1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_WX 13 select ARCH_BINFMT_ELF_STATE 14 select ARCH_HAS_DEBUG_VIRTUAL 15 select ARCH_HAS_DEBUG_VM_PGTABLE 16 select ARCH_HAS_DEVMEM_IS_ALLOWED 17 select ARCH_HAS_DMA_PREP_COHERENT 18 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 19 select ARCH_HAS_FAST_MULTIPLIER 20 select ARCH_HAS_FORTIFY_SOURCE 21 select ARCH_HAS_GCOV_PROFILE_ALL 22 select ARCH_HAS_GIGANTIC_PAGE 23 select ARCH_HAS_KCOV 24 select ARCH_HAS_KEEPINITRD 25 select ARCH_HAS_MEMBARRIER_SYNC_CORE 26 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 27 select ARCH_HAS_PTE_DEVMAP 28 select ARCH_HAS_PTE_SPECIAL 29 select ARCH_HAS_SETUP_DMA_OPS 30 select ARCH_HAS_SET_DIRECT_MAP 31 select ARCH_HAS_SET_MEMORY 32 select ARCH_HAS_STRICT_KERNEL_RWX 33 select ARCH_HAS_STRICT_MODULE_RWX 34 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 35 select ARCH_HAS_SYNC_DMA_FOR_CPU 36 select ARCH_HAS_SYSCALL_WRAPPER 37 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 38 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 39 select ARCH_HAVE_ELF_PROT 40 select ARCH_HAVE_NMI_SAFE_CMPXCHG 41 select ARCH_INLINE_READ_LOCK if !PREEMPTION 42 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 43 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 44 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 45 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 46 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 47 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 48 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 49 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 50 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 51 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 52 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 53 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 54 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 55 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 56 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 57 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 58 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 59 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 60 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 61 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 62 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 63 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 64 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 65 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 66 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 67 select ARCH_KEEP_MEMBLOCK 68 select ARCH_USE_CMPXCHG_LOCKREF 69 select ARCH_USE_GNU_PROPERTY 70 select ARCH_USE_QUEUED_RWLOCKS 71 select ARCH_USE_QUEUED_SPINLOCKS 72 select ARCH_USE_SYM_ANNOTATIONS 73 select ARCH_SUPPORTS_MEMORY_FAILURE 74 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 75 select ARCH_SUPPORTS_ATOMIC_RMW 76 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 && (GCC_VERSION >= 50000 || CC_IS_CLANG) 77 select ARCH_SUPPORTS_NUMA_BALANCING 78 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 79 select ARCH_WANT_DEFAULT_BPF_JIT 80 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 81 select ARCH_WANT_FRAME_POINTERS 82 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 83 select ARCH_HAS_UBSAN_SANITIZE_ALL 84 select ARM_AMBA 85 select ARM_ARCH_TIMER 86 select ARM_GIC 87 select AUDIT_ARCH_COMPAT_GENERIC 88 select ARM_GIC_V2M if PCI 89 select ARM_GIC_V3 90 select ARM_GIC_V3_ITS if PCI 91 select ARM_PSCI_FW 92 select BUILDTIME_TABLE_SORT 93 select CLONE_BACKWARDS 94 select COMMON_CLK 95 select CPU_PM if (SUSPEND || CPU_IDLE) 96 select CRC32 97 select DCACHE_WORD_ACCESS 98 select DMA_DIRECT_REMAP 99 select EDAC_SUPPORT 100 select FRAME_POINTER 101 select GENERIC_ALLOCATOR 102 select GENERIC_ARCH_TOPOLOGY 103 select GENERIC_CLOCKEVENTS 104 select GENERIC_CLOCKEVENTS_BROADCAST 105 select GENERIC_CPU_AUTOPROBE 106 select GENERIC_CPU_VULNERABILITIES 107 select GENERIC_EARLY_IOREMAP 108 select GENERIC_IDLE_POLL_SETUP 109 select GENERIC_IRQ_MULTI_HANDLER 110 select GENERIC_IRQ_PROBE 111 select GENERIC_IRQ_SHOW 112 select GENERIC_IRQ_SHOW_LEVEL 113 select GENERIC_PCI_IOMAP 114 select GENERIC_PTDUMP 115 select GENERIC_SCHED_CLOCK 116 select GENERIC_SMP_IDLE_THREAD 117 select GENERIC_STRNCPY_FROM_USER 118 select GENERIC_STRNLEN_USER 119 select GENERIC_TIME_VSYSCALL 120 select GENERIC_GETTIMEOFDAY 121 select HANDLE_DOMAIN_IRQ 122 select HARDIRQS_SW_RESEND 123 select HAVE_PCI 124 select HAVE_ACPI_APEI if (ACPI && EFI) 125 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 126 select HAVE_ARCH_AUDITSYSCALL 127 select HAVE_ARCH_BITREVERSE 128 select HAVE_ARCH_COMPILER_H 129 select HAVE_ARCH_HUGE_VMAP 130 select HAVE_ARCH_JUMP_LABEL 131 select HAVE_ARCH_JUMP_LABEL_RELATIVE 132 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 133 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 134 select HAVE_ARCH_KGDB 135 select HAVE_ARCH_MMAP_RND_BITS 136 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 137 select HAVE_ARCH_PREL32_RELOCATIONS 138 select HAVE_ARCH_SECCOMP_FILTER 139 select HAVE_ARCH_STACKLEAK 140 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 141 select HAVE_ARCH_TRACEHOOK 142 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 143 select HAVE_ARCH_VMAP_STACK 144 select HAVE_ARM_SMCCC 145 select HAVE_ASM_MODVERSIONS 146 select HAVE_EBPF_JIT 147 select HAVE_C_RECORDMCOUNT 148 select HAVE_CMPXCHG_DOUBLE 149 select HAVE_CMPXCHG_LOCAL 150 select HAVE_CONTEXT_TRACKING 151 select HAVE_COPY_THREAD_TLS 152 select HAVE_DEBUG_BUGVERBOSE 153 select HAVE_DEBUG_KMEMLEAK 154 select HAVE_DMA_CONTIGUOUS 155 select HAVE_DYNAMIC_FTRACE 156 select HAVE_DYNAMIC_FTRACE_WITH_REGS \ 157 if $(cc-option,-fpatchable-function-entry=2) 158 select HAVE_EFFICIENT_UNALIGNED_ACCESS 159 select HAVE_FAST_GUP 160 select HAVE_FTRACE_MCOUNT_RECORD 161 select HAVE_FUNCTION_TRACER 162 select HAVE_FUNCTION_ERROR_INJECTION 163 select HAVE_FUNCTION_GRAPH_TRACER 164 select HAVE_GCC_PLUGINS 165 select HAVE_HW_BREAKPOINT if PERF_EVENTS 166 select HAVE_IRQ_TIME_ACCOUNTING 167 select HAVE_NMI 168 select HAVE_PATA_PLATFORM 169 select HAVE_PERF_EVENTS 170 select HAVE_PERF_REGS 171 select HAVE_PERF_USER_STACK_DUMP 172 select HAVE_REGS_AND_STACK_ACCESS_API 173 select HAVE_FUNCTION_ARG_ACCESS_API 174 select HAVE_FUTEX_CMPXCHG if FUTEX 175 select MMU_GATHER_RCU_TABLE_FREE 176 select HAVE_RSEQ 177 select HAVE_STACKPROTECTOR 178 select HAVE_SYSCALL_TRACEPOINTS 179 select HAVE_KPROBES 180 select HAVE_KRETPROBES 181 select HAVE_GENERIC_VDSO 182 select IOMMU_DMA if IOMMU_SUPPORT 183 select IRQ_DOMAIN 184 select IRQ_FORCED_THREADING 185 select MODULES_USE_ELF_RELA 186 select NEED_DMA_MAP_STATE 187 select NEED_SG_DMA_LENGTH 188 select OF 189 select OF_EARLY_FLATTREE 190 select PCI_DOMAINS_GENERIC if PCI 191 select PCI_ECAM if (ACPI && PCI) 192 select PCI_SYSCALL if PCI 193 select POWER_RESET 194 select POWER_SUPPLY 195 select SPARSE_IRQ 196 select SWIOTLB 197 select SYSCTL_EXCEPTION_TRACE 198 select THREAD_INFO_IN_TASK 199 help 200 ARM 64-bit (AArch64) Linux support. 201 202config 64BIT 203 def_bool y 204 205config MMU 206 def_bool y 207 208config ARM64_PAGE_SHIFT 209 int 210 default 16 if ARM64_64K_PAGES 211 default 14 if ARM64_16K_PAGES 212 default 12 213 214config ARM64_CONT_SHIFT 215 int 216 default 5 if ARM64_64K_PAGES 217 default 7 if ARM64_16K_PAGES 218 default 4 219 220config ARCH_MMAP_RND_BITS_MIN 221 default 14 if ARM64_64K_PAGES 222 default 16 if ARM64_16K_PAGES 223 default 18 224 225# max bits determined by the following formula: 226# VA_BITS - PAGE_SHIFT - 3 227config ARCH_MMAP_RND_BITS_MAX 228 default 19 if ARM64_VA_BITS=36 229 default 24 if ARM64_VA_BITS=39 230 default 27 if ARM64_VA_BITS=42 231 default 30 if ARM64_VA_BITS=47 232 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 233 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 234 default 33 if ARM64_VA_BITS=48 235 default 14 if ARM64_64K_PAGES 236 default 16 if ARM64_16K_PAGES 237 default 18 238 239config ARCH_MMAP_RND_COMPAT_BITS_MIN 240 default 7 if ARM64_64K_PAGES 241 default 9 if ARM64_16K_PAGES 242 default 11 243 244config ARCH_MMAP_RND_COMPAT_BITS_MAX 245 default 16 246 247config NO_IOPORT_MAP 248 def_bool y if !PCI 249 250config STACKTRACE_SUPPORT 251 def_bool y 252 253config ILLEGAL_POINTER_VALUE 254 hex 255 default 0xdead000000000000 256 257config LOCKDEP_SUPPORT 258 def_bool y 259 260config TRACE_IRQFLAGS_SUPPORT 