xref: /openbmc/linux/arch/arm64/Kconfig (revision 1634f2bf)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_CLOCKSOURCE_DATA
13	select ARCH_HAS_DEBUG_VIRTUAL
14	select ARCH_HAS_DEVMEM_IS_ALLOWED
15	select ARCH_HAS_DMA_COHERENT_TO_PFN
16	select ARCH_HAS_DMA_MMAP_PGPROT
17	select ARCH_HAS_DMA_PREP_COHERENT
18	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
19	select ARCH_HAS_ELF_RANDOMIZE
20	select ARCH_HAS_FAST_MULTIPLIER
21	select ARCH_HAS_FORTIFY_SOURCE
22	select ARCH_HAS_GCOV_PROFILE_ALL
23	select ARCH_HAS_GIGANTIC_PAGE
24	select ARCH_HAS_KCOV
25	select ARCH_HAS_KEEPINITRD
26	select ARCH_HAS_MEMBARRIER_SYNC_CORE
27	select ARCH_HAS_PTE_DEVMAP
28	select ARCH_HAS_PTE_SPECIAL
29	select ARCH_HAS_SETUP_DMA_OPS
30	select ARCH_HAS_SET_DIRECT_MAP
31	select ARCH_HAS_SET_MEMORY
32	select ARCH_HAS_STRICT_KERNEL_RWX
33	select ARCH_HAS_STRICT_MODULE_RWX
34	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
35	select ARCH_HAS_SYNC_DMA_FOR_CPU
36	select ARCH_HAS_SYSCALL_WRAPPER
37	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
38	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
39	select ARCH_HAVE_NMI_SAFE_CMPXCHG
40	select ARCH_INLINE_READ_LOCK if !PREEMPT
41	select ARCH_INLINE_READ_LOCK_BH if !PREEMPT
42	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPT
43	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPT
44	select ARCH_INLINE_READ_UNLOCK if !PREEMPT
45	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPT
46	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPT
47	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPT
48	select ARCH_INLINE_WRITE_LOCK if !PREEMPT
49	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPT
50	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPT
51	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPT
52	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPT
53	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPT
54	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPT
55	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPT
56	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPT
57	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPT
58	select ARCH_INLINE_SPIN_LOCK if !PREEMPT
59	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPT
60	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPT
61	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPT
62	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPT
63	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPT
64	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPT
65	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPT
66	select ARCH_KEEP_MEMBLOCK
67	select ARCH_USE_CMPXCHG_LOCKREF
68	select ARCH_USE_QUEUED_RWLOCKS
69	select ARCH_USE_QUEUED_SPINLOCKS
70	select ARCH_SUPPORTS_MEMORY_FAILURE
71	select ARCH_SUPPORTS_ATOMIC_RMW
72	select ARCH_SUPPORTS_INT128 if GCC_VERSION >= 50000 || CC_IS_CLANG
73	select ARCH_SUPPORTS_NUMA_BALANCING
74	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
75	select ARCH_WANT_FRAME_POINTERS
76	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
77	select ARCH_HAS_UBSAN_SANITIZE_ALL
78	select ARM_AMBA
79	select ARM_ARCH_TIMER
80	select ARM_GIC
81	select AUDIT_ARCH_COMPAT_GENERIC
82	select ARM_GIC_V2M if PCI
83	select ARM_GIC_V3
84	select ARM_GIC_V3_ITS if PCI
85	select ARM_PSCI_FW
86	select BUILDTIME_EXTABLE_SORT
87	select CLONE_BACKWARDS
88	select COMMON_CLK
89	select CPU_PM if (SUSPEND || CPU_IDLE)
90	select CRC32
91	select DCACHE_WORD_ACCESS
92	select DMA_DIRECT_REMAP
93	select EDAC_SUPPORT
94	select FRAME_POINTER
95	select GENERIC_ALLOCATOR
96	select GENERIC_ARCH_TOPOLOGY
97	select GENERIC_CLOCKEVENTS
98	select GENERIC_CLOCKEVENTS_BROADCAST
99	select GENERIC_CPU_AUTOPROBE
100	select GENERIC_CPU_VULNERABILITIES
101	select GENERIC_EARLY_IOREMAP
102	select GENERIC_IDLE_POLL_SETUP
103	select GENERIC_IRQ_MULTI_HANDLER
104	select GENERIC_IRQ_PROBE
105	select GENERIC_IRQ_SHOW
106	select GENERIC_IRQ_SHOW_LEVEL
107	select GENERIC_PCI_IOMAP
108	select GENERIC_SCHED_CLOCK
109	select GENERIC_SMP_IDLE_THREAD
110	select GENERIC_STRNCPY_FROM_USER
111	select GENERIC_STRNLEN_USER
112	select GENERIC_TIME_VSYSCALL
113	select GENERIC_GETTIMEOFDAY
114	select GENERIC_COMPAT_VDSO if (!CPU_BIG_ENDIAN && COMPAT)
115	select HANDLE_DOMAIN_IRQ
116	select HARDIRQS_SW_RESEND
117	select HAVE_PCI
118	select HAVE_ACPI_APEI if (ACPI && EFI)
119	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
120	select HAVE_ARCH_AUDITSYSCALL
121	select HAVE_ARCH_BITREVERSE
122	select HAVE_ARCH_HUGE_VMAP
123	select HAVE_ARCH_JUMP_LABEL
124	select HAVE_ARCH_JUMP_LABEL_RELATIVE
125	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
126	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
127	select HAVE_ARCH_KGDB
128	select HAVE_ARCH_MMAP_RND_BITS
129	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
130	select HAVE_ARCH_PREL32_RELOCATIONS
131	select HAVE_ARCH_SECCOMP_FILTER
132	select HAVE_ARCH_STACKLEAK
133	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
134	select HAVE_ARCH_TRACEHOOK
135	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
136	select HAVE_ARCH_VMAP_STACK
137	select HAVE_ARM_SMCCC
138	select HAVE_ASM_MODVERSIONS
139	select HAVE_EBPF_JIT
140	select HAVE_C_RECORDMCOUNT
141	select HAVE_CMPXCHG_DOUBLE
142	select HAVE_CMPXCHG_LOCAL
143	select HAVE_CONTEXT_TRACKING
144	select HAVE_DEBUG_BUGVERBOSE
145	select HAVE_DEBUG_KMEMLEAK
146	select HAVE_DMA_CONTIGUOUS
147	select HAVE_DYNAMIC_FTRACE
148	select HAVE_EFFICIENT_UNALIGNED_ACCESS
149	select HAVE_FAST_GUP
150	select HAVE_FTRACE_MCOUNT_RECORD
151	select HAVE_FUNCTION_TRACER
152	select HAVE_FUNCTION_GRAPH_TRACER
153	select HAVE_GCC_PLUGINS
154	select HAVE_HW_BREAKPOINT if PERF_EVENTS
155	select HAVE_IRQ_TIME_ACCOUNTING
156	select HAVE_MEMBLOCK_NODE_MAP if NUMA
157	select HAVE_NMI
158	select HAVE_PATA_PLATFORM
159	select HAVE_PERF_EVENTS
160	select HAVE_PERF_REGS
161	select HAVE_PERF_USER_STACK_DUMP
162	select HAVE_REGS_AND_STACK_ACCESS_API
163	select HAVE_FUNCTION_ARG_ACCESS_API
164	select HAVE_RCU_TABLE_FREE
165	select HAVE_RSEQ
166	select HAVE_STACKPROTECTOR
167	select HAVE_SYSCALL_TRACEPOINTS
168	select HAVE_KPROBES
169	select HAVE_KRETPROBES
170	select HAVE_GENERIC_VDSO
171	select IOMMU_DMA if IOMMU_SUPPORT
172	select IRQ_DOMAIN
173	select IRQ_FORCED_THREADING
174	select MODULES_USE_ELF_RELA
175	select NEED_DMA_MAP_STATE
176	select NEED_SG_DMA_LENGTH
177	select OF
178	select OF_EARLY_FLATTREE
179	select PCI_DOMAINS_GENERIC if PCI
180	select PCI_ECAM if (ACPI && PCI)
