1# SPDX-License-Identifier: GPL-2.0-only 2config ARM64 3 def_bool y 4 select ACPI_CCA_REQUIRED if ACPI 5 select ACPI_GENERIC_GSI if ACPI 6 select ACPI_GTDT if ACPI 7 select ACPI_IORT if ACPI 8 select ACPI_REDUCED_HARDWARE_ONLY if ACPI 9 select ACPI_MCFG if (ACPI && PCI) 10 select ACPI_SPCR_TABLE if ACPI 11 select ACPI_PPTT if ACPI 12 select ARCH_HAS_DEBUG_WX 13 select ARCH_BINFMT_ELF_STATE 14 select ARCH_ENABLE_HUGEPAGE_MIGRATION if HUGETLB_PAGE && MIGRATION 15 select ARCH_ENABLE_MEMORY_HOTPLUG 16 select ARCH_ENABLE_MEMORY_HOTREMOVE 17 select ARCH_ENABLE_SPLIT_PMD_PTLOCK if PGTABLE_LEVELS > 2 18 select ARCH_ENABLE_THP_MIGRATION if TRANSPARENT_HUGEPAGE 19 select ARCH_HAS_CACHE_LINE_SIZE 20 select ARCH_HAS_DEBUG_VIRTUAL 21 select ARCH_HAS_DEBUG_VM_PGTABLE 22 select ARCH_HAS_DMA_PREP_COHERENT 23 select ARCH_HAS_ACPI_TABLE_UPGRADE if ACPI 24 select ARCH_HAS_FAST_MULTIPLIER 25 select ARCH_HAS_FORTIFY_SOURCE 26 select ARCH_HAS_GCOV_PROFILE_ALL 27 select ARCH_HAS_GIGANTIC_PAGE 28 select ARCH_HAS_KCOV 29 select ARCH_HAS_KEEPINITRD 30 select ARCH_HAS_MEMBARRIER_SYNC_CORE 31 select ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE 32 select ARCH_HAS_PTE_DEVMAP 33 select ARCH_HAS_PTE_SPECIAL 34 select ARCH_HAS_SETUP_DMA_OPS 35 select ARCH_HAS_SET_DIRECT_MAP 36 select ARCH_HAS_SET_MEMORY 37 select ARCH_STACKWALK 38 select ARCH_HAS_STRICT_KERNEL_RWX 39 select ARCH_HAS_STRICT_MODULE_RWX 40 select ARCH_HAS_SYNC_DMA_FOR_DEVICE 41 select ARCH_HAS_SYNC_DMA_FOR_CPU 42 select ARCH_HAS_SYSCALL_WRAPPER 43 select ARCH_HAS_TEARDOWN_DMA_OPS if IOMMU_SUPPORT 44 select ARCH_HAS_TICK_BROADCAST if GENERIC_CLOCKEVENTS_BROADCAST 45 select ARCH_HAS_ZONE_DMA_SET if EXPERT 46 select ARCH_HAVE_ELF_PROT 47 select ARCH_HAVE_NMI_SAFE_CMPXCHG 48 select ARCH_INLINE_READ_LOCK if !PREEMPTION 49 select ARCH_INLINE_READ_LOCK_BH if !PREEMPTION 50 select ARCH_INLINE_READ_LOCK_IRQ if !PREEMPTION 51 select ARCH_INLINE_READ_LOCK_IRQSAVE if !PREEMPTION 52 select ARCH_INLINE_READ_UNLOCK if !PREEMPTION 53 select ARCH_INLINE_READ_UNLOCK_BH if !PREEMPTION 54 select ARCH_INLINE_READ_UNLOCK_IRQ if !PREEMPTION 55 select ARCH_INLINE_READ_UNLOCK_IRQRESTORE if !PREEMPTION 56 select ARCH_INLINE_WRITE_LOCK if !PREEMPTION 57 select ARCH_INLINE_WRITE_LOCK_BH if !PREEMPTION 58 select ARCH_INLINE_WRITE_LOCK_IRQ if !PREEMPTION 59 select ARCH_INLINE_WRITE_LOCK_IRQSAVE if !PREEMPTION 60 select ARCH_INLINE_WRITE_UNLOCK if !PREEMPTION 61 select ARCH_INLINE_WRITE_UNLOCK_BH if !PREEMPTION 62 select ARCH_INLINE_WRITE_UNLOCK_IRQ if !PREEMPTION 63 select ARCH_INLINE_WRITE_UNLOCK_IRQRESTORE if !PREEMPTION 64 select ARCH_INLINE_SPIN_TRYLOCK if !PREEMPTION 65 select ARCH_INLINE_SPIN_TRYLOCK_BH if !PREEMPTION 66 select ARCH_INLINE_SPIN_LOCK if !PREEMPTION 67 select ARCH_INLINE_SPIN_LOCK_BH if !PREEMPTION 68 select ARCH_INLINE_SPIN_LOCK_IRQ if !PREEMPTION 69 select ARCH_INLINE_SPIN_LOCK_IRQSAVE if !PREEMPTION 70 select ARCH_INLINE_SPIN_UNLOCK if !PREEMPTION 71 select ARCH_INLINE_SPIN_UNLOCK_BH if !PREEMPTION 72 select ARCH_INLINE_SPIN_UNLOCK_IRQ if !PREEMPTION 73 select