xref: /openbmc/linux/arch/arm64/Kconfig (revision 0f4b20ef)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_HAS_DEBUG_WX
13	select ARCH_BINFMT_ELF_EXTRA_PHDRS
14	select ARCH_BINFMT_ELF_STATE
15	select ARCH_CORRECT_STACKTRACE_ON_KRETPROBE
16	select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION
17	select ARCH_ENABLE_MEMORY_HOTPLUG
18	select ARCH_ENABLE_MEMORY_HOTREMOVE
19	select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2
20	select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE
21	select ARCH_HAS_CACHE_LINE_SIZE
22	select ARCH_HAS_CURRENT_STACK_POINTER
23	select ARCH_HAS_DEBUG_VIRTUAL
24	select ARCH_HAS_DEBUG_VM_PGTABLE
25	select ARCH_HAS_DMA_PREP_COHERENT
26	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
27	select ARCH_HAS_FAST_MULTIPLIER
28	select ARCH_HAS_FORTIFY_SOURCE
29	select ARCH_HAS_GCOV_PROFILE_ALL
30	select ARCH_HAS_GIGANTIC_PAGE
31	select ARCH_HAS_KCOV
32	select ARCH_HAS_KEEPINITRD
33	select ARCH_HAS_MEMBARRIER_SYNC_CORE
34	select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
35	select ARCH_HAS_PTE_DEVMAP
36	select ARCH_HAS_PTE_SPECIAL
37	select ARCH_HAS_SETUP_DMA_OPS
38	select ARCH_HAS_SET_DIRECT_MAP
39	select ARCH_HAS_SET_MEMORY
40	select ARCH_STACKWALK
41	select ARCH_HAS_STRICT_KERNEL_RWX
42	select ARCH_HAS_STRICT_MODULE_RWX
43	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
44	select ARCH_HAS_SYNC_DMA_FOR_CPU
45	select ARCH_HAS_SYSCALL_WRAPPER
46	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
47	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
48	select ARCH_HAS_ZONE_DMA_SET if EXPERT
49	select ARCH_HAVE_ELF_PROT
50	select ARCH_HAVE_NMI_SAFE_CMPXCHG
51	select ARCH_INLINE_READ_LOCK if !PREEMPTION
52	select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION
53	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION
54	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION
55	select ARCH_INLINE_READ_UNLOCK if !PREEMPTION
56	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION
57	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION
58	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION
59	select ARCH_INLINE_WRITE_LOCK if !PREEMPTION
60	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION
61	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION
62	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION
63	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION
64	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION
65	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION
66	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION
67	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION
68	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION
69	select ARCH_INLINE_SPIN_LOCK if !PREEMPTION
70	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION
71	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION
72	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION
73	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION
74	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION
75	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION
76	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION
77	select ARCH_KEEP_MEMBLOCK
78	select ARCH_USE_CMPXCHG_LOCKREF
79	select ARCH_USE_GNU_PROPERTY
80	select ARCH_USE_MEMTEST
81	select ARCH_USE_QUEUED_RWLOCKS
82	select ARCH_USE_QUEUED_SPINLOCKS
83	select ARCH_USE_SYM_ANNOTATIONS
84	select ARCH_SUPPORTS_DEBUG_PAGEALLOC
85	select ARCH_SUPPORTS_HUGETLBFS
86	select ARCH_SUPPORTS_MEMORY_FAILURE
87	select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK
88	select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN
89	select ARCH_SUPPORTS_LTO_CLANG_THIN
90	select ARCH_SUPPORTS_CFI_CLANG
91	select ARCH_SUPPORTS_ATOMIC_RMW
92	select ARCH_SUPPORTS_INT128 if CC_HAS_INT128
93	select ARCH_SUPPORTS_NUMA_BALANCING
94	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
95	select ARCH_WANT_DEFAULT_BPF_JIT
96	select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT
97	select ARCH_WANT_FRAME_POINTERS
98	select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
99	select ARCH_WANT_LD_ORPHAN_WARN
100	select ARCH_WANTS_NO_INSTR
101	select ARCH_HAS_UBSAN_SANITIZE_ALL
102	select ARM_AMBA
103	select ARM_ARCH_TIMER
104	select ARM_GIC
105	select AUDIT_ARCH_COMPAT_GENERIC
106	select ARM_GIC_V2M if PCI
107	select ARM_GIC_V3
108	select ARM_GIC_V3_ITS if PCI
109	select ARM_PSCI_FW
110	select BUILDTIME_TABLE_SORT
111	select CLONE_BACKWARDS
112	select COMMON_CLK
113	select CPU_PM if (SUSPEND || CPU_IDLE)
114	select CRC32
115	select DCACHE_WORD_ACCESS
116	select DMA_DIRECT_REMAP
117	select EDAC_SUPPORT
118	select FRAME_POINTER
119	select GENERIC_ALLOCATOR
120	select GENERIC_ARCH_TOPOLOGY
121	select GENERIC_CLOCKEVENTS_BROADCAST
122	select GENERIC_CPU_AUTOPROBE
123	select GENERIC_CPU_VULNERABILITIES
124	select GENERIC_EARLY_IOREMAP
125	select GENERIC_IDLE_POLL_SETUP
126	select GENERIC_IRQ_IPI
127	select GENERIC_IRQ_PROBE
128	select GENERIC_IRQ_SHOW
129	select GENERIC_IRQ_SHOW_LEVEL
130	select GENERIC_LIB_DEVMEM_IS_ALLOWED
131	select GENERIC_PCI_IOMAP
132	select GENERIC_PTDUMP
133	select GENERIC_SCHED_CLOCK
134	select GENERIC_SMP_IDLE_THREAD
135	select GENERIC_TIME_VSYSCALL
136	select GENERIC_GETTIMEOFDAY
137	select GENERIC_VDSO_TIME_NS
138	select HARDIRQS_SW_RESEND
139	select HAVE_MOVE_PMD
140	select HAVE_MOVE_PUD
141	select HAVE_PCI
142	select HAVE_ACPI_APEI if (ACPI && EFI)
143	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
144	select HAVE_ARCH_AUDITSYSCALL
145	select HAVE_ARCH_BITREVERSE
146	select HAVE_ARCH_COMPILER_H
147	select HAVE_ARCH_HUGE_VMAP
148	select HAVE_ARCH_JUMP_LABEL
149	select HAVE_ARCH_JUMP_LABEL_RELATIVE
150	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
151	select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN
152	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
153	select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE)
154	# Some instrumentation may be unsound, hence EXPERT
155	select HAVE_ARCH_KCSAN if EXPERT
156	select HAVE_ARCH_KFENCE
157	select HAVE_ARCH_KGDB
158	select HAVE_ARCH_MMAP_RND_BITS
159	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
160	select HAVE_ARCH_PREL32_RELOCATIONS
161	select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET
162	select HAVE_ARCH_SECCOMP_FILTER
163	select HAVE_ARCH_STACKLEAK
164	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
165	select HAVE_ARCH_TRACEHOOK
166	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
167	select HAVE_ARCH_VMAP_STACK
168	select HAVE_ARM_SMCCC
169	select HAVE_ASM_MODVERSIONS
170	select HAVE_EBPF_JIT
171	select HAVE_C_RECORDMCOUNT
172	select HAVE_CMPXCHG_DOUBLE
173	select HAVE_CMPXCHG_LOCAL
174	select HAVE_CONTEXT_TRACKING
175	select HAVE_DEBUG_KMEMLEAK
176	select HAVE_DMA_CONTIGUOUS
177	select HAVE_DYNAMIC_FTRACE
178	select HAVE_DYNAMIC_FTRACE_WITH_REGS \
179		if $(cc-option,-fpatchable-function-entry=2)
180	select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \
181		if DYNAMIC_FTRACE_WITH_REGS
182	select HAVE_EFFICIENT_UNALIGNED_ACCESS
183	select HAVE_FAST_GUP
184	select HAVE_FTRACE_MCOUNT_RECORD
185	select HAVE_FUNCTION_TRACER
186	select HAVE_FUNCTION_ERROR_INJECTION
187	select HAVE_FUNCTION_GRAPH_TRACER
188	select HAVE_GCC_PLUGINS
189	select HAVE_HW_BREAKPOINT if PERF_EVENTS
190	select HAVE_IRQ_TIME_ACCOUNTING
191	select HAVE_KVM
192	select HAVE_NMI
193	select HAVE_PATA_PLATFORM
194	select HAVE_PERF_EVENTS
195	select HAVE_PERF_REGS
196	select HAVE_PERF_USER_STACK_DUMP
197	select HAVE_PREEMPT_DYNAMIC_KEY
198	select HAVE_REGS_AND_STACK_ACCESS_API
199	select HAVE_POSIX_CPU_TIMERS_TASK_WORK
200	select HAVE_FUNCTION_ARG_ACCESS_API
201	select MMU_GATHER_RCU_TABLE_FREE
202	select HAVE_RSEQ
203	select HAVE_STACKPROTECTOR
204	select HAVE_SYSCALL_TRACEPOINTS
205	select HAVE_KPROBES
206	select HAVE_KRETPROBES
207	select HAVE_GENERIC_VDSO
208	select IOMMU_DMA if IOMMU_SUPPORT
209	select IRQ_DOMAIN
210	select IRQ_FORCED_THREADING
211	select KASAN_VMALLOC if KASAN
212	select MODULES_USE_ELF_RELA
213	select NEED_DMA_MAP_STATE
214	select NEED_SG_DMA_LENGTH
215	select OF
216	select OF_EARLY_FLATTREE
217	select PCI_DOMAINS_GENERIC if PCI
218	select PCI_ECAM if (ACPI && PCI)
