xref: /openbmc/linux/arch/arm64/Kconfig (revision 0d07cf5e)
1# SPDX-License-Identifier: GPL-2.0-only
2config ARM64
3	def_bool y
4	select ACPI_CCA_REQUIRED if ACPI
5	select ACPI_GENERIC_GSI if ACPI
6	select ACPI_GTDT if ACPI
7	select ACPI_IORT if ACPI
8	select ACPI_REDUCED_HARDWARE_ONLY if ACPI
9	select ACPI_MCFG if (ACPI && PCI)
10	select ACPI_SPCR_TABLE if ACPI
11	select ACPI_PPTT if ACPI
12	select ARCH_CLOCKSOURCE_DATA
13	select ARCH_HAS_DEBUG_VIRTUAL
14	select ARCH_HAS_DEVMEM_IS_ALLOWED
15	select ARCH_HAS_DMA_COHERENT_TO_PFN
16	select ARCH_HAS_DMA_MMAP_PGPROT
17	select ARCH_HAS_DMA_PREP_COHERENT
18	select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI
19	select ARCH_HAS_ELF_RANDOMIZE
20	select ARCH_HAS_FAST_MULTIPLIER
21	select ARCH_HAS_FORTIFY_SOURCE
22	select ARCH_HAS_GCOV_PROFILE_ALL
23	select ARCH_HAS_GIGANTIC_PAGE
24	select ARCH_HAS_KCOV
25	select ARCH_HAS_KEEPINITRD
26	select ARCH_HAS_MEMBARRIER_SYNC_CORE
27	select ARCH_HAS_PTE_SPECIAL
28	select ARCH_HAS_SETUP_DMA_OPS
29	select ARCH_HAS_SET_DIRECT_MAP
30	select ARCH_HAS_SET_MEMORY
31	select ARCH_HAS_STRICT_KERNEL_RWX
32	select ARCH_HAS_STRICT_MODULE_RWX
33	select ARCH_HAS_SYNC_DMA_FOR_DEVICE
34	select ARCH_HAS_SYNC_DMA_FOR_CPU
35	select ARCH_HAS_SYSCALL_WRAPPER
36	select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT
37	select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST
38	select ARCH_HAVE_NMI_SAFE_CMPXCHG
39	select ARCH_INLINE_READ_LOCK if !PREEMPT
40	select ARCH_INLINE_READ_LOCK_BH if !PREEMPT
41	select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPT
42	select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPT
43	select ARCH_INLINE_READ_UNLOCK if !PREEMPT
44	select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPT
45	select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPT
46	select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPT
47	select ARCH_INLINE_WRITE_LOCK if !PREEMPT
48	select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPT
49	select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPT
50	select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPT
51	select ARCH_INLINE_WRITE_UNLOCK if !PREEMPT
52	select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPT
53	select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPT
54	select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPT
55	select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPT
56	select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPT
57	select ARCH_INLINE_SPIN_LOCK if !PREEMPT
58	select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPT
59	select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPT
60	select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPT
61	select ARCH_INLINE_SPIN_UNLOCK if !PREEMPT
62	select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPT
63	select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPT
64	select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPT
65	select ARCH_KEEP_MEMBLOCK
66	select ARCH_USE_CMPXCHG_LOCKREF
67	select ARCH_USE_QUEUED_RWLOCKS
68	select ARCH_USE_QUEUED_SPINLOCKS
69	select ARCH_SUPPORTS_MEMORY_FAILURE
70	select ARCH_SUPPORTS_ATOMIC_RMW
71	select ARCH_SUPPORTS_INT128 if GCC_VERSION >= 50000 || CC_IS_CLANG
72	select ARCH_SUPPORTS_NUMA_BALANCING
73	select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT
74	select ARCH_WANT_FRAME_POINTERS
75	select ARCH_HAS_UBSAN_SANITIZE_ALL
76	select ARM_AMBA
77	select ARM_ARCH_TIMER
78	select ARM_GIC
79	select AUDIT_ARCH_COMPAT_GENERIC
80	select ARM_GIC_V2M if PCI
81	select ARM_GIC_V3
82	select ARM_GIC_V3_ITS if PCI
83	select ARM_PSCI_FW
84	select BUILDTIME_EXTABLE_SORT
85	select CLONE_BACKWARDS
86	select COMMON_CLK
87	select CPU_PM if (SUSPEND || CPU_IDLE)
88	select CRC32
89	select DCACHE_WORD_ACCESS
90	select DMA_DIRECT_REMAP
91	select EDAC_SUPPORT
92	select FRAME_POINTER
93	select GENERIC_ALLOCATOR
94	select GENERIC_ARCH_TOPOLOGY
95	select GENERIC_CLOCKEVENTS
96	select GENERIC_CLOCKEVENTS_BROADCAST
97	select GENERIC_CPU_AUTOPROBE
98	select GENERIC_CPU_VULNERABILITIES
99	select GENERIC_EARLY_IOREMAP
100	select GENERIC_IDLE_POLL_SETUP
101	select GENERIC_IRQ_MULTI_HANDLER
102	select GENERIC_IRQ_PROBE
103	select GENERIC_IRQ_SHOW
104	select GENERIC_IRQ_SHOW_LEVEL
105	select GENERIC_PCI_IOMAP
106	select GENERIC_SCHED_CLOCK
107	select GENERIC_SMP_IDLE_THREAD
108	select GENERIC_STRNCPY_FROM_USER
109	select GENERIC_STRNLEN_USER
110	select GENERIC_TIME_VSYSCALL
111	select GENERIC_GETTIMEOFDAY
112	select GENERIC_COMPAT_VDSO if (!CPU_BIG_ENDIAN && COMPAT)
113	select HANDLE_DOMAIN_IRQ
114	select HARDIRQS_SW_RESEND
115	select HAVE_PCI
116	select HAVE_ACPI_APEI if (ACPI && EFI)
117	select HAVE_ALIGNED_STRUCT_PAGE if SLUB
118	select HAVE_ARCH_AUDITSYSCALL
119	select HAVE_ARCH_BITREVERSE
120	select HAVE_ARCH_HUGE_VMAP
121	select HAVE_ARCH_JUMP_LABEL
122	select HAVE_ARCH_JUMP_LABEL_RELATIVE
123	select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48)
124	select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN
125	select HAVE_ARCH_KGDB
126	select HAVE_ARCH_MMAP_RND_BITS
127	select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT
128	select HAVE_ARCH_PREL32_RELOCATIONS
129	select HAVE_ARCH_SECCOMP_FILTER
130	select HAVE_ARCH_STACKLEAK
131	select HAVE_ARCH_THREAD_STRUCT_WHITELIST
132	select HAVE_ARCH_TRACEHOOK
133	select HAVE_ARCH_TRANSPARENT_HUGEPAGE
134	select HAVE_ARCH_VMAP_STACK
135	select HAVE_ARM_SMCCC
136	select HAVE_EBPF_JIT
137	select HAVE_C_RECORDMCOUNT
138	select HAVE_CMPXCHG_DOUBLE
139	select HAVE_CMPXCHG_LOCAL
140	select HAVE_CONTEXT_TRACKING
141	select HAVE_DEBUG_BUGVERBOSE
142	select HAVE_DEBUG_KMEMLEAK
143	select HAVE_DMA_CONTIGUOUS
144	select HAVE_DYNAMIC_FTRACE
145	select HAVE_EFFICIENT_UNALIGNED_ACCESS
146	select HAVE_FAST_GUP
147	select HAVE_FTRACE_MCOUNT_RECORD
148	select HAVE_FUNCTION_TRACER
149	select HAVE_FUNCTION_GRAPH_TRACER
150	select HAVE_GCC_PLUGINS
151	select HAVE_HW_BREAKPOINT if PERF_EVENTS
152	select HAVE_IRQ_TIME_ACCOUNTING
153	select HAVE_MEMBLOCK_NODE_MAP if NUMA
154	select HAVE_NMI
155	select HAVE_PATA_PLATFORM
156	select HAVE_PERF_EVENTS
157	select HAVE_PERF_REGS
158	select HAVE_PERF_USER_STACK_DUMP
159	select HAVE_REGS_AND_STACK_ACCESS_API
160	select HAVE_FUNCTION_ARG_ACCESS_API
161	select HAVE_RCU_TABLE_FREE
162	select HAVE_RSEQ
163	select HAVE_STACKPROTECTOR
164	select HAVE_SYSCALL_TRACEPOINTS
165	select HAVE_KPROBES
166	select HAVE_KRETPROBES
167	select HAVE_GENERIC_VDSO
168	select IOMMU_DMA if IOMMU_SUPPORT
169	select IRQ_DOMAIN
170	select IRQ_FORCED_THREADING
171	select MODULES_USE_ELF_RELA
172	select NEED_DMA_MAP_STATE
173	select NEED_SG_DMA_LENGTH
174	select OF
175	select OF_EARLY_FLATTREE
176	select PCI_DOMAINS_GENERIC if PCI
177	select PCI_ECAM if (ACPI && PCI)