181	select PCI_SYSCALL if PCI
182	select POWER_RESET
183	select POWER_SUPPLY
184	select REFCOUNT_FULL
185	select SPARSE_IRQ
186	select SWIOTLB
187	select SYSCTL_EXCEPTION_TRACE
188	select THREAD_INFO_IN_TASK
189	help
190	  ARM 64-bit (AArch64) Linux support.
191
192config 64BIT
193	def_bool y
194
195config MMU
196	def_bool y
197
198config ARM64_PAGE_SHIFT
199	int
200	default 16 if ARM64_64K_PAGES
201	default 14 if ARM64_16K_PAGES
202	default 12
203
204config ARM64_CONT_SHIFT
205	int
206	default 5 if ARM64_64K_PAGES
207	default 7 if ARM64_16K_PAGES
208	default 4
209
210config ARCH_MMAP_RND_BITS_MIN
211       default 14 if ARM64_64K_PAGES
212       default 16 if ARM64_16K_PAGES
213       default 18
214
215# max bits determined by the following formula:
216#  VA_BITS - PAGE_SHIFT - 3
217config ARCH_MMAP_RND_BITS_MAX
218       default 19 if ARM64_VA_BITS=36
219       default 24 if ARM64_VA_BITS=39
220       default 27 if ARM64_VA_BITS=42
221       default 30 if ARM64_VA_BITS=47
222       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
223       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
224       default 33 if ARM64_VA_BITS=48
225       default 14 if ARM64_64K_PAGES
226       default 16 if ARM64_16K_PAGES
227       default 18
228
229config ARCH_MMAP_RND_COMPAT_BITS_MIN
230       default 7 if ARM64_64K_PAGES
231       default 9 if ARM64_16K_PAGES
232       default 11
233
234config ARCH_MMAP_RND_COMPAT_BITS_MAX
235       default 16
236
237config NO_IOPORT_MAP
238	def_bool y if !PCI
239
240config STACKTRACE_SUPPORT
241	def_bool y
242
243config ILLEGAL_POINTER_VALUE
244	hex
245	default 0xdead000000000000
246
247config LOCKDEP_SUPPORT
248	def_bool y
249
250config TRACE_IRQFLAGS_SUPPORT
251	def_bool y
252
253config GENERIC_BUG
254	def_bool y
255	depends on BUG
256
257config GENERIC_BUG_RELATIVE_POINTERS
258	def_bool y
259	depends on GENERIC_BUG
260
261config GENERIC_HWEIGHT
262	def_bool y
263
264config GENERIC_CSUM
265        def_bool y
266
267config GENERIC_CALIBRATE_DELAY
268	def_bool y
269
270config ZONE_DMA32
271	bool "Support DMA32 zone" if EXPERT
272	default y
273
274config ARCH_ENABLE_MEMORY_HOTPLUG
275	def_bool y
276
277config SMP
278	def_bool y
279
280config KERNEL_MODE_NEON
281	def_bool y
282
283config FIX_EARLYCON_MEM
284	def_bool y
285
286config PGTABLE_LEVELS
287	int
288	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
289	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
290	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_USER_VA_BITS_52)
291	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
292	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
293	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
294
295config ARCH_SUPPORTS_UPROBES
296	def_bool y
297
298config ARCH_PROC_KCORE_TEXT
299	def_bool y
300
301source "arch/arm64/Kconfig.platforms"
302
303menu "Kernel Features"
304
305menu "ARM errata workarounds via the alternatives framework"
306
307config ARM64_WORKAROUND_CLEAN_CACHE
308	bool
309
310config ARM64_ERRATUM_826319
311	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
312	default y
313	select ARM64_WORKAROUND_CLEAN_CACHE
314	help
315	  This option adds an alternative code sequence to work around ARM
316	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
317	  AXI master interface and an L2 cache.
318
319	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
320	  and is unable to accept a certain write via this interface, it will
321	  not progress on read data presented on the read data channel and the
322	  system can deadlock.
323
324	  The workaround promotes data cache clean instructions to
325	  data cache clean-and-invalidate.
326	  Please note that this does not necessarily enable the workaround,
327	  as it depends on the alternative framework, which will only patch
328	  the kernel if an affected CPU is detected.
329
330	  If unsure, say Y.
331
332config ARM64_ERRATUM_827319
333	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
334	default y
335	select ARM64_WORKAROUND_CLEAN_CACHE
336	help
337	  This option adds an alternative code sequence to work around ARM
338	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
339	  master interface and an L2 cache.
340
341	  Under certain conditions this erratum can cause a clean line eviction
342	  to occur at the same time as another transaction to the same address
343	  on the AMBA 5 CHI interface, which can cause data corruption if the
344	  interconnect reorders the two transactions.
345
346	  The workaround promotes data cache clean instructions to
347	  data cache clean-and-invalidate.
348	  Please note that this does not necessarily enable the workaround,
349	  as it depends on the alternative framework, which will only patch
350	  the kernel if an affected CPU is detected.
351
352	  If unsure, say Y.
353
354config ARM64_ERRATUM_824069
355	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
356	default y
357	select ARM64_WORKAROUND_CLEAN_CACHE
358	help
359	  This option adds an alternative code sequence to work around ARM
360	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
361	  to a coherent interconnect.
362
363	  If a Cortex-A53 processor is executing a store or prefetch for
364	  write instruction at the same time as a processor in another
365	  cluster is executing a cache maintenance operation to the same
366	  address, then this erratum might cause a clean cache line to be
367	  incorrectly marked as dirty.
368
369	  The workaround promotes data cache clean instructions to
370	  data cache clean-and-invalidate.
371	  Please note that this option does not necessarily enable the
372	  workaround, as it depends on the alternative framework, which will
373	  only patch the kernel if an affected CPU is detected.
374
375	  If unsure, say Y.
376
377config ARM64_ERRATUM_819472
378	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
379	default y
380	select ARM64_WORKAROUND_CLEAN_CACHE
381	help
382	  This option adds an alternative code sequence to work around ARM
383	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
384	  present when it is connected to a coherent interconnect.