ARCH_INLINE_SPIN_UNLOCK_IRQRESTORE if !PREEMPTION 74 select ARCH_KEEP_MEMBLOCK 75 select ARCH_USE_CMPXCHG_LOCKREF 76 select ARCH_USE_GNU_PROPERTY 77 select ARCH_USE_MEMTEST 78 select ARCH_USE_QUEUED_RWLOCKS 79 select ARCH_USE_QUEUED_SPINLOCKS 80 select ARCH_USE_SYM_ANNOTATIONS 81 select ARCH_SUPPORTS_DEBUG_PAGEALLOC 82 select ARCH_SUPPORTS_HUGETLBFS 83 select ARCH_SUPPORTS_MEMORY_FAILURE 84 select ARCH_SUPPORTS_SHADOW_CALL_STACK if CC_HAVE_SHADOW_CALL_STACK 85 select ARCH_SUPPORTS_LTO_CLANG if CPU_LITTLE_ENDIAN 86 select ARCH_SUPPORTS_LTO_CLANG_THIN 87 select ARCH_SUPPORTS_CFI_CLANG 88 select ARCH_SUPPORTS_ATOMIC_RMW 89 select ARCH_SUPPORTS_INT128 if CC_HAS_INT128 90 select ARCH_SUPPORTS_NUMA_BALANCING 91 select ARCH_WANT_COMPAT_IPC_PARSE_VERSION if COMPAT 92 select ARCH_WANT_DEFAULT_BPF_JIT 93 select ARCH_WANT_DEFAULT_TOPDOWN_MMAP_LAYOUT 94 select ARCH_WANT_FRAME_POINTERS 95 select ARCH_WANT_HUGE_PMD_SHARE if ARM64_4K_PAGES || (ARM64_16K_PAGES && !ARM64_VA_BITS_36) 96 select ARCH_WANT_LD_ORPHAN_WARN 97 select ARCH_WANTS_NO_INSTR 98 select ARCH_HAS_UBSAN_SANITIZE_ALL 99 select ARM_AMBA 100 select ARM_ARCH_TIMER 101 select ARM_GIC 102 select AUDIT_ARCH_COMPAT_GENERIC 103 select ARM_GIC_V2M if PCI 104 select ARM_GIC_V3 105 select ARM_GIC_V3_ITS if PCI 106 select ARM_PSCI_FW 107 select BUILDTIME_TABLE_SORT 108 select CLONE_BACKWARDS 109 select COMMON_CLK 110 select CPU_PM if (SUSPEND || CPU_IDLE) 111 select CRC32 112 select DCACHE_WORD_ACCESS 113 select DMA_DIRECT_REMAP 114 select EDAC_SUPPORT 115 select FRAME_POINTER 116 select GENERIC_ALLOCATOR 117 select GENERIC_ARCH_TOPOLOGY 118 select GENERIC_CLOCKEVENTS_BROADCAST 119 select GENERIC_CPU_AUTOPROBE 120 select GENERIC_CPU_VULNERABILITIES 121 select GENERIC_EARLY_IOREMAP 122 select GENERIC_FIND_FIRST_BIT 123 select GENERIC_IDLE_POLL_SETUP 124 select GENERIC_IRQ_IPI 125 select GENERIC_IRQ_PROBE 126 select GENERIC_IRQ_SHOW 127 select GENERIC_IRQ_SHOW_LEVEL 128 select GENERIC_LIB_DEVMEM_IS_ALLOWED 129 select GENERIC_PCI_IOMAP 130 select GENERIC_PTDUMP 131 select GENERIC_SCHED_CLOCK 132 select GENERIC_SMP_IDLE_THREAD 133 select GENERIC_TIME_VSYSCALL 134 select GENERIC_GETTIMEOFDAY 135 select GENERIC_VDSO_TIME_NS 136 select HANDLE_DOMAIN_IRQ 137 select HARDIRQS_SW_RESEND 138 select HAVE_MOVE_PMD 139 select HAVE_MOVE_PUD 140 select HAVE_PCI 141 select HAVE_ACPI_APEI if (ACPI && EFI) 142 select HAVE_ALIGNED_STRUCT_PAGE if SLUB 143 select HAVE_ARCH_AUDITSYSCALL 144 select HAVE_ARCH_BITREVERSE 145 select HAVE_ARCH_COMPILER_H 146 select HAVE_ARCH_HUGE_VMAP 147 select HAVE_ARCH_JUMP_LABEL 148 select HAVE_ARCH_JUMP_LABEL_RELATIVE 149 select HAVE_ARCH_KASAN if !