178	select PCI_SYSCALL if PCI
179	select POWER_RESET
180	select POWER_SUPPLY
181	select REFCOUNT_FULL
182	select SPARSE_IRQ
183	select SWIOTLB
184	select SYSCTL_EXCEPTION_TRACE
185	select THREAD_INFO_IN_TASK
186	help
187	  ARM 64-bit (AArch64) Linux support.
188
189config 64BIT
190	def_bool y
191
192config MMU
193	def_bool y
194
195config ARM64_PAGE_SHIFT
196	int
197	default 16 if ARM64_64K_PAGES
198	default 14 if ARM64_16K_PAGES
199	default 12
200
201config ARM64_CONT_SHIFT
202	int
203	default 5 if ARM64_64K_PAGES
204	default 7 if ARM64_16K_PAGES
205	default 4
206
207config ARCH_MMAP_RND_BITS_MIN
208       default 14 if ARM64_64K_PAGES
209       default 16 if ARM64_16K_PAGES
210       default 18
211
212# max bits determined by the following formula:
213#  VA_BITS - PAGE_SHIFT - 3
214config ARCH_MMAP_RND_BITS_MAX
215       default 19 if ARM64_VA_BITS=36
216       default 24 if ARM64_VA_BITS=39
217       default 27 if ARM64_VA_BITS=42
218       default 30 if ARM64_VA_BITS=47
219       default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES
220       default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES
221       default 33 if ARM64_VA_BITS=48
222       default 14 if ARM64_64K_PAGES
223       default 16 if ARM64_16K_PAGES
224       default 18
225
226config ARCH_MMAP_RND_COMPAT_BITS_MIN
227       default 7 if ARM64_64K_PAGES
228       default 9 if ARM64_16K_PAGES
229       default 11
230
231config ARCH_MMAP_RND_COMPAT_BITS_MAX
232       default 16
233
234config NO_IOPORT_MAP
235	def_bool y if !PCI
236
237config STACKTRACE_SUPPORT
238	def_bool y
239
240config ILLEGAL_POINTER_VALUE
241	hex
242	default 0xdead000000000000
243
244config LOCKDEP_SUPPORT
245	def_bool y
246
247config TRACE_IRQFLAGS_SUPPORT
248	def_bool y
249
250config GENERIC_BUG
251	def_bool y
252	depends on BUG
253
254config GENERIC_BUG_RELATIVE_POINTERS
255	def_bool y
256	depends on GENERIC_BUG
257
258config GENERIC_HWEIGHT
259	def_bool y
260
261config GENERIC_CSUM
262        def_bool y
263
264config GENERIC_CALIBRATE_DELAY
265	def_bool y
266
267config ZONE_DMA32
268	bool "Support DMA32 zone" if EXPERT
269	default y
270
271config ARCH_ENABLE_MEMORY_HOTPLUG
272	def_bool y
273
274config SMP
275	def_bool y
276
277config KERNEL_MODE_NEON
278	def_bool y
279
280config FIX_EARLYCON_MEM
281	def_bool y
282
283config PGTABLE_LEVELS
284	int
285	default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36
286	default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42
287	default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_USER_VA_BITS_52)
288	default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39
289	default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47
290	default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48
291
292config ARCH_SUPPORTS_UPROBES
293	def_bool y
294
295config ARCH_PROC_KCORE_TEXT
296	def_bool y
297
298source "arch/arm64/Kconfig.platforms"
299
300menu "Kernel Features"
301
302menu "ARM errata workarounds via the alternatives framework"
303
304config ARM64_WORKAROUND_CLEAN_CACHE
305	bool
306
307config ARM64_ERRATUM_826319
308	bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted"
309	default y
310	select ARM64_WORKAROUND_CLEAN_CACHE
311	help
312	  This option adds an alternative code sequence to work around ARM
313	  erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or
314	  AXI master interface and an L2 cache.
315
316	  If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors
317	  and is unable to accept a certain write via this interface, it will
318	  not progress on read data presented on the read data channel and the
319	  system can deadlock.
320
321	  The workaround promotes data cache clean instructions to
322	  data cache clean-and-invalidate.
323	  Please note that this does not necessarily enable the workaround,
324	  as it depends on the alternative framework, which will only patch
325	  the kernel if an affected CPU is detected.
326
327	  If unsure, say Y.
328
329config ARM64_ERRATUM_827319
330	bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect"
331	default y
332	select ARM64_WORKAROUND_CLEAN_CACHE
333	help
334	  This option adds an alternative code sequence to work around ARM
335	  erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI
336	  master interface and an L2 cache.
337
338	  Under certain conditions this erratum can cause a clean line eviction
339	  to occur at the same time as another transaction to the same address
340	  on the AMBA 5 CHI interface, which can cause data corruption if the
341	  interconnect reorders the two transactions.
342
343	  The workaround promotes data cache clean instructions to
344	  data cache clean-and-invalidate.
345	  Please note that this does not necessarily enable the workaround,
346	  as it depends on the alternative framework, which will only patch
347	  the kernel if an affected CPU is detected.
348
349	  If unsure, say Y.
350
351config ARM64_ERRATUM_824069
352	bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop"
353	default y
354	select ARM64_WORKAROUND_CLEAN_CACHE
355	help
356	  This option adds an alternative code sequence to work around ARM
357	  erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected
358	  to a coherent interconnect.
359
360	  If a Cortex-A53 processor is executing a store or prefetch for
361	  write instruction at the same time as a processor in another
362	  cluster is executing a cache maintenance operation to the same
363	  address, then this erratum might cause a clean cache line to be
364	  incorrectly marked as dirty.
365
366	  The workaround promotes data cache clean instructions to
367	  data cache clean-and-invalidate.
368	  Please note that this option does not necessarily enable the
369	  workaround, as it depends on the alternative framework, which will
370	  only patch the kernel if an affected CPU is detected.
371
372	  If unsure, say Y.
373
374config ARM64_ERRATUM_819472
375	bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption"
376	default y
377	select ARM64_WORKAROUND_CLEAN_CACHE
378	help
379	  This option adds an alternative code sequence to work around ARM
380	  erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache
381	  present when it is connected to a coherent interconnect.
382
383	  If the processor is executing a load and store exclusive sequence at
384	  the same time as a processor in another cluster is executing a cache
385	  maintenance operation to the same address, then this erratum might
386	  cause data corruption.