385
386	  If the processor is executing a load and store exclusive sequence at
387	  the same time as a processor in another cluster is executing a cache
388	  maintenance operation to the same address, then this erratum might
389	  cause data corruption.
390
391	  The workaround promotes data cache clean instructions to
392	  data cache clean-and-invalidate.
393	  Please note that this does not necessarily enable the workaround,
394	  as it depends on the alternative framework, which will only patch
395	  the kernel if an affected CPU is detected.
396
397	  If unsure, say Y.
398
399config ARM64_ERRATUM_832075
400	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
401	default y
402	help
403	  This option adds an alternative code sequence to work around ARM
404	  erratum 832075 on Cortex-A57 parts up to r1p2.
405
406	  Affected Cortex-A57 parts might deadlock when exclusive load/store
407	  instructions to Write-Back memory are mixed with Device loads.
408
409	  The workaround is to promote device loads to use Load-Acquire
410	  semantics.
411	  Please note that this does not necessarily enable the workaround,
412	  as it depends on the alternative framework, which will only patch
413	  the kernel if an affected CPU is detected.
414
415	  If unsure, say Y.
416
417config ARM64_ERRATUM_834220
418	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
419	depends on KVM
420	default y
421	help
422	  This option adds an alternative code sequence to work around ARM
423	  erratum 834220 on Cortex-A57 parts up to r1p2.
424
425	  Affected Cortex-A57 parts might report a Stage 2 translation
426	  fault as the result of a Stage 1 fault for load crossing a
427	  page boundary when there is a permission or device memory
428	  alignment fault at Stage 1 and a translation fault at Stage 2.
429
430	  The workaround is to verify that the Stage 1 translation
431	  doesn't generate a fault before handling the Stage 2 fault.
432	  Please note that this does not necessarily enable the workaround,
433	  as it depends on the alternative framework, which will only patch
434	  the kernel if an affected CPU is detected.
435
436	  If unsure, say Y.
437
438config ARM64_ERRATUM_845719
439	bool "Cortex-A53: 845719: a load might read incorrect data"
440	depends on COMPAT
441	default y
442	help
443	  This option adds an alternative code sequence to work around ARM
444	  erratum 845719 on Cortex-A53 parts up to r0p4.
445
446	  When running a compat (AArch32) userspace on an affected Cortex-A53
447	  part, a load at EL0 from a virtual address that matches the bottom 32
448	  bits of the virtual address used by a recent load at (AArch64) EL1
449	  might return incorrect data.
450
451	  The workaround is to write the contextidr_el1 register on exception
452	  return to a 32-bit task.
453	  Please note that this does not necessarily enable the workaround,
454	  as it depends on the alternative framework, which will only patch
455	  the kernel if an affected CPU is detected.
456
457	  If unsure, say Y.
458
459config ARM64_ERRATUM_843419
460	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
461	default y
462	select ARM64_MODULE_PLTS if MODULES
463	help
464	  This option links the kernel with '--fix-cortex-a53-843419' and
465	  enables PLT support to replace certain ADRP instructions, which can
466	  cause subsequent memory accesses to use an incorrect address on
467	  Cortex-A53 parts up to r0p4.
468
469	  If unsure, say Y.
470
471config ARM64_ERRATUM_1024718
472	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
473	default y
474	help
475	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
476
477	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect
478	  update of the hardware dirty bit when the DBM/AP bits are updated
479	  without a break-before-make. The workaround is to disable the usage
480	  of hardware DBM locally on the affected cores. CPUs not affected by
481	  this erratum will continue to use the feature.
482
483	  If unsure, say Y.
484
485config ARM64_ERRATUM_1418040
486	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
487	default y
488	depends on COMPAT
489	help
490	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
491	  errata 1188873 and 1418040.
492
493	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
494	  cause register corruption when accessing the timer registers
495	  from AArch32 userspace.
496
497	  If unsure, say Y.
498
499config ARM64_ERRATUM_1165522
500	bool "Cortex-A76: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
501	default y
502	help
503	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
504
505	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
506	  corrupted TLBs by speculating an AT instruction during a guest
507	  context switch.
508
509	  If unsure, say Y.
510
511config ARM64_ERRATUM_1286807
512	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
513	default y
514	select ARM64_WORKAROUND_REPEAT_TLBI
515	help
516	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
517
518	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
519	  address for a cacheable mapping of a location is being
520	  accessed by a core while another core is remapping the virtual
521	  address to a new physical page using the recommended
522	  break-before-make sequence, then under very rare circumstances
523	  TLBI+DSB completes before a read using the translation being
524	  invalidated has been observed by other observers. The
525	  workaround repeats the TLBI+DSB operation.
526
527	  If unsure, say Y.
528
529config ARM64_ERRATUM_1463225
530	bool "Cortex-A76: Software Step might prevent interrupt recognition"
531	default y
532	help
533	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
534
535	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
536	  of a system call instruction (SVC) can prevent recognition of
537	  subsequent interrupts when software stepping is disabled in the
538	  exception handler of the system call and either kernel debugging
539	  is enabled or VHE is in use.
540
541	  Work around the erratum by triggering a dummy step exception
542	  when handling a system call from a task that is being stepped
543	  in a VHE configuration of the kernel.
544
545	  If unsure, say Y.
546
547config CAVIUM_ERRATUM_22375
548	bool "Cavium erratum 22375, 24313"
549	default y
550	help
551	  Enable workaround for errata 22375 and 24313.
552
553	  This implements two gicv3-its errata workarounds for ThunderX. Both
554	  with a small impact affecting only ITS table allocation.
555
556	    erratum 22375: only alloc 8MB table size
557	    erratum 24313: ignore memory access type
558
559	  The fixes are in ITS initialization and basically ignore memory access
560	  type and table size provided by the TYPER and BASER registers.
561
562	  If unsure, say Y.
563
564config CAVIUM_ERRATUM_23144
565	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
566	depends on NUMA
567	default y
568	help
569	  ITS SYNC command hang for cross node io and collections/cpu mapping.
570
571	  If unsure, say Y.
572
573config CAVIUM_ERRATUM_23154
574	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
575	default y
576	help
577	  The gicv3 of ThunderX requires a modified version for
578	  reading the IAR status to ensure data synchronization
579	  (access to icc_iar1_el1 is not sync'ed before and after).
580
581	  If unsure, say Y.
582
583config CAVIUM_ERRATUM_27456
584	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
585	default y
586	help
587	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
588	  instructions may cause the icache to become corrupted if it
589	  contains data for a non-current ASID.  The fix is to
590	  invalidate the icache when changing the mm context.
591
592	  If unsure, say Y.
593
594config CAVIUM_ERRATUM_30115
595	bool "Cavium erratum 30115: Guest may disable interrupts in host"
596	default y
597	help
598	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
599	  1.2, and T83 Pass 1.0, KVM guest execution may disable
600	  interrupts in host. Trapping both GICv3 group-0 and group-1
601	  accesses sidesteps the issue.