219	select PCI_SYSCALL if PCI
220	select POWER_RESET
221	select POWER_SUPPLY
222	select SPARSE_IRQ
223	select SWIOTLB
224	select SYSCTL_EXCEPTION_TRACE
225	select THREAD_INFO_IN_TASK
226	select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD
227	select TRACE_IRQFLAGS_SUPPORT
228	help
229	  ARM 64-bit (AArch64) Linux support.
230
231config 64BIT
232	def_bool y
233
234config MMU
235	def_bool y
236
237config ARM64_PAGE_SHIFT
238	int
239	default 16 if ARM64_64K_PAGES
240	default 14 if ARM64_16K_PAGES
241	default 12
242
243config ARM64_CONT_PTE_SHIFT
244	int
245	default 5 if ARM64_64K_PAGES
246	default 7 if ARM64_16K_PAGES
247	default 4
248
249config ARM64_CONT_PMD_SHIFT
250	int
251	default 5 if ARM64_64K_PAGES
252	default 5 if ARM64_16K_PAGES
253	default 4
254
255config ARCH_MMAP_RND_BITS_MIN
256       default 14 if ARM64_64K_PAGES
257       default 16 if ARM64_16K_PAGES
258       default 18
259
260# max bits determined by the following formula:
261#  VA_BITS - PAGE_SHIFT - 3
262config ARCH_MMAP_RND_BITS_MAX
263       default 19 if ARM64_VA_BITS=36
264       default 24 if ARM64_VA_BITS=39
265       default 27 if ARM64_VA_BITS=42
266       default 30 if ARM64_VA_BITS=47
267       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
268       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
269       default 33 if ARM64_VA_BITS=48
270       default 14 if ARM64_64K_PAGES
271       default 16 if ARM64_16K_PAGES
272       default 18
273
274config ARCH_MMAP_RND_COMPAT_BITS_MIN
275       default 7 if ARM64_64K_PAGES
276       default 9 if ARM64_16K_PAGES
277       default 11
278
279config ARCH_MMAP_RND_COMPAT_BITS_MAX
280       default 16
281
282config NO_IOPORT_MAP
283	def_bool y if !PCI
284
285config STACKTRACE_SUPPORT
286	def_bool y
287
288config ILLEGAL_POINTER_VALUE
289	hex
290	default 0xdead000000000000
291
292config LOCKDEP_SUPPORT
293	def_bool y
294
295config GENERIC_BUG
296	def_bool y
297	depends on BUG
298
299config GENERIC_BUG_RELATIVE_POINTERS
300	def_bool y
301	depends on GENERIC_BUG
302
303config GENERIC_HWEIGHT
304	def_bool y
305
306config GENERIC_CSUM
307        def_bool y
308
309config GENERIC_CALIBRATE_DELAY
310	def_bool y
311
312config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE
313	def_bool y
314
315config SMP
316	def_bool y
317
318config KERNEL_MODE_NEON
319	def_bool y
320
321config FIX_EARLYCON_MEM
322	def_bool y
323
324config PGTABLE_LEVELS
325	int
326	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
327	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
328	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52)
329	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
330	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
331	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
332
333config ARCH_SUPPORTS_UPROBES
334	def_bool y
335
336config ARCH_PROC_KCORE_TEXT
337	def_bool y
338
339config BROKEN_GAS_INST
340	def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n)
341
342config KASAN_SHADOW_OFFSET
343	hex
344	depends on KASAN_GENERIC || KASAN_SW_TAGS
345	default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS
346	default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS
347	default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS
348	default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS
349	default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS
350	default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS
351	default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS
352	default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS
353	default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS
354	default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS
355	default 0xffffffffffffffff
356
357source "arch/arm64/Kconfig.platforms"
358
359menu "Kernel Features"
360
361menu "ARM errata workarounds via the alternatives framework"
362
363config ARM64_WORKAROUND_CLEAN_CACHE
364	bool
365
366config ARM64_ERRATUM_826319
367	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
368	default y
369	select ARM64_WORKAROUND_CLEAN_CACHE
370	help
371	  This option adds an alternative code sequence to work around ARM
372	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
373	  AXI master interface and an L2 cache.
374
375	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
376	  and is unable to accept a certain write via this interface, it will
377	  not progress on read data presented on the read data channel and the
378	  system can deadlock.
379
380	  The workaround promotes data cache clean instructions to
381	  data cache clean-and-invalidate.
382	  Please note that this does not necessarily enable the workaround,
383	  as it depends on the alternative framework, which will only patch
384	  the kernel if an affected CPU is detected.
385
386	  If unsure, say Y.
387
388config ARM64_ERRATUM_827319
389	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
390	default y
391	select ARM64_WORKAROUND_CLEAN_CACHE
392	help
393	  This option adds an alternative code sequence to work around ARM
394	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
395	  master interface and an L2 cache.
396
397	  Under certain conditions this erratum can cause a clean line eviction
398	  to occur at the same time as another transaction to the same address
399	  on the AMBA 5 CHI interface, which can cause data corruption if the
400	  interconnect reorders the two transactions.
401
402	  The workaround promotes data cache clean instructions to
403	  data cache clean-and-invalidate.
404	  Please note that this does not necessarily enable the workaround,
405	  as it depends on the alternative framework, which will only patch
406	  the kernel if an affected CPU is detected.
407
408	  If unsure, say Y.
409
410config ARM64_ERRATUM_824069
411	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
412	default y
413	select ARM64_WORKAROUND_CLEAN_CACHE
414	help
415	  This option adds an alternative code sequence to work around ARM
416	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
417	  to a coherent interconnect.
418
419	  If a Cortex-A53 processor is executing a store or prefetch for
420	  write instruction at the same time as a processor in another
421	  cluster is executing a cache maintenance operation to the same
422	  address, then this erratum might cause a clean cache line to be
423	  incorrectly marked as dirty.
424
425	  The workaround promotes data cache clean instructions to
426	  data cache clean-and-invalidate.
427	  Please note that this option does not necessarily enable the
428	  workaround, as it depends on the alternative framework, which will
429	  only patch the kernel if an affected CPU is detected.
430
431	  If unsure, say Y.
432
433config ARM64_ERRATUM_819472
434	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
435	default y
436	select ARM64_WORKAROUND_CLEAN_CACHE
437	help
438	  This option adds an alternative code sequence to work around ARM
439	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
440	  present when it is connected to a coherent interconnect.
441
442	  If the processor is executing a load and store exclusive sequence at
443	  the same time as a processor in another cluster is executing a cache
444	  maintenance operation to the same address, then this erratum might
445	  cause data corruption.
446
447	  The workaround promotes data cache clean instructions to
448	  data cache clean-and-invalidate.
449	  Please note that this does not necessarily enable the workaround,
450	  as it depends on the alternative framework, which will only patch
451	  the kernel if an affected CPU is detected.
452
453	  If unsure, say Y.
454
455config ARM64_ERRATUM_832075
456	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
457	default y
458	help
459	  This option adds an alternative code sequence to work around ARM
460	  erratum 832075 on Cortex-A57 parts up to r1p2.
461
462	  Affected Cortex-A57 parts might deadlock when exclusive load/store
463	  instructions to Write-Back memory are mixed with Device loads.
464
465	  The workaround is to promote device loads to use Load-Acquire
466	  semantics.
467	  Please note that this does not necessarily enable the workaround,
468	  as it depends on the alternative framework, which will only patch
469	  the kernel if an affected CPU is detected.
470
471	  If unsure, say Y.
472
473config ARM64_ERRATUM_834220
474	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
475	depends on KVM
476	default y
477	help
478	  This option adds an alternative code sequence to work around ARM
479	  erratum 834220 on Cortex-A57 parts up to r1p2.
480
481	  Affected Cortex-A57 parts might report a Stage 2 translation
482	  fault as the result of a Stage 1 fault for load crossing a
483	  page boundary when there is a permission or device memory
484	  alignment fault at Stage 1 and a translation fault at Stage 2.
485
486	  The workaround is to verify that the Stage 1 translation
487	  doesn't generate a fault before handling the Stage 2 fault.
488	  Please note that this does not necessarily enable the workaround,
489	  as it depends on the alternative framework, which will only patch
490	  the kernel if an affected CPU is detected.
491
492	  If unsure, say Y.
493
494config ARM64_ERRATUM_845719
495	bool "Cortex-A53: 845719: a load might read incorrect data"
496	depends on COMPAT
497	default y
498	help
499	  This option adds an alternative code sequence to work around ARM
500	  erratum 845719 on Cortex-A53 parts up to r0p4.
501
502	  When running a compat (AArch32) userspace on an affected Cortex-A53
503	  part, a load at EL0 from a virtual address that matches the bottom 32
504	  bits of the virtual address used by a recent load at (AArch64) EL1
505	  might return incorrect data.
506
507	  The workaround is to write the contextidr_el1 register on exception
508	  return to a 32-bit task.
509	  Please note that this does not necessarily enable the workaround,
510	  as it depends on the alternative framework, which will only patch
511	  the kernel if an affected CPU is detected.
512
513	  If unsure, say Y.
514
515config ARM64_ERRATUM_843419
516	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
517	default y
518	select ARM64_MODULE_PLTS if MODULES
519	help
520	  This option links the kernel with '--fix-cortex-a53-843419' and
521	  enables PLT support to replace certain ADRP instructions, which can
522	  cause subsequent memory accesses to use an incorrect address on
523	  Cortex-A53 parts up to r0p4.
524
525	  If unsure, say Y.
526
527config ARM64_LD_HAS_FIX_ERRATUM_843419
528	def_bool $(ld-option,--fix-cortex-a53-843419)
529
530config ARM64_ERRATUM_1024718
531	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
532	default y
533	help
534	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
535
536	  Affected Cortex-A55 cores (all revisions) could cause incorrect
537	  update of the hardware dirty bit when the DBM/AP bits are updated
538	  without a break-before-make. The workaround is to disable the usage
539	  of hardware DBM locally on the affected cores. CPUs not affected by
540	  this erratum will continue to use the feature.