387
388	  The workaround promotes data cache clean instructions to
389	  data cache clean-and-invalidate.
390	  Please note that this does not necessarily enable the workaround,
391	  as it depends on the alternative framework, which will only patch
392	  the kernel if an affected CPU is detected.
393
394	  If unsure, say Y.
395
396config ARM64_ERRATUM_832075
397	bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads"
398	default y
399	help
400	  This option adds an alternative code sequence to work around ARM
401	  erratum 832075 on Cortex-A57 parts up to r1p2.
402
403	  Affected Cortex-A57 parts might deadlock when exclusive load/store
404	  instructions to Write-Back memory are mixed with Device loads.
405
406	  The workaround is to promote device loads to use Load-Acquire
407	  semantics.
408	  Please note that this does not necessarily enable the workaround,
409	  as it depends on the alternative framework, which will only patch
410	  the kernel if an affected CPU is detected.
411
412	  If unsure, say Y.
413
414config ARM64_ERRATUM_834220
415	bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault"
416	depends on KVM
417	default y
418	help
419	  This option adds an alternative code sequence to work around ARM
420	  erratum 834220 on Cortex-A57 parts up to r1p2.
421
422	  Affected Cortex-A57 parts might report a Stage 2 translation
423	  fault as the result of a Stage 1 fault for load crossing a
424	  page boundary when there is a permission or device memory
425	  alignment fault at Stage 1 and a translation fault at Stage 2.
426
427	  The workaround is to verify that the Stage 1 translation
428	  doesn't generate a fault before handling the Stage 2 fault.
429	  Please note that this does not necessarily enable the workaround,
430	  as it depends on the alternative framework, which will only patch
431	  the kernel if an affected CPU is detected.
432
433	  If unsure, say Y.
434
435config ARM64_ERRATUM_845719
436	bool "Cortex-A53: 845719: a load might read incorrect data"
437	depends on COMPAT
438	default y
439	help
440	  This option adds an alternative code sequence to work around ARM
441	  erratum 845719 on Cortex-A53 parts up to r0p4.
442
443	  When running a compat (AArch32) userspace on an affected Cortex-A53
444	  part, a load at EL0 from a virtual address that matches the bottom 32
445	  bits of the virtual address used by a recent load at (AArch64) EL1
446	  might return incorrect data.
447
448	  The workaround is to write the contextidr_el1 register on exception
449	  return to a 32-bit task.
450	  Please note that this does not necessarily enable the workaround,
451	  as it depends on the alternative framework, which will only patch
452	  the kernel if an affected CPU is detected.
453
454	  If unsure, say Y.
455
456config ARM64_ERRATUM_843419
457	bool "Cortex-A53: 843419: A load or store might access an incorrect address"
458	default y
459	select ARM64_MODULE_PLTS if MODULES
460	help
461	  This option links the kernel with '--fix-cortex-a53-843419' and
462	  enables PLT support to replace certain ADRP instructions, which can
463	  cause subsequent memory accesses to use an incorrect address on
464	  Cortex-A53 parts up to r0p4.
465
466	  If unsure, say Y.
467
468config ARM64_ERRATUM_1024718
469	bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update"
470	default y
471	help
472	  This option adds a workaround for ARM Cortex-A55 Erratum 1024718.
473
474	  Affected Cortex-A55 cores (r0p0, r0p1, r1p0) could cause incorrect
475	  update of the hardware dirty bit when the DBM/AP bits are updated
476	  without a break-before-make. The workaround is to disable the usage
477	  of hardware DBM locally on the affected cores. CPUs not affected by
478	  this erratum will continue to use the feature.
479
480	  If unsure, say Y.
481
482config ARM64_ERRATUM_1418040
483	bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result"
484	default y
485	depends on COMPAT
486	help
487	  This option adds a workaround for ARM Cortex-A76/Neoverse-N1
488	  errata 1188873 and 1418040.
489
490	  Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could
491	  cause register corruption when accessing the timer registers
492	  from AArch32 userspace.
493
494	  If unsure, say Y.
495
496config ARM64_ERRATUM_1165522
497	bool "Cortex-A76: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation"
498	default y
499	help
500	  This option adds a workaround for ARM Cortex-A76 erratum 1165522.
501
502	  Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with
503	  corrupted TLBs by speculating an AT instruction during a guest
504	  context switch.
505
506	  If unsure, say Y.
507
508config ARM64_ERRATUM_1286807
509	bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation"
510	default y
511	select ARM64_WORKAROUND_REPEAT_TLBI
512	help
513	  This option adds a workaround for ARM Cortex-A76 erratum 1286807.
514
515	  On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual
516	  address for a cacheable mapping of a location is being
517	  accessed by a core while another core is remapping the virtual
518	  address to a new physical page using the recommended
519	  break-before-make sequence, then under very rare circumstances
520	  TLBI+DSB completes before a read using the translation being
521	  invalidated has been observed by other observers. The
522	  workaround repeats the TLBI+DSB operation.
523
524	  If unsure, say Y.
525
526config ARM64_ERRATUM_1463225
527	bool "Cortex-A76: Software Step might prevent interrupt recognition"
528	default y
529	help
530	  This option adds a workaround for Arm Cortex-A76 erratum 1463225.
531
532	  On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping
533	  of a system call instruction (SVC) can prevent recognition of
534	  subsequent interrupts when software stepping is disabled in the
535	  exception handler of the system call and either kernel debugging
536	  is enabled or VHE is in use.
537
538	  Work around the erratum by triggering a dummy step exception
539	  when handling a system call from a task that is being stepped
540	  in a VHE configuration of the kernel.
541
542	  If unsure, say Y.
543
544config CAVIUM_ERRATUM_22375
545	bool "Cavium erratum 22375, 24313"
546	default y
547	help
548	  Enable workaround for errata 22375 and 24313.
549
550	  This implements two gicv3-its errata workarounds for ThunderX. Both
551	  with a small impact affecting only ITS table allocation.
552
553	    erratum 22375: only alloc 8MB table size
554	    erratum 24313: ignore memory access type
555
556	  The fixes are in ITS initialization and basically ignore memory access
557	  type and table size provided by the TYPER and BASER registers.
558
559	  If unsure, say Y.
560
561config CAVIUM_ERRATUM_23144
562	bool "Cavium erratum 23144: ITS SYNC hang on dual socket system"
563	depends on NUMA
564	default y
565	help
566	  ITS SYNC command hang for cross node io and collections/cpu mapping.
567
568	  If unsure, say Y.
569
570config CAVIUM_ERRATUM_23154
571	bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed"
572	default y
573	help
574	  The gicv3 of ThunderX requires a modified version for
575	  reading the IAR status to ensure data synchronization
576	  (access to icc_iar1_el1 is not sync'ed before and after).
577
578	  If unsure, say Y.
579
580config CAVIUM_ERRATUM_27456
581	bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption"
582	default y
583	help
584	  On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI
585	  instructions may cause the icache to become corrupted if it
586	  contains data for a non-current ASID.  The fix is to
587	  invalidate the icache when changing the mm context.
588
589	  If unsure, say Y.
590
591config CAVIUM_ERRATUM_30115
592	bool "Cavium erratum 30115: Guest may disable interrupts in host"
593	default y
594	help
595	  On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through
596	  1.2, and T83 Pass 1.0, KVM guest execution may disable
597	  interrupts in host. Trapping both GICv3 group-0 and group-1
598	  accesses sidesteps the issue.