602
603	  If unsure, say Y.
604
605config QCOM_FALKOR_ERRATUM_1003
606	bool "Falkor E1003: Incorrect translation due to ASID change"
607	default y
608	help
609	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
610	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
611	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
612	  then only for entries in the walk cache, since the leaf translation
613	  is unchanged. Work around the erratum by invalidating the walk cache
614	  entries for the trampoline before entering the kernel proper.
615
616config ARM64_WORKAROUND_REPEAT_TLBI
617	bool
618
619config QCOM_FALKOR_ERRATUM_1009
620	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
621	default y
622	select ARM64_WORKAROUND_REPEAT_TLBI
623	help
624	  On Falkor v1, the CPU may prematurely complete a DSB following a
625	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
626	  one more time to fix the issue.
627
628	  If unsure, say Y.
629
630config QCOM_QDF2400_ERRATUM_0065
631	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
632	default y
633	help
634	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
635	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
636	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
637
638	  If unsure, say Y.
639
640config SOCIONEXT_SYNQUACER_PREITS
641	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
642	default y
643	help
644	  Socionext Synquacer SoCs implement a separate h/w block to generate
645	  MSI doorbell writes with non-zero values for the device ID.
646
647	  If unsure, say Y.
648
649config HISILICON_ERRATUM_161600802
650	bool "Hip07 161600802: Erroneous redistributor VLPI base"
651	default y
652	help
653	  The HiSilicon Hip07 SoC uses the wrong redistributor base
654	  when issued ITS commands such as VMOVP and VMAPP, and requires
655	  a 128kB offset to be applied to the target address in this commands.
656
657	  If unsure, say Y.
658
659config QCOM_FALKOR_ERRATUM_E1041
660	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
661	default y
662	help
663	  Falkor CPU may speculatively fetch instructions from an improper
664	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
665	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
666
667	  If unsure, say Y.
668
669config FUJITSU_ERRATUM_010001
670	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
671	default y
672	help
673	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
674	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
675	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
676	  This fault occurs under a specific hardware condition when a
677	  load/store instruction performs an address translation using:
678	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
679	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
680	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
681	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
682
683	  The workaround is to ensure these bits are clear in TCR_ELx.
684	  The workaround only affects the Fujitsu-A64FX.
685
686	  If unsure, say Y.
687
688endmenu
689
690
691choice
692	prompt "Page size"
693	default ARM64_4K_PAGES
694	help
695	  Page size (translation granule) configuration.
696
697config ARM64_4K_PAGES
698	bool "4KB"
699	help
700	  This feature enables 4KB pages support.
701
702config ARM64_16K_PAGES
703	bool "16KB"
704	help
705	  The system will use 16KB pages support. AArch32 emulation
706	  requires applications compiled with 16K (or a multiple of 16K)
707	  aligned segments.
708
709config ARM64_64K_PAGES
710	bool "64KB"
711	help
712	  This feature enables 64KB pages support (4KB by default)
713	  allowing only two levels of page tables and faster TLB
714	  look-up. AArch32 emulation requires applications compiled
715	  with 64K aligned segments.
716
717endchoice
718
719choice
720	prompt "Virtual address space size"
721	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
722	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
723	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
724	help
725	  Allows choosing one of multiple possible virtual address
726	  space sizes. The level of translation table is determined by
727	  a combination of page size and virtual address space size.
728
729config ARM64_VA_BITS_36
730	bool "36-bit" if EXPERT
731	depends on ARM64_16K_PAGES
732
733config ARM64_VA_BITS_39
734	bool "39-bit"
735	depends on ARM64_4K_PAGES
736
737config ARM64_VA_BITS_42
738	bool "42-bit"
739	depends on ARM64_64K_PAGES
740
741config ARM64_VA_BITS_47
742	bool "47-bit"
743	depends on ARM64_16K_PAGES
744
745config ARM64_VA_BITS_48
746	bool "48-bit"
747
748config ARM64_USER_VA_BITS_52
749	bool "52-bit (user)"
750	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
751	help
752	  Enable 52-bit virtual addressing for userspace when explicitly
753	  requested via a hint to mmap(). The kernel will continue to
754	  use 48-bit virtual addresses for its own mappings.
755
756	  NOTE: Enabling 52-bit virtual addressing in conjunction with
757	  ARMv8.3 Pointer Authentication will result in the PAC being
758	  reduced from 7 bits to 3 bits, which may have a significant
759	  impact on its susceptibility to brute-force attacks.
760
761	  If unsure, select 48-bit virtual addressing instead.
762
763endchoice
764
765config ARM64_FORCE_52BIT
766	bool "Force 52-bit virtual addresses for userspace"
767	depends on ARM64_USER_VA_BITS_52 && EXPERT
768	help
769	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
770	  to maintain compatibility with older software by providing 48-bit VAs
771	  unless a hint is supplied to mmap.
772
773	  This configuration option disables the 48-bit compatibility logic, and
774	  forces all userspace addresses to be 52-bit on HW that supports it. One
775	  should only enable this configuration option for stress testing userspace
776	  memory management code. If unsure say N here.
777
778config ARM64_VA_BITS
779	int
780	default 36 if ARM64_VA_BITS_36
781	default 39 if ARM64_VA_BITS_39
782	default 42 if ARM64_VA_BITS_42
783	default 47 if ARM64_VA_BITS_47
784	default 48 if ARM64_VA_BITS_48 || ARM64_USER_VA_BITS_52
785
786choice
787	prompt "Physical address space size"
788	default ARM64_PA_BITS_48
789	help
790	  Choose the maximum physical address range that the kernel will
791	  support.
792
793config ARM64_PA_BITS_48
794	bool "48-bit"
795
796config ARM64_PA_BITS_52
797	bool "52-bit (ARMv8.2)"
798	depends on ARM64_64K_PAGES
799	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
800	help
801	  Enable support for a 52-bit physical address space, introduced as
802	  part of the ARMv8.2-LPA extension.
803
804	  With this enabled, the kernel will also continue to work on CPUs that
805	  do not support ARMv8.2-LPA, but with some added memory overhead (and
806	  minor performance overhead).
807
808endchoice
809
810config ARM64_PA_BITS
811	int
812	default 48 if ARM64_PA_BITS_48
813	default 52 if ARM64_PA_BITS_52
814
815config CPU_BIG_ENDIAN
816       bool "Build big-endian kernel"
817       help
818         Say Y if you plan on running a kernel in big-endian mode.
819
820config SCHED_MC
821	bool "Multi-core scheduler support"
822	help
823	  Multi-core scheduler support improves the CPU scheduler's decision
824	  making when dealing with multi-core CPU chips at a cost of slightly
825	  increased overhead in some places. If unsure say N here.
826
827config SCHED_SMT
828	bool "SMT scheduler support"
829	help
830	  Improves the CPU scheduler's decision making when dealing with
831	  MultiThreading at a cost of slightly increased overhead in some
832	  places. If unsure say N here.
833
834config NR_CPUS
835	int "Maximum number of CPUs (2-4096)"
836	range 2 4096
837	default "256"
838
839config HOTPLUG_CPU
840	bool "Support for hot-pluggable CPUs"
841	select GENERIC_IRQ_MIGRATION
842	help
843	  Say Y here to experiment with turning CPUs off and on.  CPUs
844	  can be controlled through /sys/devices/system/cpu.