541
542	  If unsure, say Y.
543
544config ARM64_ERRATUM_1418040
545	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
546	default y
547	depends on COMPAT
548	help
549	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
550	  errata 1188873 and 1418040.
551
552	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
553	  cause register corruption when accessing the timer registers
554	  from AArch32 userspace.
555
556	  If unsure, say Y.
557
558config ARM64_WORKAROUND_SPECULATIVE_AT
559	bool
560
561config ARM64_ERRATUM_1165522
562	bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
563	default y
564	select ARM64_WORKAROUND_SPECULATIVE_AT
565	help
566	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
567
568	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
569	  corrupted TLBs by speculating an AT instruction during a guest
570	  context switch.
571
572	  If unsure, say Y.
573
574config ARM64_ERRATUM_1319367
575	bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
576	default y
577	select ARM64_WORKAROUND_SPECULATIVE_AT
578	help
579	  This option adds work arounds for ARM Cortex-A57 erratum 1319537
580	  and A72 erratum 1319367
581
582	  Cortex-A57 and A72 cores could end-up with corrupted TLBs by
583	  speculating an AT instruction during a guest context switch.
584
585	  If unsure, say Y.
586
587config ARM64_ERRATUM_1530923
588	bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
589	default y
590	select ARM64_WORKAROUND_SPECULATIVE_AT
591	help
592	  This option adds a workaround for ARM Cortex-A55 erratum 1530923.
593
594	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with
595	  corrupted TLBs by speculating an AT instruction during a guest
596	  context switch.
597
598	  If unsure, say Y.
599
600config ARM64_WORKAROUND_REPEAT_TLBI
601	bool
602
603config ARM64_ERRATUM_1286807
604	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
605	default y
606	select ARM64_WORKAROUND_REPEAT_TLBI
607	help
608	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
609
610	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
611	  address for a cacheable mapping of a location is being
612	  accessed by a core while another core is remapping the virtual
613	  address to a new physical page using the recommended
614	  break-before-make sequence, then under very rare circumstances
615	  TLBI+DSB completes before a read using the translation being
616	  invalidated has been observed by other observers. The
617	  workaround repeats the TLBI+DSB operation.
618
619config ARM64_ERRATUM_1463225
620	bool "Cortex-A76: Software Step might prevent interrupt recognition"
621	default y
622	help
623	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
624
625	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
626	  of a system call instruction (SVC) can prevent recognition of
627	  subsequent interrupts when software stepping is disabled in the
628	  exception handler of the system call and either kernel debugging
629	  is enabled or VHE is in use.
630
631	  Work around the erratum by triggering a dummy step exception
632	  when handling a system call from a task that is being stepped
633	  in a VHE configuration of the kernel.
634
635	  If unsure, say Y.
636
637config ARM64_ERRATUM_1542419
638	bool "Neoverse-N1: workaround mis-ordering of instruction fetches"
639	default y
640	help
641	  This option adds a workaround for ARM Neoverse-N1 erratum
642	  1542419.
643
644	  Affected Neoverse-N1 cores could execute a stale instruction when
645	  modified by another CPU. The workaround depends on a firmware
646	  counterpart.
647
648	  Workaround the issue by hiding the DIC feature from EL0. This
649	  forces user-space to perform cache maintenance.
650
651	  If unsure, say Y.
652
653config ARM64_ERRATUM_1508412
654	bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read"
655	default y
656	help
657	  This option adds a workaround for Arm Cortex-A77 erratum 1508412.
658
659	  Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence
660	  of a store-exclusive or read of PAR_EL1 and a load with device or
661	  non-cacheable memory attributes. The workaround depends on a firmware
662	  counterpart.
663
664	  KVM guests must also have the workaround implemented or they can
665	  deadlock the system.
666
667	  Work around the issue by inserting DMB SY barriers around PAR_EL1
668	  register reads and warning KVM users. The DMB barrier is sufficient
669	  to prevent a speculative PAR_EL1 read.
670
671	  If unsure, say Y.
672
673config ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
674	bool
675
676config ARM64_ERRATUM_2051678
677	bool "Cortex-A510: 2051678: disable Hardware Update of the page table dirty bit"
678	default y
679	help
680	  This options adds the workaround for ARM Cortex-A510 erratum ARM64_ERRATUM_2051678.
681	  Affected Coretex-A510 might not respect the ordering rules for
682	  hardware update of the page table's dirty bit. The workaround
683	  is to not enable the feature on affected CPUs.
684
685	  If unsure, say Y.
686
687config ARM64_ERRATUM_2077057
688	bool "Cortex-A510: 2077057: workaround software-step corrupting SPSR_EL2"
689	default y
690	help
691	  This option adds the workaround for ARM Cortex-A510 erratum 2077057.
692	  Affected Cortex-A510 may corrupt SPSR_EL2 when the a step exception is
693	  expected, but a Pointer Authentication trap is taken instead. The
694	  erratum causes SPSR_EL1 to be copied to SPSR_EL2, which could allow
695	  EL1 to cause a return to EL2 with a guest controlled ELR_EL2.
696
697	  This can only happen when EL2 is stepping EL1.
698
699	  When these conditions occur, the SPSR_EL2 value is unchanged from the
700	  previous guest entry, and can be restored from the in-memory copy.
701
702	  If unsure, say Y.
703
704config ARM64_ERRATUM_2119858
705	bool "Cortex-A710/X2: 2119858: workaround TRBE overwriting trace data in FILL mode"
706	default y
707	depends on CORESIGHT_TRBE
708	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
709	help
710	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2119858.
711
712	  Affected Cortex-A710/X2 cores could overwrite up to 3 cache lines of trace
713	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
714	  the event of a WRAP event.
715
716	  Work around the issue by always making sure we move the TRBPTR_EL1 by
717	  256 bytes before enabling the buffer and filling the first 256 bytes of
718	  the buffer with ETM ignore packets upon disabling.
719
720	  If unsure, say Y.
721
722config ARM64_ERRATUM_2139208
723	bool "Neoverse-N2: 2139208: workaround TRBE overwriting trace data in FILL mode"
724	default y
725	depends on CORESIGHT_TRBE
726	select ARM64_WORKAROUND_TRBE_OVERWRITE_FILL_MODE
727	help
728	  This option adds the workaround for ARM Neoverse-N2 erratum 2139208.
729
730	  Affected Neoverse-N2 cores could overwrite up to 3 cache lines of trace
731	  data at the base of the buffer (pointed to by TRBASER_EL1) in FILL mode in
732	  the event of a WRAP event.
733
734	  Work around the issue by always making sure we move the TRBPTR_EL1 by
735	  256 bytes before enabling the buffer and filling the first 256 bytes of
736	  the buffer with ETM ignore packets upon disabling.
737
738	  If unsure, say Y.
739
740config ARM64_WORKAROUND_TSB_FLUSH_FAILURE
741	bool
742
743config ARM64_ERRATUM_2054223
744	bool "Cortex-A710: 2054223: workaround TSB instruction failing to flush trace"
745	default y
746	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
747	help
748	  Enable workaround for ARM Cortex-A710 erratum 2054223
749
750	  Affected cores may fail to flush the trace data on a TSB instruction, when
751	  the PE is in trace prohibited state. This will cause losing a few bytes
752	  of the trace cached.
753
754	  Workaround is to issue two TSB consecutively on affected cores.
755
756	  If unsure, say Y.
757
758config ARM64_ERRATUM_2067961
759	bool "Neoverse-N2: 2067961: workaround TSB instruction failing to flush trace"
760	default y
761	select ARM64_WORKAROUND_TSB_FLUSH_FAILURE
762	help
763	  Enable workaround for ARM Neoverse-N2 erratum 2067961
764
765	  Affected cores may fail to flush the trace data on a TSB instruction, when
766	  the PE is in trace prohibited state. This will cause losing a few bytes
767	  of the trace cached.
768
769	  Workaround is to issue two TSB consecutively on affected cores.
770
771	  If unsure, say Y.
772
773config ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
774	bool
775
776config ARM64_ERRATUM_2253138
777	bool "Neoverse-N2: 2253138: workaround TRBE writing to address out-of-range"
778	depends on CORESIGHT_TRBE
779	default y
780	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
781	help
782	  This option adds the workaround for ARM Neoverse-N2 erratum 2253138.
783
784	  Affected Neoverse-N2 cores might write to an out-of-range address, not reserved
785	  for TRBE. Under some conditions, the TRBE might generate a write to the next
786	  virtually addressed page following the last page of the TRBE address space
787	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
788
789	  Work around this in the driver by always making sure that there is a
790	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
791
792	  If unsure, say Y.
793
794config ARM64_ERRATUM_2224489
795	bool "Cortex-A710/X2: 2224489: workaround TRBE writing to address out-of-range"
796	depends on CORESIGHT_TRBE
797	default y
798	select ARM64_WORKAROUND_TRBE_WRITE_OUT_OF_RANGE
799	help
800	  This option adds the workaround for ARM Cortex-A710/X2 erratum 2224489.
801
802	  Affected Cortex-A710/X2 cores might write to an out-of-range address, not reserved
803	  for TRBE. Under some conditions, the TRBE might generate a write to the next
804	  virtually addressed page following the last page of the TRBE address space
805	  (i.e., the TRBLIMITR_EL1.LIMIT), instead of wrapping around to the base.
806
807	  Work around this in the driver by always making sure that there is a
808	  page beyond the TRBLIMITR_EL1.LIMIT, within the space allowed for the TRBE.