599
600	  If unsure, say Y.
601
602config QCOM_FALKOR_ERRATUM_1003
603	bool "Falkor E1003: Incorrect translation due to ASID change"
604	default y
605	help
606	  On Falkor v1, an incorrect ASID may be cached in the TLB when ASID
607	  and BADDR are changed together in TTBRx_EL1. Since we keep the ASID
608	  in TTBR1_EL1, this situation only occurs in the entry trampoline and
609	  then only for entries in the walk cache, since the leaf translation
610	  is unchanged. Work around the erratum by invalidating the walk cache
611	  entries for the trampoline before entering the kernel proper.
612
613config ARM64_WORKAROUND_REPEAT_TLBI
614	bool
615
616config QCOM_FALKOR_ERRATUM_1009
617	bool "Falkor E1009: Prematurely complete a DSB after a TLBI"
618	default y
619	select ARM64_WORKAROUND_REPEAT_TLBI
620	help
621	  On Falkor v1, the CPU may prematurely complete a DSB following a
622	  TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation
623	  one more time to fix the issue.
624
625	  If unsure, say Y.
626
627config QCOM_QDF2400_ERRATUM_0065
628	bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size"
629	default y
630	help
631	  On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports
632	  ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have
633	  been indicated as 16Bytes (0xf), not 8Bytes (0x7).
634
635	  If unsure, say Y.
636
637config SOCIONEXT_SYNQUACER_PREITS
638	bool "Socionext Synquacer: Workaround for GICv3 pre-ITS"
639	default y
640	help
641	  Socionext Synquacer SoCs implement a separate h/w block to generate
642	  MSI doorbell writes with non-zero values for the device ID.
643
644	  If unsure, say Y.
645
646config HISILICON_ERRATUM_161600802
647	bool "Hip07 161600802: Erroneous redistributor VLPI base"
648	default y
649	help
650	  The HiSilicon Hip07 SoC uses the wrong redistributor base
651	  when issued ITS commands such as VMOVP and VMAPP, and requires
652	  a 128kB offset to be applied to the target address in this commands.
653
654	  If unsure, say Y.
655
656config QCOM_FALKOR_ERRATUM_E1041
657	bool "Falkor E1041: Speculative instruction fetches might cause errant memory access"
658	default y
659	help
660	  Falkor CPU may speculatively fetch instructions from an improper
661	  memory location when MMU translation is changed from SCTLR_ELn[M]=1
662	  to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem.
663
664	  If unsure, say Y.
665
666config FUJITSU_ERRATUM_010001
667	bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly"
668	default y
669	help
670	  This option adds a workaround for Fujitsu-A64FX erratum E#010001.
671	  On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory
672	  accesses may cause undefined fault (Data abort, DFSC=0b111111).
673	  This fault occurs under a specific hardware condition when a
674	  load/store instruction performs an address translation using:
675	  case-1  TTBR0_EL1 with TCR_EL1.NFD0 == 1.
676	  case-2  TTBR0_EL2 with TCR_EL2.NFD0 == 1.
677	  case-3  TTBR1_EL1 with TCR_EL1.NFD1 == 1.
678	  case-4  TTBR1_EL2 with TCR_EL2.NFD1 == 1.
679
680	  The workaround is to ensure these bits are clear in TCR_ELx.
681	  The workaround only affects the Fujitsu-A64FX.
682
683	  If unsure, say Y.
684
685endmenu
686
687
688choice
689	prompt "Page size"
690	default ARM64_4K_PAGES
691	help
692	  Page size (translation granule) configuration.
693
694config ARM64_4K_PAGES
695	bool "4KB"
696	help
697	  This feature enables 4KB pages support.
698
699config ARM64_16K_PAGES
700	bool "16KB"
701	help
702	  The system will use 16KB pages support. AArch32 emulation
703	  requires applications compiled with 16K (or a multiple of 16K)
704	  aligned segments.
705
706config ARM64_64K_PAGES
707	bool "64KB"
708	help
709	  This feature enables 64KB pages support (4KB by default)
710	  allowing only two levels of page tables and faster TLB
711	  look-up. AArch32 emulation requires applications compiled
712	  with 64K aligned segments.
713
714endchoice
715
716choice
717	prompt "Virtual address space size"
718	default ARM64_VA_BITS_39 if ARM64_4K_PAGES
719	default ARM64_VA_BITS_47 if ARM64_16K_PAGES
720	default ARM64_VA_BITS_42 if ARM64_64K_PAGES
721	help
722	  Allows choosing one of multiple possible virtual address
723	  space sizes. The level of translation table is determined by
724	  a combination of page size and virtual address space size.
725
726config ARM64_VA_BITS_36
727	bool "36-bit" if EXPERT
728	depends on ARM64_16K_PAGES
729
730config ARM64_VA_BITS_39
731	bool "39-bit"
732	depends on ARM64_4K_PAGES
733
734config ARM64_VA_BITS_42
735	bool "42-bit"
736	depends on ARM64_64K_PAGES
737
738config ARM64_VA_BITS_47
739	bool "47-bit"
740	depends on ARM64_16K_PAGES
741
742config ARM64_VA_BITS_48
743	bool "48-bit"
744
745config ARM64_USER_VA_BITS_52
746	bool "52-bit (user)"
747	depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN)
748	help
749	  Enable 52-bit virtual addressing for userspace when explicitly
750	  requested via a hint to mmap(). The kernel will continue to
751	  use 48-bit virtual addresses for its own mappings.
752
753	  NOTE: Enabling 52-bit virtual addressing in conjunction with
754	  ARMv8.3 Pointer Authentication will result in the PAC being
755	  reduced from 7 bits to 3 bits, which may have a significant
756	  impact on its susceptibility to brute-force attacks.
757
758	  If unsure, select 48-bit virtual addressing instead.
759
760endchoice
761
762config ARM64_FORCE_52BIT
763	bool "Force 52-bit virtual addresses for userspace"
764	depends on ARM64_USER_VA_BITS_52 && EXPERT
765	help
766	  For systems with 52-bit userspace VAs enabled, the kernel will attempt
767	  to maintain compatibility with older software by providing 48-bit VAs
768	  unless a hint is supplied to mmap.
769
770	  This configuration option disables the 48-bit compatibility logic, and
771	  forces all userspace addresses to be 52-bit on HW that supports it. One
772	  should only enable this configuration option for stress testing userspace
773	  memory management code. If unsure say N here.
774
775config ARM64_VA_BITS
776	int
777	default 36 if ARM64_VA_BITS_36
778	default 39 if ARM64_VA_BITS_39
779	default 42 if ARM64_VA_BITS_42
780	default 47 if ARM64_VA_BITS_47
781	default 48 if ARM64_VA_BITS_48 || ARM64_USER_VA_BITS_52
782
783choice
784	prompt "Physical address space size"
785	default ARM64_PA_BITS_48
786	help
787	  Choose the maximum physical address range that the kernel will
788	  support.
789
790config ARM64_PA_BITS_48
791	bool "48-bit"
792
793config ARM64_PA_BITS_52
794	bool "52-bit (ARMv8.2)"
795	depends on ARM64_64K_PAGES
796	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
797	help
798	  Enable support for a 52-bit physical address space, introduced as
799	  part of the ARMv8.2-LPA extension.
800
801	  With this enabled, the kernel will also continue to work on CPUs that
802	  do not support ARMv8.2-LPA, but with some added memory overhead (and
803	  minor performance overhead).
804
805endchoice
806
807config ARM64_PA_BITS
808	int
809	default 48 if ARM64_PA_BITS_48
810	default 52 if ARM64_PA_BITS_52
811
812config CPU_BIG_ENDIAN
813       bool "Build big-endian kernel"
814       help
815         Say Y if you plan on running a kernel in big-endian mode.
816
817config SCHED_MC
818	bool "Multi-core scheduler support"
819	help
820	  Multi-core scheduler support improves the CPU scheduler's decision
821	  making when dealing with multi-core CPU chips at a cost of slightly
822	  increased overhead in some places. If unsure say N here.