(ARM64_16K_PAGES && ARM64_VA_BITS_48) 150 select HAVE_ARCH_KASAN_VMALLOC if HAVE_ARCH_KASAN 151 select HAVE_ARCH_KASAN_SW_TAGS if HAVE_ARCH_KASAN 152 select HAVE_ARCH_KASAN_HW_TAGS if (HAVE_ARCH_KASAN && ARM64_MTE) 153 select HAVE_ARCH_KFENCE 154 select HAVE_ARCH_KGDB 155 select HAVE_ARCH_MMAP_RND_BITS 156 select HAVE_ARCH_MMAP_RND_COMPAT_BITS if COMPAT 157 select HAVE_ARCH_PFN_VALID 158 select HAVE_ARCH_PREL32_RELOCATIONS 159 select HAVE_ARCH_RANDOMIZE_KSTACK_OFFSET 160 select HAVE_ARCH_SECCOMP_FILTER 161 select HAVE_ARCH_STACKLEAK 162 select HAVE_ARCH_THREAD_STRUCT_WHITELIST 163 select HAVE_ARCH_TRACEHOOK 164 select HAVE_ARCH_TRANSPARENT_HUGEPAGE 165 select HAVE_ARCH_VMAP_STACK 166 select HAVE_ARM_SMCCC 167 select HAVE_ASM_MODVERSIONS 168 select HAVE_EBPF_JIT 169 select HAVE_C_RECORDMCOUNT 170 select HAVE_CMPXCHG_DOUBLE 171 select HAVE_CMPXCHG_LOCAL 172 select HAVE_CONTEXT_TRACKING 173 select HAVE_DEBUG_KMEMLEAK 174 select HAVE_DMA_CONTIGUOUS 175 select HAVE_DYNAMIC_FTRACE 176 select HAVE_DYNAMIC_FTRACE_WITH_REGS \ 177 if $(cc-option,-fpatchable-function-entry=2) 178 select FTRACE_MCOUNT_USE_PATCHABLE_FUNCTION_ENTRY \ 179 if DYNAMIC_FTRACE_WITH_REGS 180 select HAVE_EFFICIENT_UNALIGNED_ACCESS 181 select HAVE_FAST_GUP 182 select HAVE_FTRACE_MCOUNT_RECORD 183 select HAVE_FUNCTION_TRACER 184 select HAVE_FUNCTION_ERROR_INJECTION 185 select HAVE_FUNCTION_GRAPH_TRACER 186 select HAVE_GCC_PLUGINS 187 select HAVE_HW_BREAKPOINT if PERF_EVENTS 188 select HAVE_IRQ_TIME_ACCOUNTING 189 select HAVE_NMI 190 select HAVE_PATA_PLATFORM 191 select HAVE_PERF_EVENTS 192 select HAVE_PERF_REGS 193 select HAVE_PERF_USER_STACK_DUMP 194 select HAVE_REGS_AND_STACK_ACCESS_API 195 select HAVE_FUNCTION_ARG_ACCESS_API 196 select HAVE_FUTEX_CMPXCHG if FUTEX 197 select MMU_GATHER_RCU_TABLE_FREE 198 select HAVE_RSEQ 199 select HAVE_STACKPROTECTOR 200 select HAVE_SYSCALL_TRACEPOINTS 201 select HAVE_KPROBES 202 select HAVE_KRETPROBES 203 select HAVE_GENERIC_VDSO 204 select IOMMU_DMA if IOMMU_SUPPORT 205 select IRQ_DOMAIN 206 select IRQ_FORCED_THREADING 207 select KASAN_VMALLOC if KASAN_GENERIC 208 select MODULES_USE_ELF_RELA 209 select NEED_DMA_MAP_STATE 210 select NEED_SG_DMA_LENGTH 211 select OF 212 select OF_EARLY_FLATTREE 213 select PCI_DOMAINS_GENERIC if PCI 214 select PCI_ECAM if (ACPI && PCI) 215 select PCI_SYSCALL if PCI 216 select POWER_RESET 217 select POWER_SUPPLY 218 select SPARSE_IRQ 219 select SWIOTLB 220 select SYSCTL_EXCEPTION_TRACE 221 select THREAD_INFO_IN_TASK 222 select HAVE_ARCH_USERFAULTFD_MINOR if USERFAULTFD 223 select TRACE_IRQFLAGS_SUPPORT 224 help 225 ARM 64-bit (AArch64) Linux support. 226 227config 64BIT 228 def_bool y 229 230config MMU 231 def_bool y 232 233config ARM64_PAGE_SHIFT 234 int 235 default 16 if ARM64_64K_PAGES 236 default 14 if ARM64_16K_PAGES 237 default 12 238 239config ARM64_CONT_PTE_SHIFT 240 int 241 default 5 if ARM64_64K_PAGES 242 default 7 if ARM64_16K_PAGES 243 default 4 244 245config ARM64_CONT_PMD_SHIFT 246 int 247 default 5 if ARM64_64K_PAGES 248 default 5 if ARM64_16K_PAGES 249 default 4 250 251config ARCH_MMAP_RND_BITS_MIN 252 default 14 if ARM64_64K_PAGES 253 default 16 if ARM64_16K_PAGES 254 default 18 255 256# max bits determined by the following formula: 257# VA_BITS - PAGE_SHIFT - 3 258config ARCH_MMAP_RND_BITS_MAX 259 default 19 if ARM64_VA_BITS=36 260 default 24 if ARM64_VA_BITS=39 261 default 27 if ARM64_VA_BITS=42 262 default 30 if ARM64_VA_BITS=47 263 default 29 