261 def_bool y 262 263config GENERIC_BUG 264 def_bool y 265 depends on BUG 266 267config GENERIC_BUG_RELATIVE_POINTERS 268 def_bool y 269 depends on GENERIC_BUG 270 271config GENERIC_HWEIGHT 272 def_bool y 273 274config GENERIC_CSUM 275 def_bool y 276 277config GENERIC_CALIBRATE_DELAY 278 def_bool y 279 280config ZONE_DMA 281 bool "Support DMA zone" if EXPERT 282 default y 283 284config ZONE_DMA32 285 bool "Support DMA32 zone" if EXPERT 286 default y 287 288config ARCH_ENABLE_MEMORY_HOTPLUG 289 def_bool y 290 291config ARCH_ENABLE_MEMORY_HOTREMOVE 292 def_bool y 293 294config SMP 295 def_bool y 296 297config KERNEL_MODE_NEON 298 def_bool y 299 300config FIX_EARLYCON_MEM 301 def_bool y 302 303config PGTABLE_LEVELS 304 int 305 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 306 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 307 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 308 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 309 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 310 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 311 312config ARCH_SUPPORTS_UPROBES 313 def_bool y 314 315config ARCH_PROC_KCORE_TEXT 316 def_bool y 317 318config BROKEN_GAS_INST 319 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 320 321config KASAN_SHADOW_OFFSET 322 hex 323 depends on KASAN 324 default 0xdfffa00000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 325 default 0xdfffd00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 326 default 0xdffffe8000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 327 default 0xdfffffd000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 328 default 0xdffffffa00000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 329 default 0xefff900000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 330 default 0xefffc80000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 331 default 0xeffffe4000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 332 default 0xefffffc800000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 333 default 0xeffffff900000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 334 default 0xffffffffffffffff 335 336source "arch/arm64/Kconfig.platforms" 337 338menu "Kernel Features" 339 340menu "ARM errata workarounds via the alternatives framework" 341 342config ARM64_WORKAROUND_CLEAN_CACHE 343 bool 344 345config ARM64_ERRATUM_826319 346 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 347 default y 348 select ARM64_WORKAROUND_CLEAN_CACHE 349 help 350 This option adds an alternative code sequence to work around ARM 351 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 352 AXI master interface and an L2 cache. 353 354 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 355 and is unable to accept a certain write via this interface, it will 356 not progress on read data presented on the read data channel and the 357 system can deadlock. 358 359 The workaround promotes data cache clean instructions to 360 data cache clean-and-invalidate. 361 Please note that this does not necessarily enable the workaround, 362 as it depends on the alternative framework, which will only patch 363 the kernel if an affected CPU is detected. 364 365 If unsure, say Y. 366 367config ARM64_ERRATUM_827319 368 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 369 default y 370 select ARM64_WORKAROUND_CLEAN_CACHE 371 help 372 This option adds an alternative code sequence to work around ARM 373 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 374 master interface and an L2 cache. 375 376 Under certain conditions this erratum can cause a clean line eviction 377 to occur at the same time as another transaction to the same address 378 on the AMBA 5 CHI interface, which can cause data corruption if the 379 interconnect reorders the two transactions. 380 381 The workaround promotes data cache clean instructions to 382 data cache clean-and-invalidate. 383 Please note that this does not necessarily enable the workaround, 384 as it depends on the alternative framework, which will only patch 385 the kernel if an affected CPU is detected. 386 387 If unsure, say Y. 388 389config ARM64_ERRATUM_824069 390 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 391 default y 392 select ARM64_WORKAROUND_CLEAN_CACHE 393 help 394 This option adds an alternative code sequence to work around ARM 395 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 396 to a coherent interconnect. 397 398 If a Cortex-A53 processor is executing a store or prefetch for 399 write instruction at the same time as a processor in another 400 cluster is executing a cache maintenance operation to the same 401 address, then this erratum might cause a clean cache line to be 402 incorrectly marked as dirty. 403 404 The workaround promotes data cache clean instructions to 405 data cache clean-and-invalidate. 406 Please note that this option does not necessarily enable the 407 workaround, as it depends on the alternative framework, which will 408 only patch the kernel if an affected CPU is detected. 409 410 If unsure, say Y. 411 412config ARM64_ERRATUM_819472 413 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 414 default y 415 select ARM64_WORKAROUND_CLEAN_CACHE 416 help 417 This option adds an alternative code sequence to work around ARM 418 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 419 present when it is connected to a coherent interconnect. 420 421 If the processor is executing a load and store exclusive sequence at 422 the same time as a processor in another cluster is executing a cache 423 maintenance operation to the same address, then this erratum might 424 cause data corruption. 425 426 The workaround promotes data cache clean instructions to 427 data cache clean-and-invalidate. 428 Please note that this does not necessarily enable the workaround, 429 as it depends on the alternative framework, which will only patch 430 the kernel if an affected CPU is detected. 431 432 If unsure, say Y. 433 434config ARM64_ERRATUM_832075 435 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 436 default y 437 help 438 This option adds an alternative code sequence to work around ARM 439 erratum 832075 on Cortex-A57 parts up to r1p2. 440 441 Affected Cortex-A57 parts might deadlock when exclusive load/store 442 instructions to Write-Back memory are mixed with Device loads. 443 444 The workaround is to promote device loads to use Load-Acquire 445 semantics. 446 Please note that this does not necessarily enable the workaround, 447 as it depends on the alternative framework, which will only patch 448 the kernel if an affected CPU is detected. 449 450 If unsure, say Y. 451 452config ARM64_ERRATUM_834220 453 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 454 depends on KVM 455 default y 456 help 457 This option adds an alternative code sequence to work around ARM 458 erratum 834220 on Cortex-A57 parts up to r1p2. 459 460 Affected Cortex-A57 parts might report a Stage 2 translation 461 fault as the result of a Stage 1 fault for load crossing a 462 page boundary when there is a permission or device memory 463 alignment fault at Stage 1 and a translation fault at Stage 2. 464 465 The workaround is to verify that the Stage 1 translation 466 doesn't generate a fault before handling the Stage 2 fault. 467 Please note that this does not necessarily enable the workaround, 468 as it depends on the alternative framework, which will only patch 469 the kernel if an affected CPU is detected. 470 471 If unsure, say Y. 472 473config ARM64_ERRATUM_845719 474 bool "Cortex-A53: 845719: a load might read incorrect data" 475 depends on COMPAT 476 default y 477 help 478 This option adds an alternative code sequence to work around ARM 479 erratum 845719 on Cortex-A53 parts up to r0p4. 480 481 When running a compat (AArch32) userspace on an affected Cortex-A53 482 part, a load at EL0 from a virtual address that matches the bottom 32 483 bits of the virtual address used by a recent load at (AArch64) EL1 484 might return incorrect data. 485 486 The workaround is to write the contextidr_el1 register on exception 487 return to a 32-bit task. 488 Please note that this does not necessarily enable the workaround, 489 as it depends on the alternative framework, which will only patch 490 the kernel if an affected CPU is detected. 