845
846# Common NUMA Features
847config NUMA
848	bool "Numa Memory Allocation and Scheduler Support"
849	select ACPI_NUMA if ACPI
850	select OF_NUMA
851	help
852	  Enable NUMA (Non Uniform Memory Access) support.
853
854	  The kernel will try to allocate memory used by a CPU on the
855	  local memory of the CPU and add some more
856	  NUMA awareness to the kernel.
857
858config NODES_SHIFT
859	int "Maximum NUMA Nodes (as a power of 2)"
860	range 1 10
861	default "2"
862	depends on NEED_MULTIPLE_NODES
863	help
864	  Specify the maximum number of NUMA Nodes available on the target
865	  system.  Increases memory reserved to accommodate various tables.
866
867config USE_PERCPU_NUMA_NODE_ID
868	def_bool y
869	depends on NUMA
870
871config HAVE_SETUP_PER_CPU_AREA
872	def_bool y
873	depends on NUMA
874
875config NEED_PER_CPU_EMBED_FIRST_CHUNK
876	def_bool y
877	depends on NUMA
878
879config HOLES_IN_ZONE
880	def_bool y
881
882source "kernel/Kconfig.hz"
883
884config ARCH_SUPPORTS_DEBUG_PAGEALLOC
885	def_bool y
886
887config ARCH_SPARSEMEM_ENABLE
888	def_bool y
889	select SPARSEMEM_VMEMMAP_ENABLE
890
891config ARCH_SPARSEMEM_DEFAULT
892	def_bool ARCH_SPARSEMEM_ENABLE
893
894config ARCH_SELECT_MEMORY_MODEL
895	def_bool ARCH_SPARSEMEM_ENABLE
896
897config ARCH_FLATMEM_ENABLE
898	def_bool !NUMA
899
900config HAVE_ARCH_PFN_VALID
901	def_bool y
902
903config HW_PERF_EVENTS
904	def_bool y
905	depends on ARM_PMU
906
907config SYS_SUPPORTS_HUGETLBFS
908	def_bool y
909
910config ARCH_WANT_HUGE_PMD_SHARE
911
912config ARCH_HAS_CACHE_LINE_SIZE
913	def_bool y
914
915config ARCH_ENABLE_SPLIT_PMD_PTLOCK
916	def_bool y if PGTABLE_LEVELS > 2
917
918config SECCOMP
919	bool "Enable seccomp to safely compute untrusted bytecode"
920	---help---
921	  This kernel feature is useful for number crunching applications
922	  that may need to compute untrusted bytecode during their
923	  execution. By using pipes or other transports made available to
924	  the process as file descriptors supporting the read/write
925	  syscalls, it's possible to isolate those applications in
926	  their own address space using seccomp. Once seccomp is
927	  enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
928	  and the task is only allowed to execute a few safe syscalls
929	  defined by each seccomp mode.
930
931config PARAVIRT
932	bool "Enable paravirtualization code"
933	help
934	  This changes the kernel so it can modify itself when it is run
935	  under a hypervisor, potentially improving performance significantly
936	  over full virtualization.
937
938config PARAVIRT_TIME_ACCOUNTING
939	bool "Paravirtual steal time accounting"
940	select PARAVIRT
941	help
942	  Select this option to enable fine granularity task steal time
943	  accounting. Time spent executing other tasks in parallel with
944	  the current vCPU is discounted from the vCPU power. To account for
945	  that, there can be a small performance impact.
946
947	  If in doubt, say N here.
948
949config KEXEC
950	depends on PM_SLEEP_SMP
951	select KEXEC_CORE
952	bool "kexec system call"
953	---help---
954	  kexec is a system call that implements the ability to shutdown your
955	  current kernel, and to start another kernel.  It is like a reboot
956	  but it is independent of the system firmware.   And like a reboot
957	  you can start any kernel with it, not just Linux.
958
959config KEXEC_FILE
960	bool "kexec file based system call"
961	select KEXEC_CORE
962	help
963	  This is new version of kexec system call. This system call is
964	  file based and takes file descriptors as system call argument
965	  for kernel and initramfs as opposed to list of segments as
966	  accepted by previous system call.
967
968config KEXEC_VERIFY_SIG
969	bool "Verify kernel signature during kexec_file_load() syscall"
970	depends on KEXEC_FILE
971	help
972	  Select this option to verify a signature with loaded kernel
973	  image. If configured, any attempt of loading a image without
974	  valid signature will fail.
975
976	  In addition to that option, you need to enable signature
977	  verification for the corresponding kernel image type being
978	  loaded in order for this to work.
979
980config KEXEC_IMAGE_VERIFY_SIG
981	bool "Enable Image signature verification support"
982	default y
983	depends on KEXEC_VERIFY_SIG
984	depends on EFI && SIGNED_PE_FILE_VERIFICATION
985	help
986	  Enable Image signature verification support.
987
988comment "Support for PE file signature verification disabled"
989	depends on KEXEC_VERIFY_SIG
990	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
991
992config CRASH_DUMP
993	bool "Build kdump crash kernel"
994	help
995	  Generate crash dump after being started by kexec. This should
996	  be normally only set in special crash dump kernels which are
997	  loaded in the main kernel with kexec-tools into a specially
998	  reserved region and then later executed after a crash by
999	  kdump/kexec.
1000
1001	  For more details see Documentation/admin-guide/kdump/kdump.rst
1002
1003config XEN_DOM0
1004	def_bool y
1005	depends on XEN
1006
1007config XEN
1008	bool "Xen guest support on ARM64"
1009	depends on ARM64 && OF
1010	select SWIOTLB_XEN
1011	select PARAVIRT
1012	help
1013	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1014
1015config FORCE_MAX_ZONEORDER
1016	int
1017	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
1018	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
1019	default "11"
1020	help
1021	  The kernel memory allocator divides physically contiguous memory
1022	  blocks into "zones", where each zone is a power of two number of
1023	  pages.  This option selects the largest power of two that the kernel
1024	  keeps in the memory allocator.  If you need to allocate very large
1025	  blocks of physically contiguous memory, then you may need to
1026	  increase this value.
1027
1028	  This config option is actually maximum order plus one. For example,
1029	  a value of 11 means that the largest free memory block is 2^10 pages.
1030
1031	  We make sure that we can allocate upto a HugePage size for each configuration.
1032	  Hence we have :
1033		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1034
1035	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1036	  4M allocations matching the default size used by generic code.
1037
1038config UNMAP_KERNEL_AT_EL0
1039	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1040	default y
1041	help
1042	  Speculation attacks against some high-performance processors can
1043	  be used to bypass MMU permission checks and leak kernel data to
1044	  userspace. This can be defended against by unmapping the kernel
1045	  when running in userspace, mapping it back in on exception entry
1046	  via a trampoline page in the vector table.