823
824config SCHED_SMT
825	bool "SMT scheduler support"
826	help
827	  Improves the CPU scheduler's decision making when dealing with
828	  MultiThreading at a cost of slightly increased overhead in some
829	  places. If unsure say N here.
830
831config NR_CPUS
832	int "Maximum number of CPUs (2-4096)"
833	range 2 4096
834	default "256"
835
836config HOTPLUG_CPU
837	bool "Support for hot-pluggable CPUs"
838	select GENERIC_IRQ_MIGRATION
839	help
840	  Say Y here to experiment with turning CPUs off and on.  CPUs
841	  can be controlled through /sys/devices/system/cpu.
842
843# Common NUMA Features
844config NUMA
845	bool "Numa Memory Allocation and Scheduler Support"
846	select ACPI_NUMA if ACPI
847	select OF_NUMA
848	help
849	  Enable NUMA (Non Uniform Memory Access) support.
850
851	  The kernel will try to allocate memory used by a CPU on the
852	  local memory of the CPU and add some more
853	  NUMA awareness to the kernel.
854
855config NODES_SHIFT
856	int "Maximum NUMA Nodes (as a power of 2)"
857	range 1 10
858	default "2"
859	depends on NEED_MULTIPLE_NODES
860	help
861	  Specify the maximum number of NUMA Nodes available on the target
862	  system.  Increases memory reserved to accommodate various tables.
863
864config USE_PERCPU_NUMA_NODE_ID
865	def_bool y
866	depends on NUMA
867
868config HAVE_SETUP_PER_CPU_AREA
869	def_bool y
870	depends on NUMA
871
872config NEED_PER_CPU_EMBED_FIRST_CHUNK
873	def_bool y
874	depends on NUMA
875
876config HOLES_IN_ZONE
877	def_bool y
878
879source "kernel/Kconfig.hz"
880
881config ARCH_SUPPORTS_DEBUG_PAGEALLOC
882	def_bool y
883
884config ARCH_SPARSEMEM_ENABLE
885	def_bool y
886	select SPARSEMEM_VMEMMAP_ENABLE
887
888config ARCH_SPARSEMEM_DEFAULT
889	def_bool ARCH_SPARSEMEM_ENABLE
890
891config ARCH_SELECT_MEMORY_MODEL
892	def_bool ARCH_SPARSEMEM_ENABLE
893
894config ARCH_FLATMEM_ENABLE
895	def_bool !NUMA
896
897config HAVE_ARCH_PFN_VALID
898	def_bool y
899
900config HW_PERF_EVENTS
901	def_bool y
902	depends on ARM_PMU
903
904config SYS_SUPPORTS_HUGETLBFS
905	def_bool y
906
907config ARCH_WANT_HUGE_PMD_SHARE
908	def_bool y if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36)
909
910config ARCH_HAS_CACHE_LINE_SIZE
911	def_bool y
912
913config ARCH_ENABLE_SPLIT_PMD_PTLOCK
914	def_bool y if PGTABLE_LEVELS > 2
915
916config SECCOMP
917	bool "Enable seccomp to safely compute untrusted bytecode"
918	---help---
919	  This kernel feature is useful for number crunching applications
920	  that may need to compute untrusted bytecode during their
921	  execution. By using pipes or other transports made available to
922	  the process as file descriptors supporting the read/write
923	  syscalls, it's possible to isolate those applications in
924	  their own address space using seccomp. Once seccomp is
925	  enabled via prctl(PR_SET_SECCOMP), it cannot be disabled
926	  and the task is only allowed to execute a few safe syscalls
927	  defined by each seccomp mode.
928
929config PARAVIRT
930	bool "Enable paravirtualization code"
931	help
932	  This changes the kernel so it can modify itself when it is run
933	  under a hypervisor, potentially improving performance significantly
934	  over full virtualization.
935
936config PARAVIRT_TIME_ACCOUNTING
937	bool "Paravirtual steal time accounting"
938	select PARAVIRT
939	help
940	  Select this option to enable fine granularity task steal time
941	  accounting. Time spent executing other tasks in parallel with
942	  the current vCPU is discounted from the vCPU power. To account for
943	  that, there can be a small performance impact.
944
945	  If in doubt, say N here.
946
947config KEXEC
948	depends on PM_SLEEP_SMP
949	select KEXEC_CORE
950	bool "kexec system call"
951	---help---
952	  kexec is a system call that implements the ability to shutdown your
953	  current kernel, and to start another kernel.  It is like a reboot
954	  but it is independent of the system firmware.   And like a reboot
955	  you can start any kernel with it, not just Linux.
956
957config KEXEC_FILE
958	bool "kexec file based system call"
959	select KEXEC_CORE
960	help
961	  This is new version of kexec system call. This system call is
962	  file based and takes file descriptors as system call argument
963	  for kernel and initramfs as opposed to list of segments as
964	  accepted by previous system call.
965
966config KEXEC_VERIFY_SIG
967	bool "Verify kernel signature during kexec_file_load() syscall"
968	depends on KEXEC_FILE
969	help
970	  Select this option to verify a signature with loaded kernel
971	  image. If configured, any attempt of loading a image without
972	  valid signature will fail.
973
974	  In addition to that option, you need to enable signature
975	  verification for the corresponding kernel image type being
976	  loaded in order for this to work.
977
978config KEXEC_IMAGE_VERIFY_SIG
979	bool "Enable Image signature verification support"
980	default y
981	depends on KEXEC_VERIFY_SIG
982	depends on EFI && SIGNED_PE_FILE_VERIFICATION
983	help
984	  Enable Image signature verification support.
985
986comment "Support for PE file signature verification disabled"
987	depends on KEXEC_VERIFY_SIG
988	depends on !EFI || !SIGNED_PE_FILE_VERIFICATION
989
990config CRASH_DUMP
991	bool "Build kdump crash kernel"
992	help
993	  Generate crash dump after being started by kexec. This should
994	  be normally only set in special crash dump kernels which are
995	  loaded in the main kernel with kexec-tools into a specially
996	  reserved region and then later executed after a crash by
997	  kdump/kexec.
998
999	  For more details see Documentation/kdump/kdump.rst
1000
1001config XEN_DOM0
1002	def_bool y
1003	depends on XEN
1004
1005config XEN
1006	bool "Xen guest support on ARM64"
1007	depends on ARM64 && OF
1008	select SWIOTLB_XEN
1009	select PARAVIRT
1010	help
1011	  Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64.
1012
1013config FORCE_MAX_ZONEORDER
1014	int
1015	default "14" if (ARM64_64K_PAGES && TRANSPARENT_HUGEPAGE)
1016	default "12" if (ARM64_16K_PAGES && TRANSPARENT_HUGEPAGE)
1017	default "11"
1018	help
1019	  The kernel memory allocator divides physically contiguous memory
1020	  blocks into "zones", where each zone is a power of two number of
1021	  pages.  This option selects the largest power of two that the kernel
1022	  keeps in the memory allocator.  If you need to allocate very large
1023	  blocks of physically contiguous memory, then you may need to
1024	  increase this value.
1025
1026	  This config option is actually maximum order plus one. For example,
1027	  a value of 11 means that the largest free memory block is 2^10 pages.
1028
1029	  We make sure that we can allocate upto a HugePage size for each configuration.
1030	  Hence we have :
1031		MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2
1032
1033	  However for 4K, we choose a higher default value, 11 as opposed to 10, giving us
1034	  4M allocations matching the default size used by generic code.