491 492 If unsure, say Y. 493 494config ARM64_ERRATUM_843419 495 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 496 default y 497 select ARM64_MODULE_PLTS if MODULES 498 help 499 This option links the kernel with '--fix-cortex-a53-843419' and 500 enables PLT support to replace certain ADRP instructions, which can 501 cause subsequent memory accesses to use an incorrect address on 502 Cortex-A53 parts up to r0p4. 503 504 If unsure, say Y. 505 506config ARM64_ERRATUM_1024718 507 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 508 default y 509 help 510 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 511 512 Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect 513 update of the hardware dirty bit when the DBM/AP bits are updated 514 without a break-before-make. The workaround is to disable the usage 515 of hardware DBM locally on the affected cores. CPUs not affected by 516 this erratum will continue to use the feature. 517 518 If unsure, say Y. 519 520config ARM64_ERRATUM_1418040 521 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 522 default y 523 depends on COMPAT 524 help 525 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 526 errata 1188873 and 1418040. 527 528 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 529 cause register corruption when accessing the timer registers 530 from AArch32 userspace. 531 532 If unsure, say Y. 533 534config ARM64_WORKAROUND_SPECULATIVE_AT 535 bool 536 537config ARM64_ERRATUM_1165522 538 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 539 default y 540 select ARM64_WORKAROUND_SPECULATIVE_AT 541 help 542 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 543 544 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 545 corrupted TLBs by speculating an AT instruction during a guest 546 context switch. 547 548 If unsure, say Y. 549 550config ARM64_ERRATUM_1319367 551 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 552 default y 553 select ARM64_WORKAROUND_SPECULATIVE_AT 554 help 555 This option adds work arounds for ARM Cortex-A57 erratum 1319537 556 and A72 erratum 1319367 557 558 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 559 speculating an AT instruction during a guest context switch. 560 561 If unsure, say Y. 562 563config ARM64_ERRATUM_1530923 564 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 565 default y 566 select ARM64_WORKAROUND_SPECULATIVE_AT 567 help 568 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 569 570 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 571 corrupted TLBs by speculating an AT instruction during a guest 572 context switch. 573 574 If unsure, say Y. 575 576config ARM64_WORKAROUND_REPEAT_TLBI 577 bool 578 579config ARM64_ERRATUM_1286807 580 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 581 default y 582 select ARM64_WORKAROUND_REPEAT_TLBI 583 help 584 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 585 586 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 587 address for a cacheable mapping of a location is being 588 accessed by a core while another core is remapping the virtual 589 address to a new physical page using the recommended 590 break-before-make sequence, then under very rare circumstances 591 TLBI+DSB completes before a read using the translation being 592 invalidated has been observed by other observers. The 593 workaround repeats the TLBI+DSB operation. 594 595config ARM64_ERRATUM_1463225 596 bool "Cortex-A76: Software Step might prevent interrupt recognition" 597 default y 598 help 599 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 600 601 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 602 of a system call instruction (SVC) can prevent recognition of 603 subsequent interrupts when software stepping is disabled in the 604 exception handler of the system call and either kernel debugging 605 is enabled or VHE is in use. 606 607 Work around the erratum by triggering a dummy step exception 608 when handling a system call from a task that is being stepped 609 in a VHE configuration of the kernel. 610 611 If unsure, say Y. 612 613config ARM64_ERRATUM_1542419 614 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 615 default y 616 help 617 This option adds a workaround for ARM Neoverse-N1 erratum 618 1542419. 619 620 Affected Neoverse-N1 cores could execute a stale instruction when 621 modified by another CPU. The workaround depends on a firmware 622 counterpart. 623 624 Workaround the issue by hiding the DIC feature from EL0. This 625 forces user-space to perform cache maintenance. 626 627 If unsure, say Y. 628 629config CAVIUM_ERRATUM_22375 630 bool "Cavium erratum 22375, 24313" 631 default y 632 help 633 Enable workaround for errata 22375 and 24313. 634 635 This implements two gicv3-its errata workarounds for ThunderX. Both 636 with a small impact affecting only ITS table allocation. 637 638 erratum 22375: only alloc 8MB table size 639 erratum 24313: ignore memory access type 640 641 The fixes are in ITS initialization and basically ignore memory access 642 type and table size provided by the TYPER and BASER registers. 643 644 If unsure, say Y. 645 646config CAVIUM_ERRATUM_23144 647 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 648 depends on NUMA 649 default y 650 help 651 ITS SYNC command hang for cross node io and collections/cpu mapping. 652 653 If unsure, say Y. 654 655config CAVIUM_ERRATUM_23154 656 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" 657 default y 658 help 659 The gicv3 of ThunderX requires a modified version for 660 reading the IAR status to ensure data synchronization 661 (access to icc_iar1_el1 is not sync'ed before and after). 662 663 If unsure, say Y. 664 665config CAVIUM_ERRATUM_27456 666 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 667 default y 668 help 669 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 670 instructions may cause the icache to become corrupted if it 671 contains data for a non-current ASID. The fix is to 672 invalidate the icache when changing the mm context. 673 674 If unsure, say Y. 675 676config CAVIUM_ERRATUM_30115 677 bool "Cavium erratum 30115: Guest may disable interrupts in host" 678 default y 679 help 680 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 681 1.2, and T83 Pass 1.0, KVM guest execution may disable 682 interrupts in host. Trapping both GICv3 group-0 and group-1 683 accesses sidesteps the issue. 684 685 If unsure, say Y. 686 687config CAVIUM_TX2_ERRATUM_219 688 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 689 default y 690 help 691 On Cavium ThunderX2, a load, store or prefetch instruction between a 692 TTBR update and the corresponding context synchronizing operation can 693 cause a spurious Data Abort to be delivered to any hardware thread in 694 the CPU core. 695 696 Work around the issue by avoiding the problematic code sequence and 697 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 698 trap handler performs the corresponding register access, skips the 699 instruction and ensures context synchronization by virtue of the 700 exception return. 701 702 If unsure, say Y. 703 704config FUJITSU_ERRATUM_010001 705 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 706 default y 707 help 708 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 709 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 710 accesses may cause undefined fault (Data abort, DFSC=0b111111). 711 This fault occurs under a specific hardware condition when a 712 load/store instruction performs an address translation using: 713 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 714 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 715 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 716 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 717 718 The workaround is to ensure these bits are clear in TCR_ELx. 719 The workaround only affects the Fujitsu-A64FX. 720 721 If unsure, say Y. 722 723config HISILICON_ERRATUM_161600802 724 bool "Hip07 161600802: Erroneous redistributor VLPI base" 725 default y 726 help 727 The HiSilicon Hip07 SoC uses the wrong redistributor base 728 when issued ITS commands such as VMOVP and VMAPP, and requires 729 a 128kB offset to be applied to the target address in this commands. 730 731 If unsure, say Y. 732 733config QCOM_FALKOR_ERRATUM_1003 734 bool "Falkor E1003: Incorrect translation due to ASID change" 735 default y 736 help 737 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 738 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 739 in TTBR1_EL1, this situation only occurs in the entry trampoline and 740 then only for entries in the walk cache, since the leaf translation 741 is unchanged. Work around the erratum by invalidating the walk cache 742 entries for the trampoline before entering the kernel proper. 