if ARM64_VA_BITS=48 && ARM64_64K_PAGES 264 default 31 if ARM64_VA_BITS=48 && ARM64_16K_PAGES 265 default 33 if ARM64_VA_BITS=48 266 default 14 if ARM64_64K_PAGES 267 default 16 if ARM64_16K_PAGES 268 default 18 269 270config ARCH_MMAP_RND_COMPAT_BITS_MIN 271 default 7 if ARM64_64K_PAGES 272 default 9 if ARM64_16K_PAGES 273 default 11 274 275config ARCH_MMAP_RND_COMPAT_BITS_MAX 276 default 16 277 278config NO_IOPORT_MAP 279 def_bool y if !PCI 280 281config STACKTRACE_SUPPORT 282 def_bool y 283 284config ILLEGAL_POINTER_VALUE 285 hex 286 default 0xdead000000000000 287 288config LOCKDEP_SUPPORT 289 def_bool y 290 291config GENERIC_BUG 292 def_bool y 293 depends on BUG 294 295config GENERIC_BUG_RELATIVE_POINTERS 296 def_bool y 297 depends on GENERIC_BUG 298 299config GENERIC_HWEIGHT 300 def_bool y 301 302config GENERIC_CSUM 303 def_bool y 304 305config GENERIC_CALIBRATE_DELAY 306 def_bool y 307 308config ARCH_MHP_MEMMAP_ON_MEMORY_ENABLE 309 def_bool y 310 311config SMP 312 def_bool y 313 314config KERNEL_MODE_NEON 315 def_bool y 316 317config FIX_EARLYCON_MEM 318 def_bool y 319 320config PGTABLE_LEVELS 321 int 322 default 2 if ARM64_16K_PAGES && ARM64_VA_BITS_36 323 default 2 if ARM64_64K_PAGES && ARM64_VA_BITS_42 324 default 3 if ARM64_64K_PAGES && (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) 325 default 3 if ARM64_4K_PAGES && ARM64_VA_BITS_39 326 default 3 if ARM64_16K_PAGES && ARM64_VA_BITS_47 327 default 4 if !ARM64_64K_PAGES && ARM64_VA_BITS_48 328 329config ARCH_SUPPORTS_UPROBES 330 def_bool y 331 332config ARCH_PROC_KCORE_TEXT 333 def_bool y 334 335config BROKEN_GAS_INST 336 def_bool !$(as-instr,1:\n.inst 0\n.rept . - 1b\n\nnop\n.endr\n) 337 338config KASAN_SHADOW_OFFSET 339 hex 340 depends on KASAN_GENERIC || KASAN_SW_TAGS 341 default 0xdfff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && !KASAN_SW_TAGS 342 default 0xdfffc00000000000 if ARM64_VA_BITS_47 && !KASAN_SW_TAGS 343 default 0xdffffe0000000000 if ARM64_VA_BITS_42 && !KASAN_SW_TAGS 344 default 0xdfffffc000000000 if ARM64_VA_BITS_39 && !KASAN_SW_TAGS 345 default 0xdffffff800000000 if ARM64_VA_BITS_36 && !KASAN_SW_TAGS 346 default 0xefff800000000000 if (ARM64_VA_BITS_48 || ARM64_VA_BITS_52) && KASAN_SW_TAGS 347 default 0xefffc00000000000 if ARM64_VA_BITS_47 && KASAN_SW_TAGS 348 default 0xeffffe0000000000 if ARM64_VA_BITS_42 && KASAN_SW_TAGS 349 default 0xefffffc000000000 if ARM64_VA_BITS_39 && KASAN_SW_TAGS 350 default 0xeffffff800000000 if ARM64_VA_BITS_36 && KASAN_SW_TAGS 351 default 0xffffffffffffffff 352 353source "arch/arm64/Kconfig.platforms" 354 355menu "Kernel Features" 356 357menu "ARM errata workarounds via the alternatives framework" 358 359config ARM64_WORKAROUND_CLEAN_CACHE 360 bool 361 362config ARM64_ERRATUM_826319 363 bool "Cortex-A53: 826319: System might deadlock if a write cannot complete until read data is accepted" 364 default y 365 select ARM64_WORKAROUND_CLEAN_CACHE 366 help 367 This option adds an alternative code sequence to work around ARM 368 erratum 826319 on Cortex-A53 parts up to r0p2 with an AMBA 4 ACE or 369 AXI master interface and an L2 cache. 