809
810	  If unsure, say Y.
811
812config ARM64_ERRATUM_2064142
813	bool "Cortex-A510: 2064142: workaround TRBE register writes while disabled"
814	depends on CORESIGHT_TRBE
815	default y
816	help
817	  This option adds the workaround for ARM Cortex-A510 erratum 2064142.
818
819	  Affected Cortex-A510 core might fail to write into system registers after the
820	  TRBE has been disabled. Under some conditions after the TRBE has been disabled
821	  writes into TRBE registers TRBLIMITR_EL1, TRBPTR_EL1, TRBBASER_EL1, TRBSR_EL1,
822	  and TRBTRG_EL1 will be ignored and will not be effected.
823
824	  Work around this in the driver by executing TSB CSYNC and DSB after collection
825	  is stopped and before performing a system register write to one of the affected
826	  registers.
827
828	  If unsure, say Y.
829
830config ARM64_ERRATUM_2038923
831	bool "Cortex-A510: 2038923: workaround TRBE corruption with enable"
832	depends on CORESIGHT_TRBE
833	default y
834	help
835	  This option adds the workaround for ARM Cortex-A510 erratum 2038923.
836
837	  Affected Cortex-A510 core might cause an inconsistent view on whether trace is
838	  prohibited within the CPU. As a result, the trace buffer or trace buffer state
839	  might be corrupted. This happens after TRBE buffer has been enabled by setting
840	  TRBLIMITR_EL1.E, followed by just a single context synchronization event before
841	  execution changes from a context, in which trace is prohibited to one where it
842	  isn't, or vice versa. In these mentioned conditions, the view of whether trace
843	  is prohibited is inconsistent between parts of the CPU, and the trace buffer or
844	  the trace buffer state might be corrupted.
845
846	  Work around this in the driver by preventing an inconsistent view of whether the
847	  trace is prohibited or not based on TRBLIMITR_EL1.E by immediately following a
848	  change to TRBLIMITR_EL1.E with at least one ISB instruction before an ERET, or
849	  two ISB instructions if no ERET is to take place.
850
851	  If unsure, say Y.
852
853config ARM64_ERRATUM_1902691
854	bool "Cortex-A510: 1902691: workaround TRBE trace corruption"
855	depends on CORESIGHT_TRBE
856	default y
857	help
858	  This option adds the workaround for ARM Cortex-A510 erratum 1902691.
859
860	  Affected Cortex-A510 core might cause trace data corruption, when being written
861	  into the memory. Effectively TRBE is broken and hence cannot be used to capture
862	  trace data.
863
864	  Work around this problem in the driver by just preventing TRBE initialization on
865	  affected cpus. The firmware must have disabled the access to TRBE for the kernel
866	  on such implementations. This will cover the kernel for any firmware that doesn't
867	  do this already.
868
869	  If unsure, say Y.
870
871config CAVIUM_ERRATUM_22375
872	bool "Cavium erratum 22375, 24313"
873	default y
874	help
875	  Enable workaround for errata 22375 and 24313.
876
877	  This implements two gicv3-its errata workarounds for ThunderX. Both
878	  with a small impact affecting only ITS table allocation.
879
880	    erratum 22375: only alloc 8MB table size
881	    erratum 24313: ignore memory access type
882
883	  The fixes are in ITS initialization and basically ignore memory access
884	  type and table size provided by the TYPER and BASER registers.
885
886	  If unsure, say Y.
887
888config CAVIUM_ERRATUM_23144
889	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
890	depends on NUMA
891	default y
892	help
893	  ITS SYNC command hang for cross node io and collections/cpu mapping.
894
895	  If unsure, say Y.
896
897config CAVIUM_ERRATUM_23154
898	bool "Cavium errata 23154 and 38545: GICv3 lacks HW synchronisation"
899	default y
900	help
901	  The ThunderX GICv3 implementation requires a modified version for
902	  reading the IAR status to ensure data synchronization
903	  (access to icc_iar1_el1 is not sync'ed before and after).
904
905	  It also suffers from erratum 38545 (also present on Marvell's
906	  OcteonTX and OcteonTX2), resulting in deactivated interrupts being
907	  spuriously presented to the CPU interface.
908
909	  If unsure, say Y.
910
911config CAVIUM_ERRATUM_27456
912	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
913	default y
914	help
915	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
916	  instructions may cause the icache to become corrupted if it
917	  contains data for a non-current ASID.  The fix is to
918	  invalidate the icache when changing the mm context.
919
920	  If unsure, say Y.
921
922config CAVIUM_ERRATUM_30115
923	bool "Cavium erratum 30115: Guest may disable interrupts in host"
924	default y
925	help
926	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
927	  1.2, and T83 Pass 1.0, KVM guest execution may disable
928	  interrupts in host. Trapping both GICv3 group-0 and group-1
929	  accesses sidesteps the issue.
930
931	  If unsure, say Y.
932
933config CAVIUM_TX2_ERRATUM_219
934	bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails"
935	default y
936	help
937	  On Cavium ThunderX2, a load, store or prefetch instruction between a
938	  TTBR update and the corresponding context synchronizing operation can
939	  cause a spurious Data Abort to be delivered to any hardware thread in
940	  the CPU core.
941
942	  Work around the issue by avoiding the problematic code sequence and
943	  trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The
944	  trap handler performs the corresponding register access, skips the
945	  instruction and ensures context synchronization by virtue of the
946	  exception return.
947
948	  If unsure, say Y.
949
950config FUJITSU_ERRATUM_010001
951	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
952	default y
953	help
954	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
955	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
956	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
957	  This fault occurs under a specific hardware condition when a
958	  load/store instruction performs an address translation using:
959	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
960	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
961	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
962	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
963
964	  The workaround is to ensure these bits are clear in TCR_ELx.
965	  The workaround only affects the Fujitsu-A64FX.
966
967	  If unsure, say Y.
968
969config HISILICON_ERRATUM_161600802
970	bool "Hip07 161600802: Erroneous redistributor VLPI base"
971	default y
972	help
973	  The HiSilicon Hip07 SoC uses the wrong redistributor base
974	  when issued ITS commands such as VMOVP and VMAPP, and requires
975	  a 128kB offset to be applied to the target address in this commands.
976
977	  If unsure, say Y.
978
979config QCOM_FALKOR_ERRATUM_1003
980	bool "Falkor E1003: Incorrect translation due to ASID change"
981	default y
982	help
983	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
984	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
985	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
986	  then only for entries in the walk cache, since the leaf translation
987	  is unchanged. Work around the erratum by invalidating the walk cache
988	  entries for the trampoline before entering the kernel proper.
989
990config QCOM_FALKOR_ERRATUM_1009
991	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
992	default y
993	select ARM64_WORKAROUND_REPEAT_TLBI
994	help
995	  On Falkor v1, the CPU may prematurely complete a DSB following a
996	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
997	  one more time to fix the issue.
998
999	  If unsure, say Y.
1000
1001config QCOM_QDF2400_ERRATUM_0065
1002	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
1003	default y
1004	help
1005	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
1006	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
1007	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
1008
1009	  If unsure, say Y.
1010
1011config QCOM_FALKOR_ERRATUM_E1041
1012	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
1013	default y
1014	help
1015	  Falkor CPU may speculatively fetch instructions from an improper
1016	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
1017	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
1018
1019	  If unsure, say Y.
1020
1021config NVIDIA_CARMEL_CNP_ERRATUM
1022	bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores"
1023	default y
1024	help
1025	  If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not
1026	  invalidate shared TLB entries installed by a different core, as it would
1027	  on standard ARM cores.
1028
1029	  If unsure, say Y.
1030
1031config SOCIONEXT_SYNQUACER_PREITS
1032	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
1033	default y
1034	help
1035	  Socionext Synquacer SoCs implement a separate h/w block to generate
1036	  MSI doorbell writes with non-zero values for the device ID.
1037
1038	  If unsure, say Y.
1039
1040endmenu
1041
1042
1043choice
1044	prompt "Page size"
1045	default ARM64_4K_PAGES
1046	help
1047	  Page size (translation granule) configuration.
1048
1049config ARM64_4K_PAGES
1050	bool "4KB"
1051	help
1052	  This feature enables 4KB pages support.
1053
1054config ARM64_16K_PAGES
1055	bool "16KB"
1056	help
1057	  The system will use 16KB pages support. AArch32 emulation
1058	  requires applications compiled with 16K (or a multiple of 16K)
1059	  aligned segments.
1060
1061config ARM64_64K_PAGES
1062	bool "64KB"
1063	help
1064	  This feature enables 64KB pages support (4KB by default)
1065	  allowing only two levels of page tables and faster TLB
1066	  look-up. AArch32 emulation requires applications compiled
1067	  with 64K aligned segments.
1068
1069endchoice
1070
1071choice
1072	prompt "Virtual address space size"
1073	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
1074	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
1075	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
1076	help
1077	  Allows choosing one of multiple possible virtual address
1078	  space sizes. The level of translation table is determined by
1079	  a combination of page size and virtual address space size.
1080
1081config ARM64_VA_BITS_36
1082	bool "36-bit" if EXPERT
1083	depends on ARM64_16K_PAGES
1084
1085config ARM64_VA_BITS_39
1086	bool "39-bit"
1087	depends on ARM64_4K_PAGES
1088
1089config ARM64_VA_BITS_42
1090	bool "42-bit"
1091	depends on ARM64_64K_PAGES
1092
1093config ARM64_VA_BITS_47
1094	bool "47-bit"
1095	depends on ARM64_16K_PAGES
1096
1097config ARM64_VA_BITS_48
1098	bool "48-bit"
1099
1100config ARM64_VA_BITS_52
1101	bool "52-bit"
1102	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
1103	help
1104	  Enable 52-bit virtual addressing for userspace when explicitly
1105	  requested via a hint to mmap(). The kernel will also use 52-bit
1106	  virtual addresses for its own mappings (provided HW support for
1107	  this feature is available, otherwise it reverts to 48-bit).