743 744config QCOM_FALKOR_ERRATUM_1009 745 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 746 default y 747 select ARM64_WORKAROUND_REPEAT_TLBI 748 help 749 On Falkor v1, the CPU may prematurely complete a DSB following a 750 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 751 one more time to fix the issue. 752 753 If unsure, say Y. 754 755config QCOM_QDF2400_ERRATUM_0065 756 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 757 default y 758 help 759 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 760 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 761 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 762 763 If unsure, say Y. 764 765config QCOM_FALKOR_ERRATUM_E1041 766 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 767 default y 768 help 769 Falkor CPU may speculatively fetch instructions from an improper 770 memory location when MMU translation is changed from SCTLR_ELn[M]=1 771 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 772 773 If unsure, say Y. 774 775config SOCIONEXT_SYNQUACER_PREITS 776 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 777 default y 778 help 779 Socionext Synquacer SoCs implement a separate h/w block to generate 780 MSI doorbell writes with non-zero values for the device ID. 781 782 If unsure, say Y. 783 784endmenu 785 786 787choice 788 prompt "Page size" 789 default ARM64_4K_PAGES 790 help 791 Page size (translation granule) configuration. 792 793config ARM64_4K_PAGES 794 bool "4KB" 795 help 796 This feature enables 4KB pages support. 797 798config ARM64_16K_PAGES 799 bool "16KB" 800 help 801 The system will use 16KB pages support. AArch32 emulation 802 requires applications compiled with 16K (or a multiple of 16K) 803 aligned segments. 804 805config ARM64_64K_PAGES 806 bool "64KB" 807 help 808 This feature enables 64KB pages support (4KB by default) 809 allowing only two levels of page tables and faster TLB 810 look-up. AArch32 emulation requires applications compiled 811 with 64K aligned segments. 812 813endchoice 814 815choice 816 prompt "Virtual address space size" 817 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 818 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 819 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 820 help 821 Allows choosing one of multiple possible virtual address 822 space sizes. The level of translation table is determined by 823 a combination of page size and virtual address space size. 824 825config ARM64_VA_BITS_36 826 bool "36-bit" if EXPERT 827 depends on ARM64_16K_PAGES 828 829config ARM64_VA_BITS_39 830 bool "39-bit" 831 depends on ARM64_4K_PAGES 832 833config ARM64_VA_BITS_42 834 bool "42-bit" 835 depends on ARM64_64K_PAGES 836 837config ARM64_VA_BITS_47 838 bool "47-bit" 839 depends on ARM64_16K_PAGES 840 841config ARM64_VA_BITS_48 842 bool "48-bit" 843 844config ARM64_VA_BITS_52 845 bool "52-bit" 846 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 847 help 848 Enable 52-bit virtual addressing for userspace when explicitly 849 requested via a hint to mmap(). The kernel will also use 52-bit 850 virtual addresses for its own mappings (provided HW support for 851 this feature is available, otherwise it reverts to 48-bit). 852 853 NOTE: Enabling 52-bit virtual addressing in conjunction with 854 ARMv8.3 Pointer Authentication will result in the PAC being 855 reduced from 7 bits to 3 bits, which may have a significant 856 impact on its susceptibility to brute-force attacks. 857 858 If unsure, select 48-bit virtual addressing instead. 859 860endchoice 861 862config ARM64_FORCE_52BIT 863 bool "Force 52-bit virtual addresses for userspace" 864 depends on ARM64_VA_BITS_52 && EXPERT 865 help 866 For systems with 52-bit userspace VAs enabled, the kernel will attempt 867 to maintain compatibility with older software by providing 48-bit VAs 868 unless a hint is supplied to mmap. 869 870 This configuration option disables the 48-bit compatibility logic, and 871 forces all userspace addresses to be 52-bit on HW that supports it. One 872 should only enable this configuration option for stress testing userspace 873 memory management code. If unsure say N here. 874 875config ARM64_VA_BITS 876 int 877 default 36 if ARM64_VA_BITS_36 878 default 39 if ARM64_VA_BITS_39 879 default 42 if ARM64_VA_BITS_42 880 default 47 if ARM64_VA_BITS_47 881 default 48 if ARM64_VA_BITS_48 882 default 52 if ARM64_VA_BITS_52 883 884choice 885 prompt "Physical address space size" 886 default ARM64_PA_BITS_48 887 help 888 Choose the maximum physical address range that the kernel will 889 support. 890 891config ARM64_PA_BITS_48 892 bool "48-bit" 893 894config ARM64_PA_BITS_52 895 bool "52-bit (ARMv8.2)" 896 depends on ARM64_64K_PAGES 897 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 898 help 899 Enable support for a 52-bit physical address space, introduced as 900 part of the ARMv8.2-LPA extension. 901 902 With this enabled, the kernel will also continue to work on CPUs that 903 do not support ARMv8.2-LPA, but with some added memory overhead (and 904 minor performance overhead). 905 906endchoice 907 908config ARM64_PA_BITS 909 int 910 default 48 if ARM64_PA_BITS_48 911 default 52 if ARM64_PA_BITS_52 912 913choice 914 prompt "Endianness" 915 default CPU_LITTLE_ENDIAN 916 help 917 Select the endianness of data accesses performed by the CPU. Userspace 918 applications will need to be compiled and linked for the endianness 919 that is selected here. 920 921config CPU_BIG_ENDIAN 922 bool "Build big-endian kernel" 923 help 924 Say Y if you plan on running a kernel with a big-endian userspace. 925 926config CPU_LITTLE_ENDIAN 927 bool "Build little-endian kernel" 928 help 929 Say Y if you plan on running a kernel with a little-endian userspace. 930 This is usually the case for distributions targeting arm64. 931 932endchoice 933 934config SCHED_MC 935 bool "Multi-core scheduler support" 936 help 937 Multi-core scheduler support improves the CPU scheduler's decision 938 making when dealing with multi-core CPU chips at a cost of slightly 939 increased overhead in some places. If unsure say N here. 940 941config SCHED_SMT 942 bool "SMT scheduler support" 943 help 944 Improves the CPU scheduler's decision making when dealing with 945 MultiThreading at a cost of slightly increased overhead in some 946 places. If unsure say N here. 947 948config NR_CPUS 949 int "Maximum number of CPUs (2-4096)" 950 range 2 4096 951 default "256" 952 953config HOTPLUG_CPU 954 bool "Support for hot-pluggable CPUs" 955 select GENERIC_IRQ_MIGRATION 956 help 957 Say Y here to experiment with turning CPUs off and on. CPUs 958 can be controlled through /sys/devices/system/cpu. 959 960# Common NUMA Features 961config NUMA 962 bool "NUMA Memory Allocation and Scheduler Support" 963 select ACPI_NUMA if ACPI 964 select OF_NUMA 965 help 966 Enable NUMA (Non-Uniform Memory Access) support. 967 968 The kernel will try to allocate memory used by a CPU on the 969 local memory of the CPU and add some more 970 NUMA awareness to the kernel. 971 972config NODES_SHIFT 973 int "Maximum NUMA Nodes (as a power of 2)" 974 range 1 10 975 default "2" 976 depends on NEED_MULTIPLE_NODES 977 help 978 Specify the maximum number of NUMA Nodes available on the target 979 system. Increases memory reserved to accommodate various tables. 