370 371 If a Cortex-A53 uses an AMBA AXI4 ACE interface to other processors 372 and is unable to accept a certain write via this interface, it will 373 not progress on read data presented on the read data channel and the 374 system can deadlock. 375 376 The workaround promotes data cache clean instructions to 377 data cache clean-and-invalidate. 378 Please note that this does not necessarily enable the workaround, 379 as it depends on the alternative framework, which will only patch 380 the kernel if an affected CPU is detected. 381 382 If unsure, say Y. 383 384config ARM64_ERRATUM_827319 385 bool "Cortex-A53: 827319: Data cache clean instructions might cause overlapping transactions to the interconnect" 386 default y 387 select ARM64_WORKAROUND_CLEAN_CACHE 388 help 389 This option adds an alternative code sequence to work around ARM 390 erratum 827319 on Cortex-A53 parts up to r0p2 with an AMBA 5 CHI 391 master interface and an L2 cache. 392 393 Under certain conditions this erratum can cause a clean line eviction 394 to occur at the same time as another transaction to the same address 395 on the AMBA 5 CHI interface, which can cause data corruption if the 396 interconnect reorders the two transactions. 397 398 The workaround promotes data cache clean instructions to 399 data cache clean-and-invalidate. 400 Please note that this does not necessarily enable the workaround, 401 as it depends on the alternative framework, which will only patch 402 the kernel if an affected CPU is detected. 403 404 If unsure, say Y. 405 406config ARM64_ERRATUM_824069 407 bool "Cortex-A53: 824069: Cache line might not be marked as clean after a CleanShared snoop" 408 default y 409 select ARM64_WORKAROUND_CLEAN_CACHE 410 help 411 This option adds an alternative code sequence to work around ARM 412 erratum 824069 on Cortex-A53 parts up to r0p2 when it is connected 413 to a coherent interconnect. 414 415 If a Cortex-A53 processor is executing a store or prefetch for 416 write instruction at the same time as a processor in another 417 cluster is executing a cache maintenance operation to the same 418 address, then this erratum might cause a clean cache line to be 419 incorrectly marked as dirty. 420 421 The workaround promotes data cache clean instructions to 422 data cache clean-and-invalidate. 423 Please note that this option does not necessarily enable the 424 workaround, as it depends on the alternative framework, which will 425 only patch the kernel if an affected CPU is detected. 426 427 If unsure, say Y. 428 429config ARM64_ERRATUM_819472 430 bool "Cortex-A53: 819472: Store exclusive instructions might cause data corruption" 431 default y 432 select ARM64_WORKAROUND_CLEAN_CACHE 433 help 434 This option adds an alternative code sequence to work around ARM 435 erratum 819472 on Cortex-A53 parts up to r0p1 with an L2 cache 436 present when it is connected to a coherent interconnect. 