1108
1109	  NOTE: Enabling 52-bit virtual addressing in conjunction with
1110	  ARMv8.3 Pointer Authentication will result in the PAC being
1111	  reduced from 7 bits to 3 bits, which may have a significant
1112	  impact on its susceptibility to brute-force attacks.
1113
1114	  If unsure, select 48-bit virtual addressing instead.
1115
1116endchoice
1117
1118config ARM64_FORCE_52BIT
1119	bool "Force 52-bit virtual addresses for userspace"
1120	depends on ARM64_VA_BITS_52 && EXPERT
1121	help
1122	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
1123	  to maintain compatibility with older software by providing 48-bit VAs
1124	  unless a hint is supplied to mmap.
1125
1126	  This configuration option disables the 48-bit compatibility logic, and
1127	  forces all userspace addresses to be 52-bit on HW that supports it. One
1128	  should only enable this configuration option for stress testing userspace
1129	  memory management code. If unsure say N here.
1130
1131config ARM64_VA_BITS
1132	int
1133	default 36 if ARM64_VA_BITS_36
1134	default 39 if ARM64_VA_BITS_39
1135	default 42 if ARM64_VA_BITS_42
1136	default 47 if ARM64_VA_BITS_47
1137	default 48 if ARM64_VA_BITS_48
1138	default 52 if ARM64_VA_BITS_52
1139
1140choice
1141	prompt "Physical address space size"
1142	default ARM64_PA_BITS_48
1143	help
1144	  Choose the maximum physical address range that the kernel will
1145	  support.
1146
1147config ARM64_PA_BITS_48
1148	bool "48-bit"
1149
1150config ARM64_PA_BITS_52
1151	bool "52-bit (ARMv8.2)"
1152	depends on ARM64_64K_PAGES
1153	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1154	help
1155	  Enable support for a 52-bit physical address space, introduced as
1156	  part of the ARMv8.2-LPA extension.
1157
1158	  With this enabled, the kernel will also continue to work on CPUs that
1159	  do not support ARMv8.2-LPA, but with some added memory overhead (and
1160	  minor performance overhead).
1161
1162endchoice
1163
1164config ARM64_PA_BITS
1165	int
1166	default 48 if ARM64_PA_BITS_48
1167	default 52 if ARM64_PA_BITS_52
1168
1169choice
1170	prompt "Endianness"
1171	default CPU_LITTLE_ENDIAN
1172	help
1173	  Select the endianness of data accesses performed by the CPU. Userspace
1174	  applications will need to be compiled and linked for the endianness
1175	  that is selected here.
1176
1177config CPU_BIG_ENDIAN
1178	bool "Build big-endian kernel"
1179	depends on !LD_IS_LLD || LLD_VERSION >= 130000
1180	help
1181	  Say Y if you plan on running a kernel with a big-endian userspace.
1182
1183config CPU_LITTLE_ENDIAN
1184	bool "Build little-endian kernel"
1185	help
1186	  Say Y if you plan on running a kernel with a little-endian userspace.
1187	  This is usually the case for distributions targeting arm64.
1188
1189endchoice
1190
1191config SCHED_MC
1192	bool "Multi-core scheduler support"
1193	help
1194	  Multi-core scheduler support improves the CPU scheduler's decision
1195	  making when dealing with multi-core CPU chips at a cost of slightly
1196	  increased overhead in some places. If unsure say N here.
1197
1198config SCHED_CLUSTER
1199	bool "Cluster scheduler support"
1200	help
1201	  Cluster scheduler support improves the CPU scheduler's decision
1202	  making when dealing with machines that have clusters of CPUs.
1203	  Cluster usually means a couple of CPUs which are placed closely
1204	  by sharing mid-level caches, last-level cache tags or internal
1205	  busses.
1206
1207config SCHED_SMT
1208	bool "SMT scheduler support"
1209	help
1210	  Improves the CPU scheduler's decision making when dealing with
1211	  MultiThreading at a cost of slightly increased overhead in some
1212	  places. If unsure say N here.
1213
1214config NR_CPUS
1215	int "Maximum number of CPUs (2-4096)"
1216	range 2 4096
1217	default "256"
1218
1219config HOTPLUG_CPU
1220	bool "Support for hot-pluggable CPUs"
1221	select GENERIC_IRQ_MIGRATION
1222	help
1223	  Say Y here to experiment with turning CPUs off and on.  CPUs
1224	  can be controlled through /sys/devices/system/cpu.
1225
1226# Common NUMA Features
1227config NUMA
1228	bool "NUMA Memory Allocation and Scheduler Support"
1229	select GENERIC_ARCH_NUMA
1230	select ACPI_NUMA if ACPI
1231	select OF_NUMA
1232	select HAVE_SETUP_PER_CPU_AREA
1233	select NEED_PER_CPU_EMBED_FIRST_CHUNK
1234	select NEED_PER_CPU_PAGE_FIRST_CHUNK
1235	select USE_PERCPU_NUMA_NODE_ID
1236	help
1237	  Enable NUMA (Non-Uniform Memory Access) support.
1238
1239	  The kernel will try to allocate memory used by a CPU on the
1240	  local memory of the CPU and add some more
1241	  NUMA awareness to the kernel.
1242
1243config NODES_SHIFT
1244	int "Maximum NUMA Nodes (as a power of 2)"
1245	range 1 10
1246	default "4"
1247	depends on NUMA
1248	help
1249	  Specify the maximum number of NUMA Nodes available on the target
1250	  system.  Increases memory reserved to accommodate various tables.
1251
1252source "kernel/Kconfig.hz"
1253
1254config ARCH_SPARSEMEM_ENABLE
1255	def_bool y
1256	select SPARSEMEM_VMEMMAP_ENABLE
1257	select SPARSEMEM_VMEMMAP
1258
1259config HW_PERF_EVENTS
1260	def_bool y
1261	depends on ARM_PMU
1262
1263# Supported by clang >= 7.0 or GCC >= 12.0.0
1264config CC_HAVE_SHADOW_CALL_STACK
1265	def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18)
1266
1267config PARAVIRT
1268	bool "Enable paravirtualization code"
1269	help
1270	  This changes the kernel so it can modify itself when it is run
1271	  under a hypervisor, potentially improving performance significantly
1272	  over full virtualization.
1273
1274config PARAVIRT_TIME_ACCOUNTING
1275	bool "Paravirtual steal time accounting"
1276	select PARAVIRT
1277	help
1278	  Select this option to enable fine granularity task steal time
1279	  accounting. Time spent executing other tasks in parallel with
1280	  the current vCPU is discounted from the vCPU power. To account for
1281	  that, there can be a small performance impact.
1282
1283	  If in doubt, say N here.
1284
1285config KEXEC
1286	depends on PM_SLEEP_SMP
1287	select KEXEC_CORE
1288	bool "kexec system call"
1289	help
1290	  kexec is a system call that implements the ability to shutdown your
1291	  current kernel, and to start another kernel.  It is like a reboot
1292	  but it is independent of the system firmware.   And like a reboot
1293	  you can start any kernel with it, not just Linux.
1294
1295config KEXEC_FILE
1296	bool "kexec file based system call"
1297	select KEXEC_CORE
1298	select HAVE_IMA_KEXEC if IMA
1299	help
1300	  This is new version of kexec system call. This system call is
1301	  file based and takes file descriptors as system call argument
1302	  for kernel and initramfs as opposed to list of segments as
1303	  accepted by previous system call.
1304
1305config KEXEC_SIG
1306	bool "Verify kernel signature during kexec_file_load() syscall"
1307	depends on KEXEC_FILE
1308	help
1309	  Select this option to verify a signature with loaded kernel
1310	  image. If configured, any attempt of loading a image without
1311	  valid signature will fail.
1312
1313	  In addition to that option, you need to enable signature
1314	  verification for the corresponding kernel image type being
1315	  loaded in order for this to work.
1316
1317config KEXEC_IMAGE_VERIFY_SIG
1318	bool "Enable Image signature verification support"
1319	default y
1320	depends on KEXEC_SIG
1321	depends on EFI && SIGNED_PE_FILE_VERIFICATION
1322	help
1323	  Enable Image signature verification support.
1324
1325comment "Support for PE file signature verification disabled"
1326	depends on KEXEC_SIG
1327	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
1328
1329config CRASH_DUMP
1330	bool "Build kdump crash kernel"
1331	help
1332	  Generate crash dump after being started by kexec. This should
1333	  be normally only set in special crash dump kernels which are
1334	  loaded in the main kernel with kexec-tools into a specially
1335	  reserved region and then later executed after a crash by
1336	  kdump/kexec.
1337
1338	  For more details see Documentation/admin-guide/kdump/kdump.rst
1339
1340config TRANS_TABLE
1341	def_bool y
1342	depends on HIBERNATION || KEXEC_CORE
1343
1344config XEN_DOM0
1345	def_bool y
1346	depends on XEN
1347
1348config XEN
1349	bool "Xen guest support on ARM64"
1350	depends on ARM64 && OF
1351	select SWIOTLB_XEN
1352	select PARAVIRT
1353	help
1354	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1355
1356config FORCE_MAX_ZONEORDER
1357	int
1358	default "14" if ARM64_64K_PAGES
1359	default "12" if ARM64_16K_PAGES
1360	default "11"
1361	help
1362	  The kernel memory allocator divides physically contiguous memory
1363	  blocks into "zones", where each zone is a power of two number of
1364	  pages.  This option selects the largest power of two that the kernel
1365	  keeps in the memory allocator.  If you need to allocate very large
1366	  blocks of physically contiguous memory, then you may need to
1367	  increase this value.
1368
1369	  This config option is actually maximum order plus one. For example,
1370	  a value of 11 means that the largest free memory block is 2^10 pages.
1371
1372	  We make sure that we can allocate upto a HugePage size for each configuration.
1373	  Hence we have :
1374		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1375
1376	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1377	  4M allocations matching the default size used by generic code.