980 981config USE_PERCPU_NUMA_NODE_ID 982 def_bool y 983 depends on NUMA 984 985config HAVE_SETUP_PER_CPU_AREA 986 def_bool y 987 depends on NUMA 988 989config NEED_PER_CPU_EMBED_FIRST_CHUNK 990 def_bool y 991 depends on NUMA 992 993config HOLES_IN_ZONE 994 def_bool y 995 996source "kernel/Kconfig.hz" 997 998config ARCH_SUPPORTS_DEBUG_PAGEALLOC 999 def_bool y 1000 1001config ARCH_SPARSEMEM_ENABLE 1002 def_bool y 1003 select SPARSEMEM_VMEMMAP_ENABLE 1004 1005config ARCH_SPARSEMEM_DEFAULT 1006 def_bool ARCH_SPARSEMEM_ENABLE 1007 1008config ARCH_SELECT_MEMORY_MODEL 1009 def_bool ARCH_SPARSEMEM_ENABLE 1010 1011config ARCH_FLATMEM_ENABLE 1012 def_bool !NUMA 1013 1014config HAVE_ARCH_PFN_VALID 1015 def_bool y 1016 1017config HW_PERF_EVENTS 1018 def_bool y 1019 depends on ARM_PMU 1020 1021config SYS_SUPPORTS_HUGETLBFS 1022 def_bool y 1023 1024config ARCH_WANT_HUGE_PMD_SHARE 1025 1026config ARCH_HAS_CACHE_LINE_SIZE 1027 def_bool y 1028 1029config ARCH_ENABLE_SPLIT_PMD_PTLOCK 1030 def_bool y if PGTABLE_LEVELS > 2 1031 1032# Supported by clang >= 7.0 1033config CC_HAVE_SHADOW_CALL_STACK 1034 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1035 1036config SECCOMP 1037 bool "Enable seccomp to safely compute untrusted bytecode" 1038 help 1039 This kernel feature is useful for number crunching applications 1040 that may need to compute untrusted bytecode during their 1041 execution. By using pipes or other transports made available to 1042 the process as file descriptors supporting the read/write 1043 syscalls, it's possible to isolate those applications in 1044 their own address space using seccomp. Once seccomp is 1045 enabled via prctl(PR_SET_SECCOMP), it cannot be disabled 1046 and the task is only allowed to execute a few safe syscalls 1047 defined by each seccomp mode. 1048 1049config PARAVIRT 1050 bool "Enable paravirtualization code" 1051 help 1052 This changes the kernel so it can modify itself when it is run 1053 under a hypervisor, potentially improving performance significantly 1054 over full virtualization. 1055 1056config PARAVIRT_TIME_ACCOUNTING 1057 bool "Paravirtual steal time accounting" 1058 select PARAVIRT 1059 help 1060 Select this option to enable fine granularity task steal time 1061 accounting. Time spent executing other tasks in parallel with 1062 the current vCPU is discounted from the vCPU power. To account for 1063 that, there can be a small performance impact. 1064 1065 If in doubt, say N here. 1066 1067config KEXEC 1068 depends on PM_SLEEP_SMP 1069 select KEXEC_CORE 1070 bool "kexec system call" 1071 help 1072 kexec is a system call that implements the ability to shutdown your 1073 current kernel, and to start another kernel. It is like a reboot 1074 but it is independent of the system firmware. And like a reboot 1075 you can start any kernel with it, not just Linux. 1076 1077config KEXEC_FILE 1078 bool "kexec file based system call" 1079 select KEXEC_CORE 1080 help 1081 This is new version of kexec system call. This system call is 1082 file based and takes file descriptors as system call argument 1083 for kernel and initramfs as opposed to list of segments as 1084 accepted by previous system call. 1085 1086config KEXEC_SIG 1087 bool "Verify kernel signature during kexec_file_load() syscall" 1088 depends on KEXEC_FILE 1089 help 1090 Select this option to verify a signature with loaded kernel 1091 image. If configured, any attempt of loading a image without 1092 valid signature will fail. 1093 1094 In addition to that option, you need to enable signature 1095 verification for the corresponding kernel image type being 1096 loaded in order for this to work. 1097 1098config KEXEC_IMAGE_VERIFY_SIG 1099 bool "Enable Image signature verification support" 1100 default y 1101 depends on KEXEC_SIG 1102 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1103 help 1104 Enable Image signature verification support. 1105 1106comment "Support for PE file signature verification disabled" 1107 depends on KEXEC_SIG 1108 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1109 1110config CRASH_DUMP 1111 bool "Build kdump crash kernel" 1112 help 1113 Generate crash dump after being started by kexec. This should 1114 be normally only set in special crash dump kernels which are 1115 loaded in the main kernel with kexec-tools into a specially 1116 reserved region and then later executed after a crash by 1117 kdump/kexec. 1118 1119 For more details see Documentation/admin-guide/kdump/kdump.rst 1120 1121config XEN_DOM0 1122 def_bool y 1123 depends on XEN 1124 1125config XEN 1126 bool "Xen guest support on ARM64" 1127 depends on ARM64 && OF 1128 select SWIOTLB_XEN 1129 select PARAVIRT 1130 help 1131 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1132 1133config FORCE_MAX_ZONEORDER 1134 int 1135 default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE) 1136 default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE) 1137 default "11" 1138 help 1139 The kernel memory allocator divides physically contiguous memory 1140 blocks into "zones", where each zone is a power of two number of 1141 pages. This option selects the largest power of two that the kernel 1142 keeps in the memory allocator. If you need to allocate very large 1143 blocks of physically contiguous memory, then you may need to 1144 increase this value. 1145 1146 This config option is actually maximum order plus one. For example, 1147 a value of 11 means that the largest free memory block is 2^10 pages. 1148 1149 We make sure that we can allocate upto a HugePage size for each configuration. 1150 Hence we have : 1151 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1152 1153 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1154 4M allocations matching the default size used by generic code. 1155 1156config UNMAP_KERNEL_AT_EL0 1157 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1158 default y 1159 help 1160 Speculation attacks against some high-performance processors can 1161 be used to bypass MMU permission checks and leak kernel data to 1162 userspace. This can be defended against by unmapping the kernel 1163 when running in userspace, mapping it back in on exception entry 1164 via a trampoline page in the vector table. 1165 1166 If unsure, say Y. 1167 1168config HARDEN_BRANCH_PREDICTOR 1169 bool "Harden the branch predictor against aliasing attacks" if EXPERT 1170 default y 1171 help 1172 Speculation attacks against some high-performance processors rely on 1173 being able to manipulate the branch predictor for a victim context by 1174 executing aliasing branches in the attacker context. Such attacks 1175 can be partially mitigated against by clearing internal branch 1176 predictor state and limiting the prediction logic in some situations. 1177 1178 This config option will take CPU-specific actions to harden the 1179 branch predictor against aliasing attacks and may rely on specific 1180 instruction sequences or control bits being set by the system 1181 firmware. 1182 1183 If unsure, say Y. 1184 1185config HARDEN_EL2_VECTORS 1186 bool "Harden EL2 vector mapping against system register leak" if EXPERT 1187 default y 1188 help 1189 Speculation attacks against some high-performance processors can 1190 be used to leak privileged information such as the vector base 1191 register, resulting in a potential defeat of the EL2 layout 1192 randomization. 1193 1194 This config option will map the vectors to a fixed location, 1195 independent of the EL2 code mapping, so that revealing VBAR_EL2 1196 to an attacker does not give away any extra information. This 1197 only gets enabled on affected CPUs. 1198 1199 If unsure, say Y. 1200 1201config ARM64_SSBD 1202 bool "Speculative Store Bypass Disable" if EXPERT 1203 default y 1204 help 1205 This enables mitigation of the bypassing of previous stores 1206 by speculative loads. 1207 1208 If unsure, say Y. 1209 1210config RODATA_FULL_DEFAULT_ENABLED 1211 bool "Apply r/o permissions of VM areas also to their linear aliases" 1212 default y 1213 help 1214 Apply read-only attributes of VM areas to the linear alias of 1215 the backing pages as well. This prevents code or read-only data 1216 from being modified (inadvertently or intentionally) via another 1217 mapping of the same memory page. This additional enhancement can 1218 be turned off at runtime by passing rodata=[off|on] (and turned on 1219 with rodata=full if this option is set to 'n') 1220 1221 This requires the linear region to be mapped down to pages, 1222 which may adversely affect performance in some cases. 1223 1224config ARM64_SW_TTBR0_PAN 1225 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1226 help 1227 Enabling this option prevents the kernel from accessing 1228 user-space memory directly by pointing TTBR0_EL1 to a reserved 1229 zeroed area and reserved ASID. The user access routines 1230 restore the valid TTBR0_EL1 temporarily. 1231 1232config ARM64_TAGGED_ADDR_ABI 1233 bool "Enable the tagged user addresses syscall ABI" 1234 default y 1235 help 1236 When this option is enabled, user applications can opt in to a 1237 relaxed ABI via prctl() allowing tagged addresses to be passed 1238 to system calls as pointer arguments. For details, see 1239 Documentation/arm64/tagged-address-abi.rst. 1240 1241menuconfig COMPAT 1242 bool "Kernel support for 32-bit EL0" 1243 depends on ARM64_4K_PAGES || EXPERT 1244 select COMPAT_BINFMT_ELF if BINFMT_ELF 1245 select HAVE_UID16 1246 select OLD_SIGSUSPEND3 1247 select COMPAT_OLD_SIGACTION 1248 help 1249 This option enables support for a 32-bit EL0 running under a 64-bit 1250 kernel at EL1. AArch32-specific components such as system calls, 1251 the user helper functions, VFP support and the ptrace interface are 1252 handled appropriately by the kernel. 