437 438 If the processor is executing a load and store exclusive sequence at 439 the same time as a processor in another cluster is executing a cache 440 maintenance operation to the same address, then this erratum might 441 cause data corruption. 442 443 The workaround promotes data cache clean instructions to 444 data cache clean-and-invalidate. 445 Please note that this does not necessarily enable the workaround, 446 as it depends on the alternative framework, which will only patch 447 the kernel if an affected CPU is detected. 448 449 If unsure, say Y. 450 451config ARM64_ERRATUM_832075 452 bool "Cortex-A57: 832075: possible deadlock on mixing exclusive memory accesses with device loads" 453 default y 454 help 455 This option adds an alternative code sequence to work around ARM 456 erratum 832075 on Cortex-A57 parts up to r1p2. 457 458 Affected Cortex-A57 parts might deadlock when exclusive load/store 459 instructions to Write-Back memory are mixed with Device loads. 460 461 The workaround is to promote device loads to use Load-Acquire 462 semantics. 463 Please note that this does not necessarily enable the workaround, 464 as it depends on the alternative framework, which will only patch 465 the kernel if an affected CPU is detected. 466 467 If unsure, say Y. 468 469config ARM64_ERRATUM_834220 470 bool "Cortex-A57: 834220: Stage 2 translation fault might be incorrectly reported in presence of a Stage 1 fault" 471 depends on KVM 472 default y 473 help 474 This option adds an alternative code sequence to work around ARM 475 erratum 834220 on Cortex-A57 parts up to r1p2. 476 477 Affected Cortex-A57 parts might report a Stage 2 translation 478 fault as the result of a Stage 1 fault for load crossing a 479 page boundary when there is a permission or device memory 480 alignment fault at Stage 1 and a translation fault at Stage 2. 481 482 The workaround is to verify that the Stage 1 translation 483 doesn't generate a fault before handling the Stage 2 fault. 484 Please note that this does not necessarily enable the workaround, 485 as it depends on the alternative framework, which will only patch 486 the kernel if an affected CPU is detected. 487 488 If unsure, say Y. 489 490config ARM64_ERRATUM_845719 491 bool "Cortex-A53: 845719: a load might read incorrect data" 492 depends on COMPAT 493 default y 494 help 495 This option adds an alternative code sequence to work around ARM 496 erratum 845719 on Cortex-A53 parts up to r0p4. 497 498 When running a compat (AArch32) userspace on an affected Cortex-A53 499 part, a load at EL0 from a virtual address that matches the bottom 32 500 bits of the virtual address used by a recent load at (AArch64) EL1 501 might return incorrect data. 502 503 The workaround is to write the contextidr_el1 register on exception 504 return to a 32-bit task. 505 Please note that this does not necessarily enable the workaround, 506 as it depends on the alternative framework, which will only patch 507 the kernel if an affected CPU is detected. 