1035
1036config UNMAP_KERNEL_AT_EL0
1037	bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT
1038	default y
1039	help
1040	  Speculation attacks against some high-performance processors can
1041	  be used to bypass MMU permission checks and leak kernel data to
1042	  userspace. This can be defended against by unmapping the kernel
1043	  when running in userspace, mapping it back in on exception entry
1044	  via a trampoline page in the vector table.
1045
1046	  If unsure, say Y.
1047
1048config HARDEN_BRANCH_PREDICTOR
1049	bool "Harden the branch predictor against aliasing attacks" if EXPERT
1050	default y
1051	help
1052	  Speculation attacks against some high-performance processors rely on
1053	  being able to manipulate the branch predictor for a victim context by
1054	  executing aliasing branches in the attacker context.  Such attacks
1055	  can be partially mitigated against by clearing internal branch
1056	  predictor state and limiting the prediction logic in some situations.
1057
1058	  This config option will take CPU-specific actions to harden the
1059	  branch predictor against aliasing attacks and may rely on specific
1060	  instruction sequences or control bits being set by the system
1061	  firmware.
1062
1063	  If unsure, say Y.
1064
1065config HARDEN_EL2_VECTORS
1066	bool "Harden EL2 vector mapping against system register leak" if EXPERT
1067	default y
1068	help
1069	  Speculation attacks against some high-performance processors can
1070	  be used to leak privileged information such as the vector base
1071	  register, resulting in a potential defeat of the EL2 layout
1072	  randomization.
1073
1074	  This config option will map the vectors to a fixed location,
1075	  independent of the EL2 code mapping, so that revealing VBAR_EL2
1076	  to an attacker does not give away any extra information. This
1077	  only gets enabled on affected CPUs.
1078
1079	  If unsure, say Y.
1080
1081config ARM64_SSBD
1082	bool "Speculative Store Bypass Disable" if EXPERT
1083	default y
1084	help
1085	  This enables mitigation of the bypassing of previous stores
1086	  by speculative loads.
1087
1088	  If unsure, say Y.
1089
1090config RODATA_FULL_DEFAULT_ENABLED
1091	bool "Apply r/o permissions of VM areas also to their linear aliases"
1092	default y
1093	help
1094	  Apply read-only attributes of VM areas to the linear alias of
1095	  the backing pages as well. This prevents code or read-only data
1096	  from being modified (inadvertently or intentionally) via another
1097	  mapping of the same memory page. This additional enhancement can
1098	  be turned off at runtime by passing rodata=[off|on] (and turned on
1099	  with rodata=full if this option is set to 'n')
1100
1101	  This requires the linear region to be mapped down to pages,
1102	  which may adversely affect performance in some cases.
1103
1104config ARM64_SW_TTBR0_PAN
1105	bool "Emulate Privileged Access Never using TTBR0_EL1 switching"
1106	help
1107	  Enabling this option prevents the kernel from accessing
1108	  user-space memory directly by pointing TTBR0_EL1 to a reserved
1109	  zeroed area and reserved ASID. The user access routines
1110	  restore the valid TTBR0_EL1 temporarily.
1111
1112menuconfig COMPAT
1113	bool "Kernel support for 32-bit EL0"
1114	depends on ARM64_4K_PAGES || EXPERT
1115	select COMPAT_BINFMT_ELF if BINFMT_ELF
1116	select HAVE_UID16
1117	select OLD_SIGSUSPEND3
1118	select COMPAT_OLD_SIGACTION
1119	help
1120	  This option enables support for a 32-bit EL0 running under a 64-bit
1121	  kernel at EL1. AArch32-specific components such as system calls,
1122	  the user helper functions, VFP support and the ptrace interface are
1123	  handled appropriately by the kernel.
1124
1125	  If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware
1126	  that you will only be able to execute AArch32 binaries that were compiled
1127	  with page size aligned segments.
1128
1129	  If you want to execute 32-bit userspace applications, say Y.
1130
1131if COMPAT
1132
1133config KUSER_HELPERS
1134	bool "Enable kuser helpers page for 32 bit applications"
1135	default y
1136	help
1137	  Warning: disabling this option may break 32-bit user programs.
1138
1139	  Provide kuser helpers to compat tasks. The kernel provides
1140	  helper code to userspace in read only form at a fixed location
1141	  to allow userspace to be independent of the CPU type fitted to
1142	  the system. This permits binaries to be run on ARMv4 through
1143	  to ARMv8 without modification.
1144
1145	  See Documentation/arm/kernel_user_helpers.txt for details.
1146
1147	  However, the fixed address nature of these helpers can be used
1148	  by ROP (return orientated programming) authors when creating
1149	  exploits.
1150
1151	  If all of the binaries and libraries which run on your platform
1152	  are built specifically for your platform, and make no use of
1153	  these helpers, then you can turn this option off to hinder
1154	  such exploits. However, in that case, if a binary or library
1155	  relying on those helpers is run, it will not function correctly.
1156
1157	  Say N here only if you are absolutely certain that you do not
1158	  need these helpers; otherwise, the safe option is to say Y.
1159
1160
1161menuconfig ARMV8_DEPRECATED
1162	bool "Emulate deprecated/obsolete ARMv8 instructions"
1163	depends on SYSCTL
1164	help
1165	  Legacy software support may require certain instructions
1166	  that have been deprecated or obsoleted in the architecture.
1167
1168	  Enable this config to enable selective emulation of these
1169	  features.
1170
1171	  If unsure, say Y
1172
1173if ARMV8_DEPRECATED
1174
1175config SWP_EMULATION
1176	bool "Emulate SWP/SWPB instructions"
1177	help
1178	  ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that
1179	  they are always undefined. Say Y here to enable software
1180	  emulation of these instructions for userspace using LDXR/STXR.
1181
1182	  In some older versions of glibc [<=2.8] SWP is used during futex
1183	  trylock() operations with the assumption that the code will not
1184	  be preempted. This invalid assumption may be more likely to fail
1185	  with SWP emulation enabled, leading to deadlock of the user
1186	  application.
1187
1188	  NOTE: when accessing uncached shared regions, LDXR/STXR rely
1189	  on an external transaction monitoring block called a global
1190	  monitor to maintain update atomicity. If your system does not
1191	  implement a global monitor, this option can cause programs that
1192	  perform SWP operations to uncached memory to deadlock.
1193
1194	  If unsure, say Y
1195
1196config CP15_BARRIER_EMULATION
1197	bool "Emulate CP15 Barrier instructions"
1198	help
1199	  The CP15 barrier instructions - CP15ISB, CP15DSB, and
1200	  CP15DMB - are deprecated in ARMv8 (and ARMv7). It is
1201	  strongly recommended to use the ISB, DSB, and DMB
1202	  instructions instead.
1203
1204	  Say Y here to enable software emulation of these
1205	  instructions for AArch32 userspace code. When this option is
1206	  enabled, CP15 barrier usage is traced which can help
1207	  identify software that needs updating.
1208
1209	  If unsure, say Y
1210
1211config SETEND_EMULATION
1212	bool "Emulate SETEND instruction"
1213	help
1214	  The SETEND instruction alters the data-endianness of the
1215	  AArch32 EL0, and is deprecated in ARMv8.
1216
1217	  Say Y here to enable software emulation of the instruction
1218	  for AArch32 userspace code.
1219
1220	  Note: All the cpus on the system must have mixed endian support at EL0
1221	  for this feature to be enabled. If a new CPU - which doesn't support mixed
1222	  endian - is hotplugged in after this feature has been enabled, there could
1223	  be unexpected results in the applications.