1253 1254 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1255 that you will only be able to execute AArch32 binaries that were compiled 1256 with page size aligned segments. 1257 1258 If you want to execute 32-bit userspace applications, say Y. 1259 1260if COMPAT 1261 1262config KUSER_HELPERS 1263 bool "Enable kuser helpers page for 32-bit applications" 1264 default y 1265 help 1266 Warning: disabling this option may break 32-bit user programs. 1267 1268 Provide kuser helpers to compat tasks. The kernel provides 1269 helper code to userspace in read only form at a fixed location 1270 to allow userspace to be independent of the CPU type fitted to 1271 the system. This permits binaries to be run on ARMv4 through 1272 to ARMv8 without modification. 1273 1274 See Documentation/arm/kernel_user_helpers.rst for details. 1275 1276 However, the fixed address nature of these helpers can be used 1277 by ROP (return orientated programming) authors when creating 1278 exploits. 1279 1280 If all of the binaries and libraries which run on your platform 1281 are built specifically for your platform, and make no use of 1282 these helpers, then you can turn this option off to hinder 1283 such exploits. However, in that case, if a binary or library 1284 relying on those helpers is run, it will not function correctly. 1285 1286 Say N here only if you are absolutely certain that you do not 1287 need these helpers; otherwise, the safe option is to say Y. 1288 1289config COMPAT_VDSO 1290 bool "Enable vDSO for 32-bit applications" 1291 depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != "" 1292 select GENERIC_COMPAT_VDSO 1293 default y 1294 help 1295 Place in the process address space of 32-bit applications an 1296 ELF shared object providing fast implementations of gettimeofday 1297 and clock_gettime. 1298 1299 You must have a 32-bit build of glibc 2.22 or later for programs 1300 to seamlessly take advantage of this. 1301 1302config THUMB2_COMPAT_VDSO 1303 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1304 depends on COMPAT_VDSO 1305 default y 1306 help 1307 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1308 otherwise with '-marm'. 1309 1310menuconfig ARMV8_DEPRECATED 1311 bool "Emulate deprecated/obsolete ARMv8 instructions" 1312 depends on SYSCTL 1313 help 1314 Legacy software support may require certain instructions 1315 that have been deprecated or obsoleted in the architecture. 1316 1317 Enable this config to enable selective emulation of these 1318 features. 1319 1320 If unsure, say Y 1321 1322if ARMV8_DEPRECATED 1323 1324config SWP_EMULATION 1325 bool "Emulate SWP/SWPB instructions" 1326 help 1327 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1328 they are always undefined. Say Y here to enable software 1329 emulation of these instructions for userspace using LDXR/STXR. 1330 1331 In some older versions of glibc [<=2.8] SWP is used during futex 1332 trylock() operations with the assumption that the code will not 1333 be preempted. This invalid assumption may be more likely to fail 1334 with SWP emulation enabled, leading to deadlock of the user 1335 application. 1336 1337 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1338 on an external transaction monitoring block called a global 1339 monitor to maintain update atomicity. If your system does not 1340 implement a global monitor, this option can cause programs that 1341 perform SWP operations to uncached memory to deadlock. 1342 1343 If unsure, say Y 1344 1345config CP15_BARRIER_EMULATION 1346 bool "Emulate CP15 Barrier instructions" 1347 help 1348 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1349 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1350 strongly recommended to use the ISB, DSB, and DMB 1351 instructions instead. 1352 1353 Say Y here to enable software emulation of these 1354 instructions for AArch32 userspace code. When this option is 1355 enabled, CP15 barrier usage is traced which can help 1356 identify software that needs updating. 1357 1358 If unsure, say Y 1359 1360config SETEND_EMULATION 1361 bool "Emulate SETEND instruction" 1362 help 1363 The SETEND instruction alters the data-endianness of the 1364 AArch32 EL0, and is deprecated in ARMv8. 1365 1366 Say Y here to enable software emulation of the instruction 1367 for AArch32 userspace code. 1368 1369 Note: All the cpus on the system must have mixed endian support at EL0 1370 for this feature to be enabled. If a new CPU - which doesn't support mixed 1371 endian - is hotplugged in after this feature has been enabled, there could 1372 be unexpected results in the applications. 1373 1374 If unsure, say Y 1375endif 1376 1377endif 1378 1379menu "ARMv8.1 architectural features" 1380 1381config ARM64_HW_AFDBM 1382 bool "Support for hardware updates of the Access and Dirty page flags" 1383 default y 1384 help 1385 The ARMv8.1 architecture extensions introduce support for 1386 hardware updates of the access and dirty information in page 1387 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1388 capable processors, accesses to pages with PTE_AF cleared will 1389 set this bit instead of raising an access flag fault. 1390 Similarly, writes to read-only pages with the DBM bit set will 1391 clear the read-only bit (AP[2]) instead of raising a 1392 permission fault. 1393 1394 Kernels built with this configuration option enabled continue 1395 to work on pre-ARMv8.1 hardware and the performance impact is 1396 minimal. If unsure, say Y. 1397 1398config ARM64_PAN 1399 bool "Enable support for Privileged Access Never (PAN)" 1400 default y 1401 help 1402 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1403 prevents the kernel or hypervisor from accessing user-space (EL0) 1404 memory directly. 1405 1406 Choosing this option will cause any unprotected (not using 1407 copy_to_user et al) memory access to fail with a permission fault. 1408 1409 The feature is detected at runtime, and will remain as a 'nop' 1410 instruction if the cpu does not implement the feature. 1411 1412config ARM64_LSE_ATOMICS 1413 bool 1414 default ARM64_USE_LSE_ATOMICS 1415 depends on $(as-instr,.arch_extension lse) 1416 1417config ARM64_USE_LSE_ATOMICS 1418 bool "Atomic instructions" 1419 depends on JUMP_LABEL 1420 default y 1421 help 1422 As part of the Large System Extensions, ARMv8.1 introduces new 1423 atomic instructions that are designed specifically to scale in 1424 very large systems. 1425 1426 Say Y here to make use of these instructions for the in-kernel 1427 atomic routines. This incurs a small overhead on CPUs that do 1428 not support these instructions and requires the kernel to be 1429 built with binutils >= 2.25 in order for the new instructions 1430 to be used. 1431 1432config ARM64_VHE 1433 bool "Enable support for Virtualization Host Extensions (VHE)" 1434 default y 1435 help 1436 Virtualization Host Extensions (VHE) allow the kernel to run 1437 directly at EL2 (instead of EL1) on processors that support 1438 it. This leads to better performance for KVM, as they reduce 1439 the cost of the world switch. 1440 1441 Selecting this option allows the VHE feature to be detected 1442 at runtime, and does not affect processors that do not 1443 implement this feature. 1444 1445endmenu 1446 1447menu "ARMv8.2 architectural features" 1448 1449config ARM64_UAO 1450 bool "Enable support for User Access Override (UAO)" 1451 default y 1452 help 1453 User Access Override (UAO; part of the ARMv8.2 Extensions) 1454 causes the 'unprivileged' variant of the load/store instructions to 1455 be overridden to be privileged. 1456 1457 This option changes get_user() and friends to use the 'unprivileged' 1458 variant of the load/store instructions. This ensures that user-space 1459 really did have access to the supplied memory. When addr_limit is 1460 set to kernel memory the UAO bit will be set, allowing privileged 1461 access to kernel memory. 1462 1463 Choosing this option will cause copy_to_user() et al to use user-space 1464 memory permissions. 1465 1466 The feature is detected at runtime, the kernel will use the 1467 regular load/store instructions if the cpu does not implement the 1468 feature. 