIBLE 1932 def_bool y 1933 1934endmenu 1935 1936menu "CPU Power Management" 1937 1938source "drivers/cpuidle/Kconfig" 1939 1940source "drivers/cpufreq/Kconfig" 1941 1942endmenu 1943 1944source "drivers/firmware/Kconfig" 1945 1946source "drivers/acpi/Kconfig" 1947 1948source "arch/arm64/kvm/Kconfig" 1949 1950if CRYPTO 1951source "arch/arm64/crypto/Kconfig" 1952endif 1953