1047
1048	  If unsure, say Y.
1049
1050config HARDEN_BRANCH_PREDICTOR
1051	bool "Harden the branch predictor against aliasing attacks" if EXPERT
1052	default y
1053	help
1054	  Speculation attacks against some high-performance processors rely on
1055	  being able to manipulate the branch predictor for a victim context by
1056	  executing aliasing branches in the attacker context.  Such attacks
1057	  can be partially mitigated against by clearing internal branch
1058	  predictor state and limiting the prediction logic in some situations.
1059
1060	  This config option will take CPU-specific actions to harden the
1061	  branch predictor against aliasing attacks and may rely on specific
1062	  instruction sequences or control bits being set by the system
1063	  firmware.
1064
1065	  If unsure, say Y.
1066
1067config HARDEN_EL2_VECTORS
1068	bool "Harden EL2 vector mapping against system register leak" if EXPERT
1069	default y
1070	help
1071	  Speculation attacks against some high-performance processors can
1072	  be used to leak privileged information such as the vector base
1073	  register, resulting in a potential defeat of the EL2 layout
1074	  randomization.
1075
1076	  This config option will map the vectors to a fixed location,
1077	  independent of the EL2 code mapping, so that revealing VBAR_EL2
1078	  to an attacker does not give away any extra information. This
1079	  only gets enabled on affected CPUs.
1080
1081	  If unsure, say Y.
1082
1083config ARM64_SSBD
1084	bool "Speculative Store Bypass Disable" if EXPERT
1085	default y
1086	help
1087	  This enables mitigation of the bypassing of previous stores
1088	  by speculative loads.
1089
1090	  If unsure, say Y.
1091
1092config RODATA_FULL_DEFAULT_ENABLED
1093	bool "Apply r/o permissions of VM areas also to their linear aliases"
1094	default y
1095	help
1096	  Apply read-only attributes of VM areas to the linear alias of
1097	  the backing pages as well. This prevents code or read-only data
1098	  from being modified (inadvertently or intentionally) via another
1099	  mapping of the same memory page. This additional enhancement can
1100	  be turned off at runtime by passing rodata=[off|on] (and turned on
1101	  with rodata=full if this option is set to 'n')
1102
1103	  This requires the linear region to be mapped down to pages,
1104	  which may adversely affect performance in some cases.
1105
1106config ARM64_SW_TTBR0_PAN
1107	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1108	help
1109	  Enabling this option prevents the kernel from accessing
1110	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1111	  zeroed area and reserved ASID. The user access routines
1112	  restore the valid TTBR0_EL1 temporarily.
1113
1114menuconfig COMPAT
1115	bool "Kernel support for 32-bit EL0"
1116	depends on ARM64_4K_PAGES || EXPERT
1117	select COMPAT_BINFMT_ELF if BINFMT_ELF
1118	select HAVE_UID16
1119	select OLD_SIGSUSPEND3
1120	select COMPAT_OLD_SIGACTION
1121	help
1122	  This option enables support for a 32-bit EL0 running under a 64-bit
1123	  kernel at EL1. AArch32-specific components such as system calls,
1124	  the user helper functions, VFP support and the ptrace interface are
1125	  handled appropriately by the kernel.
1126
1127	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1128	  that you will only be able to execute AArch32 binaries that were compiled
1129	  with page size aligned segments.
1130
1131	  If you want to execute 32-bit userspace applications, say Y.
1132
1133if COMPAT
1134
1135config KUSER_HELPERS
1136	bool "Enable kuser helpers page for 32 bit applications"
1137	default y
1138	help
1139	  Warning: disabling this option may break 32-bit user programs.
1140
1141	  Provide kuser helpers to compat tasks. The kernel provides
1142	  helper code to userspace in read only form at a fixed location
1143	  to allow userspace to be independent of the CPU type fitted to
1144	  the system. This permits binaries to be run on ARMv4 through
1145	  to ARMv8 without modification.
1146
1147	  See Documentation/arm/kernel_user_helpers.rst for details.
1148
1149	  However, the fixed address nature of these helpers can be used
1150	  by ROP (return orientated programming) authors when creating
1151	  exploits.
1152
1153	  If all of the binaries and libraries which run on your platform
1154	  are built specifically for your platform, and make no use of
1155	  these helpers, then you can turn this option off to hinder
1156	  such exploits. However, in that case, if a binary or library
1157	  relying on those helpers is run, it will not function correctly.
1158
1159	  Say N here only if you are absolutely certain that you do not
1160	  need these helpers; otherwise, the safe option is to say Y.
1161
1162
1163menuconfig ARMV8_DEPRECATED
1164	bool "Emulate deprecated/obsolete ARMv8 instructions"
1165	depends on SYSCTL
1166	help
1167	  Legacy software support may require certain instructions
1168	  that have been deprecated or obsoleted in the architecture.
1169
1170	  Enable this config to enable selective emulation of these
1171	  features.
1172
1173	  If unsure, say Y
1174
1175if ARMV8_DEPRECATED
1176
1177config SWP_EMULATION
1178	bool "Emulate SWP/SWPB instructions"
1179	help
1180	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1181	  they are always undefined. Say Y here to enable software
1182	  emulation of these instructions for userspace using LDXR/STXR.
1183
1184	  In some older versions of glibc [<=2.8] SWP is used during futex
1185	  trylock() operations with the assumption that the code will not
1186	  be preempted. This invalid assumption may be more likely to fail
1187	  with SWP emulation enabled, leading to deadlock of the user
1188	  application.
1189
1190	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1191	  on an external transaction monitoring block called a global
1192	  monitor to maintain update atomicity. If your system does not
1193	  implement a global monitor, this option can cause programs that
1194	  perform SWP operations to uncached memory to deadlock.
1195
1196	  If unsure, say Y
1197
1198config CP15_BARRIER_EMULATION
1199	bool "Emulate CP15 Barrier instructions"
1200	help
1201	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1202	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1203	  strongly recommended to use the ISB, DSB, and DMB
1204	  instructions instead.
1205
1206	  Say Y here to enable software emulation of these
1207	  instructions for AArch32 userspace code. When this option is
1208	  enabled, CP15 barrier usage is traced which can help
1209	  identify software that needs updating.
1210
1211	  If unsure, say Y
1212
1213config SETEND_EMULATION
1214	bool "Emulate SETEND instruction"
1215	help
1216	  The SETEND instruction alters the data-endianness of the
1217	  AArch32 EL0, and is deprecated in ARMv8.
1218
1219	  Say Y here to enable software emulation of the instruction
1220	  for AArch32 userspace code.
1221
1222	  Note: All the cpus on the system must have mixed endian support at EL0
1223	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1224	  endian - is hotplugged in after this feature has been enabled, there could
1225	  be unexpected results in the applications.
1226
1227	  If unsure, say Y
1228endif
1229
1230endif
1231
1232menu "ARMv8.1 architectural features"
1233
1234config ARM64_HW_AFDBM
1235	bool "Support for hardware updates of the Access and Dirty page flags"
1236	default y
1237	help
1238	  The ARMv8.1 architecture extensions introduce support for
1239	  hardware updates of the access and dirty information in page
1240	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1241	  capable processors, accesses to pages with PTE_AF cleared will
1242	  set this bit instead of raising an access flag fault.