1469 1470config ARM64_PMEM 1471 bool "Enable support for persistent memory" 1472 select ARCH_HAS_PMEM_API 1473 select ARCH_HAS_UACCESS_FLUSHCACHE 1474 help 1475 Say Y to enable support for the persistent memory API based on the 1476 ARMv8.2 DCPoP feature. 1477 1478 The feature is detected at runtime, and the kernel will use DC CVAC 1479 operations if DC CVAP is not supported (following the behaviour of 1480 DC CVAP itself if the system does not define a point of persistence). 1481 1482config ARM64_RAS_EXTN 1483 bool "Enable support for RAS CPU Extensions" 1484 default y 1485 help 1486 CPUs that support the Reliability, Availability and Serviceability 1487 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1488 errors, classify them and report them to software. 1489 1490 On CPUs with these extensions system software can use additional 1491 barriers to determine if faults are pending and read the 1492 classification from a new set of registers. 1493 1494 Selecting this feature will allow the kernel to use these barriers 1495 and access the new registers if the system supports the extension. 1496 Platform RAS features may additionally depend on firmware support. 1497 1498config ARM64_CNP 1499 bool "Enable support for Common Not Private (CNP) translations" 1500 default y 1501 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1502 help 1503 Common Not Private (CNP) allows translation table entries to 1504 be shared between different PEs in the same inner shareable 1505 domain, so the hardware can use this fact to optimise the 1506 caching of such entries in the TLB. 1507 1508 Selecting this option allows the CNP feature to be detected 1509 at runtime, and does not affect PEs that do not implement 1510 this feature. 1511 1512endmenu 1513 1514menu "ARMv8.3 architectural features" 1515 1516config ARM64_PTR_AUTH 1517 bool "Enable support for pointer authentication" 1518 default y 1519 depends on !KVM || ARM64_VHE 1520 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1521 # Modern compilers insert a .note.gnu.property section note for PAC 1522 # which is only understood by binutils starting with version 2.33.1. 1523 depends on LD_IS_LLD || LD_VERSION >= 233010000 || (CC_IS_GCC && GCC_VERSION < 90100) 1524 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1525 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1526 help 1527 Pointer authentication (part of the ARMv8.3 Extensions) provides 1528 instructions for signing and authenticating pointers against secret 1529 keys, which can be used to mitigate Return Oriented Programming (ROP) 1530 and other attacks. 1531 1532 This option enables these instructions at EL0 (i.e. for userspace). 1533 Choosing this option will cause the kernel to initialise secret keys 1534 for each process at exec() time, with these keys being 1535 context-switched along with the process. 1536 1537 If the compiler supports the -mbranch-protection or 1538 -msign-return-address flag (e.g. GCC 7 or later), then this option 1539 will also cause the kernel itself to be compiled with return address 1540 protection. In this case, and if the target hardware is known to 1541 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1542 disabled with minimal loss of protection. 1543 1544 The feature is detected at runtime. If the feature is not present in 1545 hardware it will not be advertised to userspace/KVM guest nor will it 1546 be enabled. However, KVM guest also require VHE mode and hence 1547 CONFIG_ARM64_VHE=y option to use this feature. 1548 1549 If the feature is present on the boot CPU but not on a late CPU, then 1550 the late CPU will be parked. Also, if the boot CPU does not have 1551 address auth and the late CPU has then the late CPU will still boot 1552 but with the feature disabled. On such a system, this option should 1553 not be selected. 1554 1555 This feature works with FUNCTION_GRAPH_TRACER option only if 1556 DYNAMIC_FTRACE_WITH_REGS is enabled. 1557 1558config CC_HAS_BRANCH_PROT_PAC_RET 1559 # GCC 9 or later, clang 8 or later 1560 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1561 1562config CC_HAS_SIGN_RETURN_ADDRESS 1563 # GCC 7, 8 1564 def_bool $(cc-option,-msign-return-address=all) 1565 1566config AS_HAS_PAC 1567 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1568 1569config AS_HAS_CFI_NEGATE_RA_STATE 1570 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1571 1572endmenu 1573 1574menu "ARMv8.4 architectural features" 1575 1576config ARM64_AMU_EXTN 1577 bool "Enable support for the Activity Monitors Unit CPU extension" 1578 default y 1579 help 1580 The activity monitors extension is an optional extension introduced 1581 by the ARMv8.4 CPU architecture. This enables support for version 1 1582 of the activity monitors architecture, AMUv1. 1583 1584 To enable the use of this extension on CPUs that implement it, say Y. 1585 1586 Note that for architectural reasons, firmware _must_ implement AMU 1587 support when running on CPUs that present the activity monitors 1588 extension. The required support is present in: 1589 * Version 1.5 and later of the ARM Trusted Firmware 1590 1591 For kernels that have this configuration enabled but boot with broken 1592 firmware, you may need to say N here until the firmware is fixed. 1593 Otherwise you may experience firmware panics or lockups when 1594 accessing the counter registers. Even if you are not observing these 1595 symptoms, the values returned by the register reads might not 1596 correctly reflect reality. Most commonly, the value read will be 0, 1597 indicating that the counter is not enabled. 1598 1599endmenu 1600 1601menu "ARMv8.5 architectural features" 1602 1603config ARM64_BTI 1604 bool "Branch Target Identification support" 1605 default y 1606 help 1607 Branch Target Identification (part of the ARMv8.5 Extensions) 1608 provides a mechanism to limit the set of locations to which computed 1609 branch instructions such as BR or BLR can jump. 1610 1611 To make use of BTI on CPUs that support it, say Y. 1612 1613 BTI is intended to provide complementary protection to other control 1614 flow integrity protection mechanisms, such as the Pointer 1615 authentication mechanism provided as part of the ARMv8.3 Extensions. 1616 For this reason, it does not make sense to enable this option without 1617 also enabling support for pointer authentication. Thus, when 1618 enabling this option you should also select ARM64_PTR_AUTH=y. 1619 1620 Userspace binaries must also be specifically compiled to make use of 1621 this mechanism. If you say N here or the hardware does not support 1622 BTI, such binaries can still run, but you get no additional 1623 enforcement of branch destinations. 1624 1625config ARM64_BTI_KERNEL 1626 bool "Use Branch Target Identification for kernel" 1627 default y 1628 depends on ARM64_BTI 1629 depends on ARM64_PTR_AUTH 1630 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 1631 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 1632 depends on !CC_IS_GCC || GCC_VERSION >= 100100 1633 # https://reviews.llvm.org/rGb8ae3fdfa579dbf366b1bb1cbfdbf8c51db7fa55 1634 depends on !CC_IS_CLANG || CLANG_VERSION >= 100001 1635 depends on !(CC_IS_CLANG && GCOV_KERNEL) 1636 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1637 help 1638 Build the kernel with Branch Target Identification annotations 1639 and enable enforcement of this for kernel code. When this option 1640 is enabled and the system supports BTI all kernel code including 1641 modular code must have BTI enabled. 1642 1643config CC_HAS_BRANCH_PROT_PAC_RET_BTI 1644 # GCC 9 or later, clang 8 or later 1645 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 1646 1647config ARM64_E0PD 1648 bool "Enable support for E0PD" 1649 default y 1650 help 1651 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1652 that EL0 accesses made via TTBR1 always fault in constant time, 1653 providing similar benefits to KASLR as those provided by KPTI, but 1654 with lower overhead and without disrupting legitimate access to 1655 kernel memory such as SPE. 1656 1657 This option enables E0PD for TTBR1 where available. 1658 1659config ARCH_RANDOM 1660 bool "Enable support for random number generation" 1661 default y 1662 help 1663 Random number generation (part of the ARMv8.5 Extensions) 1664 provides a high bandwidth, cryptographically secure 1665 hardware random number generator. 