1378
1379config UNMAP_KERNEL_AT_EL0
1380	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1381	default y
1382	help
1383	  Speculation attacks against some high-performance processors can
1384	  be used to bypass MMU permission checks and leak kernel data to
1385	  userspace. This can be defended against by unmapping the kernel
1386	  when running in userspace, mapping it back in on exception entry
1387	  via a trampoline page in the vector table.
1388
1389	  If unsure, say Y.
1390
1391config MITIGATE_SPECTRE_BRANCH_HISTORY
1392	bool "Mitigate Spectre style attacks against branch history" if EXPERT
1393	default y
1394	help
1395	  Speculation attacks against some high-performance processors can
1396	  make use of branch history to influence future speculation.
1397	  When taking an exception from user-space, a sequence of branches
1398	  or a firmware call overwrites the branch history.
1399
1400config RODATA_FULL_DEFAULT_ENABLED
1401	bool "Apply r/o permissions of VM areas also to their linear aliases"
1402	default y
1403	help
1404	  Apply read-only attributes of VM areas to the linear alias of
1405	  the backing pages as well. This prevents code or read-only data
1406	  from being modified (inadvertently or intentionally) via another
1407	  mapping of the same memory page. This additional enhancement can
1408	  be turned off at runtime by passing rodata=[off|on] (and turned on
1409	  with rodata=full if this option is set to 'n')
1410
1411	  This requires the linear region to be mapped down to pages,
1412	  which may adversely affect performance in some cases.
1413
1414config ARM64_SW_TTBR0_PAN
1415	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1416	help
1417	  Enabling this option prevents the kernel from accessing
1418	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1419	  zeroed area and reserved ASID. The user access routines
1420	  restore the valid TTBR0_EL1 temporarily.
1421
1422config ARM64_TAGGED_ADDR_ABI
1423	bool "Enable the tagged user addresses syscall ABI"
1424	default y
1425	help
1426	  When this option is enabled, user applications can opt in to a
1427	  relaxed ABI via prctl() allowing tagged addresses to be passed
1428	  to system calls as pointer arguments. For details, see
1429	  Documentation/arm64/tagged-address-abi.rst.
1430
1431menuconfig COMPAT
1432	bool "Kernel support for 32-bit EL0"
1433	depends on ARM64_4K_PAGES || EXPERT
1434	select HAVE_UID16
1435	select OLD_SIGSUSPEND3
1436	select COMPAT_OLD_SIGACTION
1437	help
1438	  This option enables support for a 32-bit EL0 running under a 64-bit
1439	  kernel at EL1. AArch32-specific components such as system calls,
1440	  the user helper functions, VFP support and the ptrace interface are
1441	  handled appropriately by the kernel.
1442
1443	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1444	  that you will only be able to execute AArch32 binaries that were compiled
1445	  with page size aligned segments.
1446
1447	  If you want to execute 32-bit userspace applications, say Y.
1448
1449if COMPAT
1450
1451config KUSER_HELPERS
1452	bool "Enable kuser helpers page for 32-bit applications"
1453	default y
1454	help
1455	  Warning: disabling this option may break 32-bit user programs.
1456
1457	  Provide kuser helpers to compat tasks. The kernel provides
1458	  helper code to userspace in read only form at a fixed location
1459	  to allow userspace to be independent of the CPU type fitted to
1460	  the system. This permits binaries to be run on ARMv4 through
1461	  to ARMv8 without modification.
1462
1463	  See Documentation/arm/kernel_user_helpers.rst for details.
1464
1465	  However, the fixed address nature of these helpers can be used
1466	  by ROP (return orientated programming) authors when creating
1467	  exploits.
1468
1469	  If all of the binaries and libraries which run on your platform
1470	  are built specifically for your platform, and make no use of
1471	  these helpers, then you can turn this option off to hinder
1472	  such exploits. However, in that case, if a binary or library
1473	  relying on those helpers is run, it will not function correctly.
1474
1475	  Say N here only if you are absolutely certain that you do not
1476	  need these helpers; otherwise, the safe option is to say Y.
1477
1478config COMPAT_VDSO
1479	bool "Enable vDSO for 32-bit applications"
1480	depends on !CPU_BIG_ENDIAN
1481	depends on (CC_IS_CLANG && LD_IS_LLD) || "$(CROSS_COMPILE_COMPAT)" != ""
1482	select GENERIC_COMPAT_VDSO
1483	default y
1484	help
1485	  Place in the process address space of 32-bit applications an
1486	  ELF shared object providing fast implementations of gettimeofday
1487	  and clock_gettime.
1488
1489	  You must have a 32-bit build of glibc 2.22 or later for programs
1490	  to seamlessly take advantage of this.
1491
1492config THUMB2_COMPAT_VDSO
1493	bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT
1494	depends on COMPAT_VDSO
1495	default y
1496	help
1497	  Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y,
1498	  otherwise with '-marm'.
1499
1500menuconfig ARMV8_DEPRECATED
1501	bool "Emulate deprecated/obsolete ARMv8 instructions"
1502	depends on SYSCTL
1503	help
1504	  Legacy software support may require certain instructions
1505	  that have been deprecated or obsoleted in the architecture.
1506
1507	  Enable this config to enable selective emulation of these
1508	  features.
1509
1510	  If unsure, say Y
1511
1512if ARMV8_DEPRECATED
1513
1514config SWP_EMULATION
1515	bool "Emulate SWP/SWPB instructions"
1516	help
1517	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1518	  they are always undefined. Say Y here to enable software
1519	  emulation of these instructions for userspace using LDXR/STXR.
1520	  This feature can be controlled at runtime with the abi.swp
1521	  sysctl which is disabled by default.
1522
1523	  In some older versions of glibc [<=2.8] SWP is used during futex
1524	  trylock() operations with the assumption that the code will not
1525	  be preempted. This invalid assumption may be more likely to fail
1526	  with SWP emulation enabled, leading to deadlock of the user
1527	  application.
1528
1529	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1530	  on an external transaction monitoring block called a global
1531	  monitor to maintain update atomicity. If your system does not
1532	  implement a global monitor, this option can cause programs that
1533	  perform SWP operations to uncached memory to deadlock.
1534
1535	  If unsure, say Y
1536
1537config CP15_BARRIER_EMULATION
1538	bool "Emulate CP15 Barrier instructions"
1539	help
1540	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1541	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1542	  strongly recommended to use the ISB, DSB, and DMB
1543	  instructions instead.
1544
1545	  Say Y here to enable software emulation of these
1546	  instructions for AArch32 userspace code. When this option is
1547	  enabled, CP15 barrier usage is traced which can help
1548	  identify software that needs updating. This feature can be
1549	  controlled at runtime with the abi.cp15_barrier sysctl.
1550
1551	  If unsure, say Y
1552
1553config SETEND_EMULATION
1554	bool "Emulate SETEND instruction"
1555	help
1556	  The SETEND instruction alters the data-endianness of the
1557	  AArch32 EL0, and is deprecated in ARMv8.
1558
1559	  Say Y here to enable software emulation of the instruction
1560	  for AArch32 userspace code. This feature can be controlled
1561	  at runtime with the abi.setend sysctl.
1562
1563	  Note: All the cpus on the system must have mixed endian support at EL0
1564	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1565	  endian - is hotplugged in after this feature has been enabled, there could
1566	  be unexpected results in the applications.
1567
1568	  If unsure, say Y
1569endif
1570
1571endif
1572
1573menu "ARMv8.1 architectural features"
1574
1575config ARM64_HW_AFDBM
1576	bool "Support for hardware updates of the Access and Dirty page flags"
1577	default y
1578	help
1579	  The ARMv8.1 architecture extensions introduce support for
1580	  hardware updates of the access and dirty information in page
1581	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1582	  capable processors, accesses to pages with PTE_AF cleared will
1583	  set this bit instead of raising an access flag fault.
1584	  Similarly, writes to read-only pages with the DBM bit set will
1585	  clear the read-only bit (AP[2]) instead of raising a
1586	  permission fault.
1587
1588	  Kernels built with this configuration option enabled continue
1589	  to work on pre-ARMv8.1 hardware and the performance impact is
1590	  minimal. If unsure, say Y.
1591
1592config ARM64_PAN
1593	bool "Enable support for Privileged Access Never (PAN)"
1594	default y
1595	help
1596	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1597	 prevents the kernel or hypervisor from accessing user-space (EL0)
1598	 memory directly.
1599
1600	 Choosing this option will cause any unprotected (not using
1601	 copy_to_user et al) memory access to fail with a permission fault.
1602
1603	 The feature is detected at runtime, and will remain as a 'nop'
1604	 instruction if the cpu does not implement the feature.
1605
1606config AS_HAS_LDAPR
1607	def_bool $(as-instr,.arch_extension rcpc)
1608
1609config AS_HAS_LSE_ATOMICS
1610	def_bool $(as-instr,.arch_extension lse)
1611
1612config ARM64_LSE_ATOMICS
1613	bool
1614	default ARM64_USE_LSE_ATOMICS
1615	depends on AS_HAS_LSE_ATOMICS
1616
1617config ARM64_USE_LSE_ATOMICS
1618	bool "Atomic instructions"
1619	depends on JUMP_LABEL
1620	default y
1621	help
1622	  As part of the Large System Extensions, ARMv8.1 introduces new
1623	  atomic instructions that are designed specifically to scale in
1624	  very large systems.
1625
1626	  Say Y here to make use of these instructions for the in-kernel
1627	  atomic routines. This incurs a small overhead on CPUs that do
1628	  not support these instructions and requires the kernel to be
1629	  built with binutils >= 2.25 in order for the new instructions
1630	  to be used.