1243	  Similarly, writes to read-only pages with the DBM bit set will
1244	  clear the read-only bit (AP[2]) instead of raising a
1245	  permission fault.
1246
1247	  Kernels built with this configuration option enabled continue
1248	  to work on pre-ARMv8.1 hardware and the performance impact is
1249	  minimal. If unsure, say Y.
1250
1251config ARM64_PAN
1252	bool "Enable support for Privileged Access Never (PAN)"
1253	default y
1254	help
1255	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1256	 prevents the kernel or hypervisor from accessing user-space (EL0)
1257	 memory directly.
1258
1259	 Choosing this option will cause any unprotected (not using
1260	 copy_to_user et al) memory access to fail with a permission fault.
1261
1262	 The feature is detected at runtime, and will remain as a 'nop'
1263	 instruction if the cpu does not implement the feature.
1264
1265config ARM64_LSE_ATOMICS
1266	bool "Atomic instructions"
1267	default y
1268	help
1269	  As part of the Large System Extensions, ARMv8.1 introduces new
1270	  atomic instructions that are designed specifically to scale in
1271	  very large systems.
1272
1273	  Say Y here to make use of these instructions for the in-kernel
1274	  atomic routines. This incurs a small overhead on CPUs that do
1275	  not support these instructions and requires the kernel to be
1276	  built with binutils >= 2.25 in order for the new instructions
1277	  to be used.
1278
1279config ARM64_VHE
1280	bool "Enable support for Virtualization Host Extensions (VHE)"
1281	default y
1282	help
1283	  Virtualization Host Extensions (VHE) allow the kernel to run
1284	  directly at EL2 (instead of EL1) on processors that support
1285	  it. This leads to better performance for KVM, as they reduce
1286	  the cost of the world switch.
1287
1288	  Selecting this option allows the VHE feature to be detected
1289	  at runtime, and does not affect processors that do not
1290	  implement this feature.
1291
1292endmenu
1293
1294menu "ARMv8.2 architectural features"
1295
1296config ARM64_UAO
1297	bool "Enable support for User Access Override (UAO)"
1298	default y
1299	help
1300	  User Access Override (UAO; part of the ARMv8.2 Extensions)
1301	  causes the 'unprivileged' variant of the load/store instructions to
1302	  be overridden to be privileged.
1303
1304	  This option changes get_user() and friends to use the 'unprivileged'
1305	  variant of the load/store instructions. This ensures that user-space
1306	  really did have access to the supplied memory. When addr_limit is
1307	  set to kernel memory the UAO bit will be set, allowing privileged
1308	  access to kernel memory.
1309
1310	  Choosing this option will cause copy_to_user() et al to use user-space
1311	  memory permissions.
1312
1313	  The feature is detected at runtime, the kernel will use the
1314	  regular load/store instructions if the cpu does not implement the
1315	  feature.
1316
1317config ARM64_PMEM
1318	bool "Enable support for persistent memory"
1319	select ARCH_HAS_PMEM_API
1320	select ARCH_HAS_UACCESS_FLUSHCACHE
1321	help
1322	  Say Y to enable support for the persistent memory API based on the
1323	  ARMv8.2 DCPoP feature.
1324
1325	  The feature is detected at runtime, and the kernel will use DC CVAC
1326	  operations if DC CVAP is not supported (following the behaviour of
1327	  DC CVAP itself if the system does not define a point of persistence).
1328
1329config ARM64_RAS_EXTN
1330	bool "Enable support for RAS CPU Extensions"
1331	default y
1332	help
1333	  CPUs that support the Reliability, Availability and Serviceability
1334	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1335	  errors, classify them and report them to software.
1336
1337	  On CPUs with these extensions system software can use additional
1338	  barriers to determine if faults are pending and read the
1339	  classification from a new set of registers.
1340
1341	  Selecting this feature will allow the kernel to use these barriers
1342	  and access the new registers if the system supports the extension.
1343	  Platform RAS features may additionally depend on firmware support.
1344
1345config ARM64_CNP
1346	bool "Enable support for Common Not Private (CNP) translations"
1347	default y
1348	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1349	help
1350	  Common Not Private (CNP) allows translation table entries to
1351	  be shared between different PEs in the same inner shareable
1352	  domain, so the hardware can use this fact to optimise the
1353	  caching of such entries in the TLB.
1354
1355	  Selecting this option allows the CNP feature to be detected
1356	  at runtime, and does not affect PEs that do not implement
1357	  this feature.
1358
1359endmenu
1360
1361menu "ARMv8.3 architectural features"
1362
1363config ARM64_PTR_AUTH
1364	bool "Enable support for pointer authentication"
1365	default y
1366	depends on !KVM || ARM64_VHE
1367	help
1368	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1369	  instructions for signing and authenticating pointers against secret
1370	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1371	  and other attacks.
1372
1373	  This option enables these instructions at EL0 (i.e. for userspace).
1374
1375	  Choosing this option will cause the kernel to initialise secret keys
1376	  for each process at exec() time, with these keys being
1377	  context-switched along with the process.
1378
1379	  The feature is detected at runtime. If the feature is not present in
1380	  hardware it will not be advertised to userspace/KVM guest nor will it
1381	  be enabled. However, KVM guest also require VHE mode and hence
1382	  CONFIG_ARM64_VHE=y option to use this feature.
1383
1384endmenu
1385
1386config ARM64_SVE
1387	bool "ARM Scalable Vector Extension support"
1388	default y
1389	depends on !KVM || ARM64_VHE
1390	help
1391	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1392	  execution state which complements and extends the SIMD functionality
1393	  of the base architecture to support much larger vectors and to enable
1394	  additional vectorisation opportunities.
1395
1396	  To enable use of this extension on CPUs that implement it, say Y.
1397
1398	  On CPUs that support the SVE2 extensions, this option will enable
1399	  those too.
1400
1401	  Note that for architectural reasons, firmware _must_ implement SVE
1402	  support when running on SVE capable hardware.  The required support
1403	  is present in:
1404
1405	    * version 1.5 and later of the ARM Trusted Firmware
1406	    * the AArch64 boot wrapper since commit 5e1261e08abf
1407	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1408
1409	  For other firmware implementations, consult the firmware documentation
1410	  or vendor.
1411
1412	  If you need the kernel to boot on SVE-capable hardware with broken
1413	  firmware, you may need to say N here until you get your firmware
1414	  fixed.  Otherwise, you may experience firmware panics or lockups when
1415	  booting the kernel.  If unsure and you are not observing these
1416	  symptoms, you should assume that it is safe to say Y.
1417
1418	  CPUs that support SVE are architecturally required to support the
1419	  Virtualization Host Extensions (VHE), so the kernel makes no
1420	  provision for supporting SVE alongside KVM without VHE enabled.