1666 1667endmenu 1668 1669config ARM64_SVE 1670 bool "ARM Scalable Vector Extension support" 1671 default y 1672 depends on !KVM || ARM64_VHE 1673 help 1674 The Scalable Vector Extension (SVE) is an extension to the AArch64 1675 execution state which complements and extends the SIMD functionality 1676 of the base architecture to support much larger vectors and to enable 1677 additional vectorisation opportunities. 1678 1679 To enable use of this extension on CPUs that implement it, say Y. 1680 1681 On CPUs that support the SVE2 extensions, this option will enable 1682 those too. 1683 1684 Note that for architectural reasons, firmware _must_ implement SVE 1685 support when running on SVE capable hardware. The required support 1686 is present in: 1687 1688 * version 1.5 and later of the ARM Trusted Firmware 1689 * the AArch64 boot wrapper since commit 5e1261e08abf 1690 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1691 1692 For other firmware implementations, consult the firmware documentation 1693 or vendor. 1694 1695 If you need the kernel to boot on SVE-capable hardware with broken 1696 firmware, you may need to say N here until you get your firmware 1697 fixed. Otherwise, you may experience firmware panics or lockups when 1698 booting the kernel. If unsure and you are not observing these 1699 symptoms, you should assume that it is safe to say Y. 1700 1701 CPUs that support SVE are architecturally required to support the 1702 Virtualization Host Extensions (VHE), so the kernel makes no 1703 provision for supporting SVE alongside KVM without VHE enabled. 1704 Thus, you will need to enable CONFIG_ARM64_VHE if you want to support 1705 KVM in the same kernel image. 1706 1707config ARM64_MODULE_PLTS 1708 bool "Use PLTs to allow module memory to spill over into vmalloc area" 1709 depends on MODULES 1710 select HAVE_MOD_ARCH_SPECIFIC 1711 help 1712 Allocate PLTs when loading modules so that jumps and calls whose 1713 targets are too far away for their relative offsets to be encoded 1714 in the instructions themselves can be bounced via veneers in the 1715 module's PLT. This allows modules to be allocated in the generic 1716 vmalloc area after the dedicated module memory area has been 1717 exhausted. 1718 1719 When running with address space randomization (KASLR), the module 1720 region itself may be too far away for ordinary relative jumps and 1721 calls, and so in that case, module PLTs are required and cannot be 1722 disabled. 1723 1724 Specific errata workaround(s) might also force module PLTs to be 1725 enabled (ARM64_ERRATUM_843419). 1726 1727config ARM64_PSEUDO_NMI 1728 bool "Support for NMI-like interrupts" 1729 select ARM_GIC_V3 1730 help 1731 Adds support for mimicking Non-Maskable Interrupts through the use of 1732 GIC interrupt priority. This support requires version 3 or later of 1733 ARM GIC. 1734 1735 This high priority configuration for interrupts needs to be 1736 explicitly enabled by setting the kernel parameter 1737 "irqchip.gicv3_pseudo_nmi" to 1. 1738 1739 If unsure, say N 1740 1741if ARM64_PSEUDO_NMI 1742config ARM64_DEBUG_PRIORITY_MASKING 1743 bool "Debug interrupt priority masking" 1744 help 1745 This adds runtime checks to functions enabling/disabling 1746 interrupts when using priority masking. The additional checks verify 1747 the validity of ICC_PMR_EL1 when calling concerned functions. 1748 1749 If unsure, say N 1750endif 1751 1752config RELOCATABLE 1753 bool "Build a relocatable kernel image" if EXPERT 1754 select ARCH_HAS_RELR 1755 default y 1756 help 1757 This builds the kernel as a Position Independent Executable (PIE), 1758 which retains all relocation metadata required to relocate the 1759 kernel binary at runtime to a different virtual address than the 1760 address it was linked at. 1761 Since AArch64 uses the RELA relocation format, this requires a 1762 relocation pass at runtime even if the kernel is loaded at the 1763 same address it was linked at. 1764 1765config RANDOMIZE_BASE 1766 bool "Randomize the address of the kernel image" 1767 select ARM64_MODULE_PLTS if MODULES 1768 select RELOCATABLE 1769 help 1770 Randomizes the virtual address at which the kernel image is 1771 loaded, as a security feature that deters exploit attempts 1772 relying on knowledge of the location of kernel internals. 1773 1774 It is the bootloader's job to provide entropy, by passing a 1775 random u64 value in /chosen/kaslr-seed at kernel entry. 1776 1777 When booting via the UEFI stub, it will invoke the firmware's 1778 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 1779 to the kernel proper. In addition, it will randomise the physical 1780 location of the kernel Image as well. 1781 1782 If unsure, say N. 1783 1784config RANDOMIZE_MODULE_REGION_FULL 1785 bool "Randomize the module region over a 4 GB range" 1786 depends on RANDOMIZE_BASE 1787 default y 1788 help 1789 Randomizes the location of the module region inside a 4 GB window 1790 covering the core kernel. This way, it is less likely for modules 1791 to leak information about the location of core kernel data structures 1792 but it does imply that function calls between modules and the core 1793 kernel will need to be resolved via veneers in the module PLT. 1794 1795 When this option is not set, the module region will be randomized over 1796 a limited range that contains the [_stext, _etext] interval of the 1797 core kernel, so branch relocations are always in range. 1798 1799config CC_HAVE_STACKPROTECTOR_SYSREG 1800 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 1801 1802config STACKPROTECTOR_PER_TASK 1803 def_bool y 1804 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 1805 1806endmenu 1807 1808menu "Boot options" 1809 1810config ARM64_ACPI_PARKING_PROTOCOL 1811 bool "Enable support for the ARM64 ACPI parking protocol" 1812 depends on ACPI 1813 help 1814 Enable support for the ARM64 ACPI parking protocol. If disabled 1815 the kernel will not allow booting through the ARM64 ACPI parking 1816 protocol even if the corresponding data is present in the ACPI 1817 MADT table. 1818 1819config CMDLINE 1820 string "Default kernel command string" 1821 default "" 1822 help 1823 Provide a set of default command-line options at build time by 1824 entering them here. As a minimum, you should specify the the 1825 root device (e.g. root=/dev/nfs). 1826 1827config CMDLINE_FORCE 1828 bool "Always use the default kernel command string" 1829 depends on CMDLINE != "" 1830 help 1831 Always use the default kernel command string, even if the boot 1832 loader passes other arguments to the kernel. 1833 This is useful if you cannot or don't want to change the 1834 command-line options your boot loader passes to the kernel. 1835 1836config EFI_STUB 1837 bool 1838 1839config EFI 1840 bool "UEFI runtime support" 1841 depends on OF && !CPU_BIG_ENDIAN 1842 depends on KERNEL_MODE_NEON 1843 select ARCH_SUPPORTS_ACPI 1844 select LIBFDT 1845 select UCS2_STRING 1846 select EFI_PARAMS_FROM_FDT 1847 select EFI_RUNTIME_WRAPPERS 1848 select EFI_STUB 1849 select EFI_GENERIC_STUB 1850 default y 1851 help 1852 This option provides support for runtime services provided 1853 by UEFI firmware (such as non-volatile variables, realtime 1854 clock, and platform reset). A UEFI stub is also provided to 1855 allow the kernel to be booted as an EFI application. This 1856 is only useful on systems that have UEFI firmware. 1857 1858config DMI 1859 bool "Enable support for SMBIOS (DMI) tables" 1860 depends on EFI 1861 default y 1862 help 1863 This enables SMBIOS/DMI feature for systems. 1864 1865 This option is only useful on systems that have UEFI firmware. 1866 However, even with this option, the resultant kernel should 1867 continue to boot on existing non-UEFI platforms. 1868 1869endmenu 1870 1871config SYSVIPC_COMPAT 1872 def_bool y 1873 depends on COMPAT && SYSVIPC 1874 1875config ARCH_ENABLE_HUGEPAGE_MIGRATION 1876 def_bool y 1877 depends on HUGETLB_PAGE && MIGRATION 1878 1879menu "Power management options" 1880 1881source "kernel/power/Kconfig" 1882 1883config ARCH_HIBERNATION_POSSIBLE 1884 def_bool y 1885 depends on CPU_PM 1886 1887config ARCH_HIBERNATION_HEADER 1888 def_bool y 1889 depends on HIBERNATION 1890 1891config ARCH_SUSPEND_POSSIBLE 1892 def_bool y 1893 1894endmenu 1895 1896menu "CPU Power Management" 1897 1898source "drivers/cpuidle/Kconfig" 1899 1900source "drivers/cpufreq/Kconfig" 1901 1902endmenu 1903 1904source "drivers/firmware/Kconfig" 1905 1906source "drivers/acpi/Kconfig" 1907 1908source "arch/arm64/kvm/Kconfig" 1909 1910if CRYPTO 1911source "arch/arm64/crypto/Kconfig" 1912endif 1913