1631
1632endmenu
1633
1634menu "ARMv8.2 architectural features"
1635
1636config AS_HAS_ARMV8_2
1637       def_bool $(cc-option,-Wa$(comma)-march=armv8.2-a)
1638
1639config AS_HAS_SHA3
1640       def_bool $(as-instr,.arch armv8.2-a+sha3)
1641
1642config ARM64_PMEM
1643	bool "Enable support for persistent memory"
1644	select ARCH_HAS_PMEM_API
1645	select ARCH_HAS_UACCESS_FLUSHCACHE
1646	help
1647	  Say Y to enable support for the persistent memory API based on the
1648	  ARMv8.2 DCPoP feature.
1649
1650	  The feature is detected at runtime, and the kernel will use DC CVAC
1651	  operations if DC CVAP is not supported (following the behaviour of
1652	  DC CVAP itself if the system does not define a point of persistence).
1653
1654config ARM64_RAS_EXTN
1655	bool "Enable support for RAS CPU Extensions"
1656	default y
1657	help
1658	  CPUs that support the Reliability, Availability and Serviceability
1659	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1660	  errors, classify them and report them to software.
1661
1662	  On CPUs with these extensions system software can use additional
1663	  barriers to determine if faults are pending and read the
1664	  classification from a new set of registers.
1665
1666	  Selecting this feature will allow the kernel to use these barriers
1667	  and access the new registers if the system supports the extension.
1668	  Platform RAS features may additionally depend on firmware support.
1669
1670config ARM64_CNP
1671	bool "Enable support for Common Not Private (CNP) translations"
1672	default y
1673	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1674	help
1675	  Common Not Private (CNP) allows translation table entries to
1676	  be shared between different PEs in the same inner shareable
1677	  domain, so the hardware can use this fact to optimise the
1678	  caching of such entries in the TLB.
1679
1680	  Selecting this option allows the CNP feature to be detected
1681	  at runtime, and does not affect PEs that do not implement
1682	  this feature.
1683
1684endmenu
1685
1686menu "ARMv8.3 architectural features"
1687
1688config ARM64_PTR_AUTH
1689	bool "Enable support for pointer authentication"
1690	default y
1691	help
1692	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1693	  instructions for signing and authenticating pointers against secret
1694	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1695	  and other attacks.
1696
1697	  This option enables these instructions at EL0 (i.e. for userspace).
1698	  Choosing this option will cause the kernel to initialise secret keys
1699	  for each process at exec() time, with these keys being
1700	  context-switched along with the process.
1701
1702	  The feature is detected at runtime. If the feature is not present in
1703	  hardware it will not be advertised to userspace/KVM guest nor will it
1704	  be enabled.
1705
1706	  If the feature is present on the boot CPU but not on a late CPU, then
1707	  the late CPU will be parked. Also, if the boot CPU does not have
1708	  address auth and the late CPU has then the late CPU will still boot
1709	  but with the feature disabled. On such a system, this option should
1710	  not be selected.
1711
1712config ARM64_PTR_AUTH_KERNEL
1713	bool "Use pointer authentication for kernel"
1714	default y
1715	depends on ARM64_PTR_AUTH
1716	depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC
1717	# Modern compilers insert a .note.gnu.property section note for PAC
1718	# which is only understood by binutils starting with version 2.33.1.
1719	depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100)
1720	depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE
1721	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1722	help
1723	  If the compiler supports the -mbranch-protection or
1724	  -msign-return-address flag (e.g. GCC 7 or later), then this option
1725	  will cause the kernel itself to be compiled with return address
1726	  protection. In this case, and if the target hardware is known to
1727	  support pointer authentication, then CONFIG_STACKPROTECTOR can be
1728	  disabled with minimal loss of protection.
1729
1730	  This feature works with FUNCTION_GRAPH_TRACER option only if
1731	  DYNAMIC_FTRACE_WITH_REGS is enabled.
1732
1733config CC_HAS_BRANCH_PROT_PAC_RET
1734	# GCC 9 or later, clang 8 or later
1735	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf)
1736
1737config CC_HAS_SIGN_RETURN_ADDRESS
1738	# GCC 7, 8
1739	def_bool $(cc-option,-msign-return-address=all)
1740
1741config AS_HAS_PAC
1742	def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a)
1743
1744config AS_HAS_CFI_NEGATE_RA_STATE
1745	def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n)
1746
1747endmenu
1748
1749menu "ARMv8.4 architectural features"
1750
1751config ARM64_AMU_EXTN
1752	bool "Enable support for the Activity Monitors Unit CPU extension"
1753	default y
1754	help
1755	  The activity monitors extension is an optional extension introduced
1756	  by the ARMv8.4 CPU architecture. This enables support for version 1
1757	  of the activity monitors architecture, AMUv1.
1758
1759	  To enable the use of this extension on CPUs that implement it, say Y.
1760
1761	  Note that for architectural reasons, firmware _must_ implement AMU
1762	  support when running on CPUs that present the activity monitors
1763	  extension. The required support is present in:
1764	    * Version 1.5 and later of the ARM Trusted Firmware
1765
1766	  For kernels that have this configuration enabled but boot with broken
1767	  firmware, you may need to say N here until the firmware is fixed.
1768	  Otherwise you may experience firmware panics or lockups when
1769	  accessing the counter registers. Even if you are not observing these
1770	  symptoms, the values returned by the register reads might not
1771	  correctly reflect reality. Most commonly, the value read will be 0,
1772	  indicating that the counter is not enabled.
1773
1774config AS_HAS_ARMV8_4
1775	def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a)
1776
1777config ARM64_TLB_RANGE
1778	bool "Enable support for tlbi range feature"
1779	default y
1780	depends on AS_HAS_ARMV8_4
1781	help
1782	  ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a
1783	  range of input addresses.
1784
1785	  The feature introduces new assembly instructions, and they were
1786	  support when binutils >= 2.30.
1787
1788endmenu
1789
1790menu "ARMv8.5 architectural features"
1791
1792config AS_HAS_ARMV8_5
1793	def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a)
1794
1795config ARM64_BTI
1796	bool "Branch Target Identification support"
1797	default y
1798	help
1799	  Branch Target Identification (part of the ARMv8.5 Extensions)
1800	  provides a mechanism to limit the set of locations to which computed
1801	  branch instructions such as BR or BLR can jump.
1802
1803	  To make use of BTI on CPUs that support it, say Y.
1804
1805	  BTI is intended to provide complementary protection to other control
1806	  flow integrity protection mechanisms, such as the Pointer
1807	  authentication mechanism provided as part of the ARMv8.3 Extensions.
1808	  For this reason, it does not make sense to enable this option without
1809	  also enabling support for pointer authentication.  Thus, when
1810	  enabling this option you should also select ARM64_PTR_AUTH=y.
1811
1812	  Userspace binaries must also be specifically compiled to make use of
1813	  this mechanism.  If you say N here or the hardware does not support
1814	  BTI, such binaries can still run, but you get no additional
1815	  enforcement of branch destinations.
1816
1817config ARM64_BTI_KERNEL
1818	bool "Use Branch Target Identification for kernel"
1819	default y
1820	depends on ARM64_BTI
1821	depends on ARM64_PTR_AUTH_KERNEL
1822	depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI
1823	# https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697
1824	depends on !CC_IS_GCC || GCC_VERSION >= 100100
1825	# https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9
1826	depends on !CC_IS_CLANG || CLANG_VERSION >= 120000
1827	depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS)
1828	help
1829	  Build the kernel with Branch Target Identification annotations
1830	  and enable enforcement of this for kernel code. When this option
1831	  is enabled and the system supports BTI all kernel code including
1832	  modular code must have BTI enabled.
1833
1834config CC_HAS_BRANCH_PROT_PAC_RET_BTI
1835	# GCC 9 or later, clang 8 or later
1836	def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti)
1837
1838config ARM64_E0PD
1839	bool "Enable support for E0PD"
1840	default y
1841	help
1842	  E0PD (part of the ARMv8.5 extensions) allows us to ensure
1843	  that EL0 accesses made via TTBR1 always fault in constant time,
1844	  providing similar benefits to KASLR as those provided by KPTI, but
1845	  with lower overhead and without disrupting legitimate access to
1846	  kernel memory such as SPE.
1847
1848	  This option enables E0PD for TTBR1 where available.
1849
1850config ARCH_RANDOM
1851	bool "Enable support for random number generation"
1852	default y
1853	help
1854	  Random number generation (part of the ARMv8.5 Extensions)
1855	  provides a high bandwidth, cryptographically secure
1856	  hardware random number generator.
1857
1858config ARM64_AS_HAS_MTE
1859	# Initial support for MTE went in binutils 2.32.0, checked with
1860	# ".arch armv8.5-a+memtag" below. However, this was incomplete
1861	# as a late addition to the final architecture spec (LDGM/STGM)
1862	# is only supported in the newer 2.32.x and 2.33 binutils
1863	# versions, hence the extra "stgm" instruction check below.
1864	def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0])
1865
1866config ARM64_MTE
1867	bool "Memory Tagging Extension support"
1868	default y
1869	depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI
1870	depends on AS_HAS_ARMV8_5
1871	depends on AS_HAS_LSE_ATOMICS
1872	# Required for tag checking in the uaccess routines
1873	depends on ARM64_PAN
1874	select ARCH_USES_HIGH_VMA_FLAGS
1875	help
1876	  Memory Tagging (part of the ARMv8.5 Extensions) provides
1877	  architectural support for run-time, always-on detection of
1878	  various classes of memory error to aid with software debugging
1879	  to eliminate vulnerabilities arising from memory-unsafe
1880	  languages.
1881
1882	  This option enables the support for the Memory Tagging
1883	  Extension at EL0 (i.e. for userspace).
1884
1885	  Selecting this option allows the feature to be detected at
1886	  runtime. Any secondary CPU not implementing this feature will
1887	  not be allowed a late bring-up.