1224
1225	  If unsure, say Y
1226endif
1227
1228endif
1229
1230menu "ARMv8.1 architectural features"
1231
1232config ARM64_HW_AFDBM
1233	bool "Support for hardware updates of the Access and Dirty page flags"
1234	default y
1235	help
1236	  The ARMv8.1 architecture extensions introduce support for
1237	  hardware updates of the access and dirty information in page
1238	  table entries. When enabled in TCR_EL1 (HA and HD bits) on
1239	  capable processors, accesses to pages with PTE_AF cleared will
1240	  set this bit instead of raising an access flag fault.
1241	  Similarly, writes to read-only pages with the DBM bit set will
1242	  clear the read-only bit (AP[2]) instead of raising a
1243	  permission fault.
1244
1245	  Kernels built with this configuration option enabled continue
1246	  to work on pre-ARMv8.1 hardware and the performance impact is
1247	  minimal. If unsure, say Y.
1248
1249config ARM64_PAN
1250	bool "Enable support for Privileged Access Never (PAN)"
1251	default y
1252	help
1253	 Privileged Access Never (PAN; part of the ARMv8.1 Extensions)
1254	 prevents the kernel or hypervisor from accessing user-space (EL0)
1255	 memory directly.
1256
1257	 Choosing this option will cause any unprotected (not using
1258	 copy_to_user et al) memory access to fail with a permission fault.
1259
1260	 The feature is detected at runtime, and will remain as a 'nop'
1261	 instruction if the cpu does not implement the feature.
1262
1263config ARM64_LSE_ATOMICS
1264	bool "Atomic instructions"
1265	default y
1266	help
1267	  As part of the Large System Extensions, ARMv8.1 introduces new
1268	  atomic instructions that are designed specifically to scale in
1269	  very large systems.
1270
1271	  Say Y here to make use of these instructions for the in-kernel
1272	  atomic routines. This incurs a small overhead on CPUs that do
1273	  not support these instructions and requires the kernel to be
1274	  built with binutils >= 2.25 in order for the new instructions
1275	  to be used.
1276
1277config ARM64_VHE
1278	bool "Enable support for Virtualization Host Extensions (VHE)"
1279	default y
1280	help
1281	  Virtualization Host Extensions (VHE) allow the kernel to run
1282	  directly at EL2 (instead of EL1) on processors that support
1283	  it. This leads to better performance for KVM, as they reduce
1284	  the cost of the world switch.
1285
1286	  Selecting this option allows the VHE feature to be detected
1287	  at runtime, and does not affect processors that do not
1288	  implement this feature.
1289
1290endmenu
1291
1292menu "ARMv8.2 architectural features"
1293
1294config ARM64_UAO
1295	bool "Enable support for User Access Override (UAO)"
1296	default y
1297	help
1298	  User Access Override (UAO; part of the ARMv8.2 Extensions)
1299	  causes the 'unprivileged' variant of the load/store instructions to
1300	  be overridden to be privileged.
1301
1302	  This option changes get_user() and friends to use the 'unprivileged'
1303	  variant of the load/store instructions. This ensures that user-space
1304	  really did have access to the supplied memory. When addr_limit is
1305	  set to kernel memory the UAO bit will be set, allowing privileged
1306	  access to kernel memory.
1307
1308	  Choosing this option will cause copy_to_user() et al to use user-space
1309	  memory permissions.
1310
1311	  The feature is detected at runtime, the kernel will use the
1312	  regular load/store instructions if the cpu does not implement the
1313	  feature.
1314
1315config ARM64_PMEM
1316	bool "Enable support for persistent memory"
1317	select ARCH_HAS_PMEM_API
1318	select ARCH_HAS_UACCESS_FLUSHCACHE
1319	help
1320	  Say Y to enable support for the persistent memory API based on the
1321	  ARMv8.2 DCPoP feature.
1322
1323	  The feature is detected at runtime, and the kernel will use DC CVAC
1324	  operations if DC CVAP is not supported (following the behaviour of
1325	  DC CVAP itself if the system does not define a point of persistence).
1326
1327config ARM64_RAS_EXTN
1328	bool "Enable support for RAS CPU Extensions"
1329	default y
1330	help
1331	  CPUs that support the Reliability, Availability and Serviceability
1332	  (RAS) Extensions, part of ARMv8.2 are able to track faults and
1333	  errors, classify them and report them to software.
1334
1335	  On CPUs with these extensions system software can use additional
1336	  barriers to determine if faults are pending and read the
1337	  classification from a new set of registers.
1338
1339	  Selecting this feature will allow the kernel to use these barriers
1340	  and access the new registers if the system supports the extension.
1341	  Platform RAS features may additionally depend on firmware support.
1342
1343config ARM64_CNP
1344	bool "Enable support for Common Not Private (CNP) translations"
1345	default y
1346	depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN
1347	help
1348	  Common Not Private (CNP) allows translation table entries to
1349	  be shared between different PEs in the same inner shareable
1350	  domain, so the hardware can use this fact to optimise the
1351	  caching of such entries in the TLB.
1352
1353	  Selecting this option allows the CNP feature to be detected
1354	  at runtime, and does not affect PEs that do not implement
1355	  this feature.
1356
1357endmenu
1358
1359menu "ARMv8.3 architectural features"
1360
1361config ARM64_PTR_AUTH
1362	bool "Enable support for pointer authentication"
1363	default y
1364	depends on !KVM || ARM64_VHE
1365	help
1366	  Pointer authentication (part of the ARMv8.3 Extensions) provides
1367	  instructions for signing and authenticating pointers against secret
1368	  keys, which can be used to mitigate Return Oriented Programming (ROP)
1369	  and other attacks.
1370
1371	  This option enables these instructions at EL0 (i.e. for userspace).
1372
1373	  Choosing this option will cause the kernel to initialise secret keys
1374	  for each process at exec() time, with these keys being
1375	  context-switched along with the process.
1376
1377	  The feature is detected at runtime. If the feature is not present in
1378	  hardware it will not be advertised to userspace/KVM guest nor will it
1379	  be enabled. However, KVM guest also require VHE mode and hence
1380	  CONFIG_ARM64_VHE=y option to use this feature.
1381
1382endmenu
1383
1384config ARM64_SVE
1385	bool "ARM Scalable Vector Extension support"
1386	default y
1387	depends on !KVM || ARM64_VHE
1388	help
1389	  The Scalable Vector Extension (SVE) is an extension to the AArch64
1390	  execution state which complements and extends the SIMD functionality
1391	  of the base architecture to support much larger vectors and to enable
1392	  additional vectorisation opportunities.
1393
1394	  To enable use of this extension on CPUs that implement it, say Y.
1395
1396	  On CPUs that support the SVE2 extensions, this option will enable
1397	  those too.
1398
1399	  Note that for architectural reasons, firmware _must_ implement SVE
1400	  support when running on SVE capable hardware.  The required support
1401	  is present in:
1402
1403	    * version 1.5 and later of the ARM Trusted Firmware
1404	    * the AArch64 boot wrapper since commit 5e1261e08abf
1405	      ("bootwrapper: SVE: Enable SVE for EL2 and below").
1406
1407	  For other firmware implementations, consult the firmware documentation
1408	  or vendor.
1409
1410	  If you need the kernel to boot on SVE-capable hardware with broken
1411	  firmware, you may need to say N here until you get your firmware
1412	  fixed.  Otherwise, you may experience firmware panics or lockups when
1413	  booting the kernel.  If unsure and you are not observing these
1414	  symptoms, you should assume that it is safe to say Y.
1415
1416	  CPUs that support SVE are architecturally required to support the
1417	  Virtualization Host Extensions (VHE), so the kernel makes no
1418	  provision for supporting SVE alongside KVM without VHE enabled.