1421	  Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
1422	  KVM in the same kernel image.
1423
1424config ARM64_MODULE_PLTS
1425	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1426	depends on MODULES
1427	select HAVE_MOD_ARCH_SPECIFIC
1428	help
1429	  Allocate PLTs when loading modules so that jumps and calls whose
1430	  targets are too far away for their relative offsets to be encoded
1431	  in the instructions themselves can be bounced via veneers in the
1432	  module's PLT. This allows modules to be allocated in the generic
1433	  vmalloc area after the dedicated module memory area has been
1434	  exhausted.
1435
1436	  When running with address space randomization (KASLR), the module
1437	  region itself may be too far away for ordinary relative jumps and
1438	  calls, and so in that case, module PLTs are required and cannot be
1439	  disabled.
1440
1441	  Specific errata workaround(s) might also force module PLTs to be
1442	  enabled (ARM64_ERRATUM_843419).
1443
1444config ARM64_PSEUDO_NMI
1445	bool "Support for NMI-like interrupts"
1446	select CONFIG_ARM_GIC_V3
1447	help
1448	  Adds support for mimicking Non-Maskable Interrupts through the use of
1449	  GIC interrupt priority. This support requires version 3 or later of
1450	  ARM GIC.
1451
1452	  This high priority configuration for interrupts needs to be
1453	  explicitly enabled by setting the kernel parameter
1454	  "irqchip.gicv3_pseudo_nmi" to 1.
1455
1456	  If unsure, say N
1457
1458if ARM64_PSEUDO_NMI
1459config ARM64_DEBUG_PRIORITY_MASKING
1460	bool "Debug interrupt priority masking"
1461	help
1462	  This adds runtime checks to functions enabling/disabling
1463	  interrupts when using priority masking. The additional checks verify
1464	  the validity of ICC_PMR_EL1 when calling concerned functions.
1465
1466	  If unsure, say N
1467endif
1468
1469config RELOCATABLE
1470	bool
1471	help
1472	  This builds the kernel as a Position Independent Executable (PIE),
1473	  which retains all relocation metadata required to relocate the
1474	  kernel binary at runtime to a different virtual address than the
1475	  address it was linked at.
1476	  Since AArch64 uses the RELA relocation format, this requires a
1477	  relocation pass at runtime even if the kernel is loaded at the
1478	  same address it was linked at.
1479
1480config RANDOMIZE_BASE
1481	bool "Randomize the address of the kernel image"
1482	select ARM64_MODULE_PLTS if MODULES
1483	select RELOCATABLE
1484	help
1485	  Randomizes the virtual address at which the kernel image is
1486	  loaded, as a security feature that deters exploit attempts
1487	  relying on knowledge of the location of kernel internals.
1488
1489	  It is the bootloader's job to provide entropy, by passing a
1490	  random u64 value in /chosen/kaslr-seed at kernel entry.
1491
1492	  When booting via the UEFI stub, it will invoke the firmware's
1493	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1494	  to the kernel proper. In addition, it will randomise the physical
1495	  location of the kernel Image as well.
1496
1497	  If unsure, say N.
1498
1499config RANDOMIZE_MODULE_REGION_FULL
1500	bool "Randomize the module region over a 4 GB range"
1501	depends on RANDOMIZE_BASE
1502	default y
1503	help
1504	  Randomizes the location of the module region inside a 4 GB window
1505	  covering the core kernel. This way, it is less likely for modules
1506	  to leak information about the location of core kernel data structures
1507	  but it does imply that function calls between modules and the core
1508	  kernel will need to be resolved via veneers in the module PLT.
1509
1510	  When this option is not set, the module region will be randomized over
1511	  a limited range that contains the [_stext, _etext] interval of the
1512	  core kernel, so branch relocations are always in range.
1513
1514config CC_HAVE_STACKPROTECTOR_SYSREG
1515	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1516
1517config STACKPROTECTOR_PER_TASK
1518	def_bool y
1519	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1520
1521endmenu
1522
1523menu "Boot options"
1524
1525config ARM64_ACPI_PARKING_PROTOCOL
1526	bool "Enable support for the ARM64 ACPI parking protocol"
1527	depends on ACPI
1528	help
1529	  Enable support for the ARM64 ACPI parking protocol. If disabled
1530	  the kernel will not allow booting through the ARM64 ACPI parking
1531	  protocol even if the corresponding data is present in the ACPI
1532	  MADT table.
1533
1534config CMDLINE
1535	string "Default kernel command string"
1536	default ""
1537	help
1538	  Provide a set of default command-line options at build time by
1539	  entering them here. As a minimum, you should specify the the
1540	  root device (e.g. root=/dev/nfs).
1541
1542config CMDLINE_FORCE
1543	bool "Always use the default kernel command string"
1544	help
1545	  Always use the default kernel command string, even if the boot
1546	  loader passes other arguments to the kernel.
1547	  This is useful if you cannot or don't want to change the
1548	  command-line options your boot loader passes to the kernel.
1549
1550config EFI_STUB
1551	bool
1552
1553config EFI
1554	bool "UEFI runtime support"
1555	depends on OF && !CPU_BIG_ENDIAN
1556	depends on KERNEL_MODE_NEON
1557	select ARCH_SUPPORTS_ACPI
1558	select LIBFDT
1559	select UCS2_STRING
1560	select EFI_PARAMS_FROM_FDT
1561	select EFI_RUNTIME_WRAPPERS
1562	select EFI_STUB
1563	select EFI_ARMSTUB
1564	default y
1565	help
1566	  This option provides support for runtime services provided
1567	  by UEFI firmware (such as non-volatile variables, realtime
1568          clock, and platform reset). A UEFI stub is also provided to
1569	  allow the kernel to be booted as an EFI application. This
1570	  is only useful on systems that have UEFI firmware.
1571
1572config DMI
1573	bool "Enable support for SMBIOS (DMI) tables"
1574	depends on EFI
1575	default y
1576	help
1577	  This enables SMBIOS/DMI feature for systems.
1578
1579	  This option is only useful on systems that have UEFI firmware.
1580	  However, even with this option, the resultant kernel should
1581	  continue to boot on existing non-UEFI platforms.
1582
1583endmenu
1584
1585config SYSVIPC_COMPAT
1586	def_bool y
1587	depends on COMPAT && SYSVIPC
1588
1589config ARCH_ENABLE_HUGEPAGE_MIGRATION
1590	def_bool y
1591	depends on HUGETLB_PAGE && MIGRATION
1592
1593menu "Power management options"
1594
1595source "kernel/power/Kconfig"
1596
1597config ARCH_HIBERNATION_POSSIBLE
1598	def_bool y
1599	depends on CPU_PM
1600
1601config ARCH_HIBERNATION_HEADER
1602	def_bool y
1603	depends on HIBERNATION
1604
1605config ARCH_SUSPEND_POSSIBLE
1606	def_bool y
1607
1608endmenu
1609
1610menu "CPU Power Management"
1611
1612source "drivers/cpuidle/Kconfig"
1613
1614source "drivers/cpufreq/Kconfig"
1615
1616endmenu
1617
1618source "drivers/firmware/Kconfig"
1619
1620source "drivers/acpi/Kconfig"
1621
1622source "arch/arm64/kvm/Kconfig"
1623
1624if CRYPTO
1625source "arch/arm64/crypto/Kconfig"
1626endif
1627