1888
1889	  Userspace binaries that want to use this feature must
1890	  explicitly opt in. The mechanism for the userspace is
1891	  described in:
1892
1893	  Documentation/arm64/memory-tagging-extension.rst.
1894
1895endmenu
1896
1897menu "ARMv8.7 architectural features"
1898
1899config ARM64_EPAN
1900	bool "Enable support for Enhanced Privileged Access Never (EPAN)"
1901	default y
1902	depends on ARM64_PAN
1903	help
1904	 Enhanced Privileged Access Never (EPAN) allows Privileged
1905	 Access Never to be used with Execute-only mappings.
1906
1907	 The feature is detected at runtime, and will remain disabled
1908	 if the cpu does not implement the feature.
1909endmenu
1910
1911config ARM64_SVE
1912	bool "ARM Scalable Vector Extension support"
1913	default y
1914	help
1915	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1916	  execution state which complements and extends the SIMD functionality
1917	  of the base architecture to support much larger vectors and to enable
1918	  additional vectorisation opportunities.
1919
1920	  To enable use of this extension on CPUs that implement it, say Y.
1921
1922	  On CPUs that support the SVE2 extensions, this option will enable
1923	  those too.
1924
1925	  Note that for architectural reasons, firmware _must_ implement SVE
1926	  support when running on SVE capable hardware.  The required support
1927	  is present in:
1928
1929	    * version 1.5 and later of the ARM Trusted Firmware
1930	    * the AArch64 boot wrapper since commit 5e1261e08abf
1931	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1932
1933	  For other firmware implementations, consult the firmware documentation
1934	  or vendor.
1935
1936	  If you need the kernel to boot on SVE-capable hardware with broken
1937	  firmware, you may need to say N here until you get your firmware
1938	  fixed.  Otherwise, you may experience firmware panics or lockups when
1939	  booting the kernel.  If unsure and you are not observing these
1940	  symptoms, you should assume that it is safe to say Y.
1941
1942config ARM64_MODULE_PLTS
1943	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1944	depends on MODULES
1945	select HAVE_MOD_ARCH_SPECIFIC
1946	help
1947	  Allocate PLTs when loading modules so that jumps and calls whose
1948	  targets are too far away for their relative offsets to be encoded
1949	  in the instructions themselves can be bounced via veneers in the
1950	  module's PLT. This allows modules to be allocated in the generic
1951	  vmalloc area after the dedicated module memory area has been
1952	  exhausted.
1953
1954	  When running with address space randomization (KASLR), the module
1955	  region itself may be too far away for ordinary relative jumps and
1956	  calls, and so in that case, module PLTs are required and cannot be
1957	  disabled.
1958
1959	  Specific errata workaround(s) might also force module PLTs to be
1960	  enabled (ARM64_ERRATUM_843419).
1961
1962config ARM64_PSEUDO_NMI
1963	bool "Support for NMI-like interrupts"
1964	select ARM_GIC_V3
1965	help
1966	  Adds support for mimicking Non-Maskable Interrupts through the use of
1967	  GIC interrupt priority. This support requires version 3 or later of
1968	  ARM GIC.
1969
1970	  This high priority configuration for interrupts needs to be
1971	  explicitly enabled by setting the kernel parameter
1972	  "irqchip.gicv3_pseudo_nmi" to 1.
1973
1974	  If unsure, say N
1975
1976if ARM64_PSEUDO_NMI
1977config ARM64_DEBUG_PRIORITY_MASKING
1978	bool "Debug interrupt priority masking"
1979	help
1980	  This adds runtime checks to functions enabling/disabling
1981	  interrupts when using priority masking. The additional checks verify
1982	  the validity of ICC_PMR_EL1 when calling concerned functions.
1983
1984	  If unsure, say N
1985endif
1986
1987config RELOCATABLE
1988	bool "Build a relocatable kernel image" if EXPERT
1989	select ARCH_HAS_RELR
1990	default y
1991	help
1992	  This builds the kernel as a Position Independent Executable (PIE),
1993	  which retains all relocation metadata required to relocate the
1994	  kernel binary at runtime to a different virtual address than the
1995	  address it was linked at.
1996	  Since AArch64 uses the RELA relocation format, this requires a
1997	  relocation pass at runtime even if the kernel is loaded at the
1998	  same address it was linked at.
1999
2000config RANDOMIZE_BASE
2001	bool "Randomize the address of the kernel image"
2002	select ARM64_MODULE_PLTS if MODULES
2003	select RELOCATABLE
2004	help
2005	  Randomizes the virtual address at which the kernel image is
2006	  loaded, as a security feature that deters exploit attempts
2007	  relying on knowledge of the location of kernel internals.
2008
2009	  It is the bootloader's job to provide entropy, by passing a
2010	  random u64 value in /chosen/kaslr-seed at kernel entry.
2011
2012	  When booting via the UEFI stub, it will invoke the firmware's
2013	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
2014	  to the kernel proper. In addition, it will randomise the physical
2015	  location of the kernel Image as well.
2016
2017	  If unsure, say N.
2018
2019config RANDOMIZE_MODULE_REGION_FULL
2020	bool "Randomize the module region over a 2 GB range"
2021	depends on RANDOMIZE_BASE
2022	default y
2023	help
2024	  Randomizes the location of the module region inside a 2 GB window
2025	  covering the core kernel. This way, it is less likely for modules
2026	  to leak information about the location of core kernel data structures
2027	  but it does imply that function calls between modules and the core
2028	  kernel will need to be resolved via veneers in the module PLT.
2029
2030	  When this option is not set, the module region will be randomized over
2031	  a limited range that contains the [_stext, _etext] interval of the
2032	  core kernel, so branch relocations are almost always in range unless
2033	  ARM64_MODULE_PLTS is enabled and the region is exhausted. In this
2034	  particular case of region exhaustion, modules might be able to fall
2035	  back to a larger 2GB area.
2036
2037config CC_HAVE_STACKPROTECTOR_SYSREG
2038	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
2039
2040config STACKPROTECTOR_PER_TASK
2041	def_bool y
2042	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
2043
2044endmenu
2045
2046menu "Boot options"
2047
2048config ARM64_ACPI_PARKING_PROTOCOL
2049	bool "Enable support for the ARM64 ACPI parking protocol"
2050	depends on ACPI
2051	help
2052	  Enable support for the ARM64 ACPI parking protocol. If disabled
2053	  the kernel will not allow booting through the ARM64 ACPI parking
2054	  protocol even if the corresponding data is present in the ACPI
2055	  MADT table.
2056
2057config CMDLINE
2058	string "Default kernel command string"
2059	default ""
2060	help
2061	  Provide a set of default command-line options at build time by
2062	  entering them here. As a minimum, you should specify the the
2063	  root device (e.g. root=/dev/nfs).
2064
2065choice
2066	prompt "Kernel command line type" if CMDLINE != ""
2067	default CMDLINE_FROM_BOOTLOADER
2068	help
2069	  Choose how the kernel will handle the provided default kernel
2070	  command line string.
2071
2072config CMDLINE_FROM_BOOTLOADER
2073	bool "Use bootloader kernel arguments if available"
2074	help
2075	  Uses the command-line options passed by the boot loader. If
2076	  the boot loader doesn't provide any, the default kernel command
2077	  string provided in CMDLINE will be used.
2078
2079config CMDLINE_FORCE
2080	bool "Always use the default kernel command string"
2081	help
2082	  Always use the default kernel command string, even if the boot
2083	  loader passes other arguments to the kernel.
2084	  This is useful if you cannot or don't want to change the
2085	  command-line options your boot loader passes to the kernel.
2086
2087endchoice
2088
2089config EFI_STUB
2090	bool
2091
2092config EFI
2093	bool "UEFI runtime support"
2094	depends on OF && !CPU_BIG_ENDIAN
2095	depends on KERNEL_MODE_NEON
2096	select ARCH_SUPPORTS_ACPI
2097	select LIBFDT
2098	select UCS2_STRING
2099	select EFI_PARAMS_FROM_FDT
2100	select EFI_RUNTIME_WRAPPERS
2101	select EFI_STUB
2102	select EFI_GENERIC_STUB
2103	imply IMA_SECURE_AND_OR_TRUSTED_BOOT
2104	default y
2105	help
2106	  This option provides support for runtime services provided
2107	  by UEFI firmware (such as non-volatile variables, realtime
2108          clock, and platform reset). A UEFI stub is also provided to
2109	  allow the kernel to be booted as an EFI application. This
2110	  is only useful on systems that have UEFI firmware.
2111
2112config DMI
2113	bool "Enable support for SMBIOS (DMI) tables"
2114	depends on EFI
2115	default y
2116	help
2117	  This enables SMBIOS/DMI feature for systems.
2118
2119	  This option is only useful on systems that have UEFI firmware.
2120	  However, even with this option, the resultant kernel should
2121	  continue to boot on existing non-UEFI platforms.
2122
2123endmenu
2124
2125config SYSVIPC_COMPAT
2126	def_bool y
2127	depends on COMPAT && SYSVIPC
2128
2129menu "Power management options"
2130
2131source "kernel/power/Kconfig"
2132
2133config ARCH_HIBERNATION_POSSIBLE
2134	def_bool y
2135	depends on CPU_PM
2136
2137config ARCH_HIBERNATION_HEADER
2138	def_bool y
2139	depends on HIBERNATION
2140
2141config ARCH_SUSPEND_POSSIBLE
2142	def_bool y
2143
2144endmenu
2145
2146menu "CPU Power Management"
2147
2148source "drivers/cpuidle/Kconfig"
2149
2150source "drivers/cpufreq/Kconfig"
2151
2152endmenu
2153
2154source "drivers/acpi/Kconfig"
2155
2156source "arch/arm64/kvm/Kconfig"
2157
2158if CRYPTO
2159source "arch/arm64/crypto/Kconfig"
2160endif
2161