1419	  Thus, you will need to enable CONFIG_ARM64_VHE if you want to support
1420	  KVM in the same kernel image.
1421
1422config ARM64_MODULE_PLTS
1423	bool "Use PLTs to allow module memory to spill over into vmalloc area"
1424	depends on MODULES
1425	select HAVE_MOD_ARCH_SPECIFIC
1426	help
1427	  Allocate PLTs when loading modules so that jumps and calls whose
1428	  targets are too far away for their relative offsets to be encoded
1429	  in the instructions themselves can be bounced via veneers in the
1430	  module's PLT. This allows modules to be allocated in the generic
1431	  vmalloc area after the dedicated module memory area has been
1432	  exhausted.
1433
1434	  When running with address space randomization (KASLR), the module
1435	  region itself may be too far away for ordinary relative jumps and
1436	  calls, and so in that case, module PLTs are required and cannot be
1437	  disabled.
1438
1439	  Specific errata workaround(s) might also force module PLTs to be
1440	  enabled (ARM64_ERRATUM_843419).
1441
1442config ARM64_PSEUDO_NMI
1443	bool "Support for NMI-like interrupts"
1444	select CONFIG_ARM_GIC_V3
1445	help
1446	  Adds support for mimicking Non-Maskable Interrupts through the use of
1447	  GIC interrupt priority. This support requires version 3 or later of
1448	  ARM GIC.
1449
1450	  This high priority configuration for interrupts needs to be
1451	  explicitly enabled by setting the kernel parameter
1452	  "irqchip.gicv3_pseudo_nmi" to 1.
1453
1454	  If unsure, say N
1455
1456if ARM64_PSEUDO_NMI
1457config ARM64_DEBUG_PRIORITY_MASKING
1458	bool "Debug interrupt priority masking"
1459	help
1460	  This adds runtime checks to functions enabling/disabling
1461	  interrupts when using priority masking. The additional checks verify
1462	  the validity of ICC_PMR_EL1 when calling concerned functions.
1463
1464	  If unsure, say N
1465endif
1466
1467config RELOCATABLE
1468	bool
1469	help
1470	  This builds the kernel as a Position Independent Executable (PIE),
1471	  which retains all relocation metadata required to relocate the
1472	  kernel binary at runtime to a different virtual address than the
1473	  address it was linked at.
1474	  Since AArch64 uses the RELA relocation format, this requires a
1475	  relocation pass at runtime even if the kernel is loaded at the
1476	  same address it was linked at.
1477
1478config RANDOMIZE_BASE
1479	bool "Randomize the address of the kernel image"
1480	select ARM64_MODULE_PLTS if MODULES
1481	select RELOCATABLE
1482	help
1483	  Randomizes the virtual address at which the kernel image is
1484	  loaded, as a security feature that deters exploit attempts
1485	  relying on knowledge of the location of kernel internals.
1486
1487	  It is the bootloader's job to provide entropy, by passing a
1488	  random u64 value in /chosen/kaslr-seed at kernel entry.
1489
1490	  When booting via the UEFI stub, it will invoke the firmware's
1491	  EFI_RNG_PROTOCOL implementation (if available) to supply entropy
1492	  to the kernel proper. In addition, it will randomise the physical
1493	  location of the kernel Image as well.
1494
1495	  If unsure, say N.
1496
1497config RANDOMIZE_MODULE_REGION_FULL
1498	bool "Randomize the module region over a 4 GB range"
1499	depends on RANDOMIZE_BASE
1500	default y
1501	help
1502	  Randomizes the location of the module region inside a 4 GB window
1503	  covering the core kernel. This way, it is less likely for modules
1504	  to leak information about the location of core kernel data structures
1505	  but it does imply that function calls between modules and the core
1506	  kernel will need to be resolved via veneers in the module PLT.
1507
1508	  When this option is not set, the module region will be randomized over
1509	  a limited range that contains the [_stext, _etext] interval of the
1510	  core kernel, so branch relocations are always in range.
1511
1512config CC_HAVE_STACKPROTECTOR_SYSREG
1513	def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0)
1514
1515config STACKPROTECTOR_PER_TASK
1516	def_bool y
1517	depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG
1518
1519endmenu
1520
1521menu "Boot options"
1522
1523config ARM64_ACPI_PARKING_PROTOCOL
1524	bool "Enable support for the ARM64 ACPI parking protocol"
1525	depends on ACPI
1526	help
1527	  Enable support for the ARM64 ACPI parking protocol. If disabled
1528	  the kernel will not allow booting through the ARM64 ACPI parking
1529	  protocol even if the corresponding data is present in the ACPI
1530	  MADT table.
1531
1532config CMDLINE
1533	string "Default kernel command string"
1534	default ""
1535	help
1536	  Provide a set of default command-line options at build time by
1537	  entering them here. As a minimum, you should specify the the
1538	  root device (e.g. root=/dev/nfs).
1539
1540config CMDLINE_FORCE
1541	bool "Always use the default kernel command string"
1542	help
1543	  Always use the default kernel command string, even if the boot
1544	  loader passes other arguments to the kernel.
1545	  This is useful if you cannot or don't want to change the
1546	  command-line options your boot loader passes to the kernel.
1547
1548config EFI_STUB
1549	bool
1550
1551config EFI
1552	bool "UEFI runtime support"
1553	depends on OF && !CPU_BIG_ENDIAN
1554	depends on KERNEL_MODE_NEON
1555	select ARCH_SUPPORTS_ACPI
1556	select LIBFDT
1557	select UCS2_STRING
1558	select EFI_PARAMS_FROM_FDT
1559	select EFI_RUNTIME_WRAPPERS
1560	select EFI_STUB
1561	select EFI_ARMSTUB
1562	default y
1563	help
1564	  This option provides support for runtime services provided
1565	  by UEFI firmware (such as non-volatile variables, realtime
1566          clock, and platform reset). A UEFI stub is also provided to
1567	  allow the kernel to be booted as an EFI application. This
1568	  is only useful on systems that have UEFI firmware.
1569
1570config DMI
1571	bool "Enable support for SMBIOS (DMI) tables"
1572	depends on EFI
1573	default y
1574	help
1575	  This enables SMBIOS/DMI feature for systems.
1576
1577	  This option is only useful on systems that have UEFI firmware.
1578	  However, even with this option, the resultant kernel should
1579	  continue to boot on existing non-UEFI platforms.
1580
1581endmenu
1582
1583config SYSVIPC_COMPAT
1584	def_bool y
1585	depends on COMPAT && SYSVIPC
1586
1587config ARCH_ENABLE_HUGEPAGE_MIGRATION
1588	def_bool y
1589	depends on HUGETLB_PAGE && MIGRATION
1590
1591menu "Power management options"
1592
1593source "kernel/power/Kconfig"
1594
1595config ARCH_HIBERNATION_POSSIBLE
1596	def_bool y
1597	depends on CPU_PM
1598
1599config ARCH_HIBERNATION_HEADER
1600	def_bool y
1601	depends on HIBERNATION
1602
1603config ARCH_SUSPEND_POSSIBLE
1604	def_bool y
1605
1606endmenu
1607
1608menu "CPU Power Management"
1609
1610source "drivers/cpuidle/Kconfig"
1611
1612source "drivers/cpufreq/Kconfig"
1613
1614endmenu
1615
1616source "drivers/firmware/Kconfig"
1617
1618source "drivers/acpi/Kconfig"
1619
1620source "arch/arm64/kvm/Kconfig"
1621
1622if CRYPTO
1623source "arch/arm64/crypto/Kconfig"
1624endif
1625