508 509 If unsure, say Y. 510 511config ARM64_ERRATUM_843419 512 bool "Cortex-A53: 843419: A load or store might access an incorrect address" 513 default y 514 select ARM64_MODULE_PLTS if MODULES 515 help 516 This option links the kernel with '--fix-cortex-a53-843419' and 517 enables PLT support to replace certain ADRP instructions, which can 518 cause subsequent memory accesses to use an incorrect address on 519 Cortex-A53 parts up to r0p4. 520 521 If unsure, say Y. 522 523config ARM64_LD_HAS_FIX_ERRATUM_843419 524 def_bool $(ld-option,--fix-cortex-a53-843419) 525 526config ARM64_ERRATUM_1024718 527 bool "Cortex-A55: 1024718: Update of DBM/AP bits without break before make might result in incorrect update" 528 default y 529 help 530 This option adds a workaround for ARM Cortex-A55 Erratum 1024718. 531 532 Affected Cortex-A55 cores (all revisions) could cause incorrect 533 update of the hardware dirty bit when the DBM/AP bits are updated 534 without a break-before-make. The workaround is to disable the usage 535 of hardware DBM locally on the affected cores. CPUs not affected by 536 this erratum will continue to use the feature. 537 538 If unsure, say Y. 539 540config ARM64_ERRATUM_1418040 541 bool "Cortex-A76/Neoverse-N1: MRC read following MRRC read of specific Generic Timer in AArch32 might give incorrect result" 542 default y 543 depends on COMPAT 544 help 545 This option adds a workaround for ARM Cortex-A76/Neoverse-N1 546 errata 1188873 and 1418040. 547 548 Affected Cortex-A76/Neoverse-N1 cores (r0p0 to r3p1) could 549 cause register corruption when accessing the timer registers 550 from AArch32 userspace. 551 552 If unsure, say Y. 553 554config ARM64_WORKAROUND_SPECULATIVE_AT 555 bool 556 557config ARM64_ERRATUM_1165522 558 bool "Cortex-A76: 1165522: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 559 default y 560 select ARM64_WORKAROUND_SPECULATIVE_AT 561 help 562 This option adds a workaround for ARM Cortex-A76 erratum 1165522. 563 564 Affected Cortex-A76 cores (r0p0, r1p0, r2p0) could end-up with 565 corrupted TLBs by speculating an AT instruction during a guest 566 context switch. 567 568 If unsure, say Y. 569 570config ARM64_ERRATUM_1319367 571 bool "Cortex-A57/A72: 1319537: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 572 default y 573 select ARM64_WORKAROUND_SPECULATIVE_AT 574 help 575 This option adds work arounds for ARM Cortex-A57 erratum 1319537 576 and A72 erratum 1319367 577 578 Cortex-A57 and A72 cores could end-up with corrupted TLBs by 579 speculating an AT instruction during a guest context switch. 580 581 If unsure, say Y. 582 583config ARM64_ERRATUM_1530923 584 bool "Cortex-A55: 1530923: Speculative AT instruction using out-of-context translation regime could cause subsequent request to generate an incorrect translation" 585 default y 586 select ARM64_WORKAROUND_SPECULATIVE_AT 587 help 588 This option adds a workaround for ARM Cortex-A55 erratum 1530923. 589 590 Affected Cortex-A55 cores (r0p0, r0p1, r1p0, r2p0) could end-up with 591 corrupted TLBs by speculating an AT instruction during a guest 592 context switch. 593 594 If unsure, say Y. 595 596config ARM64_WORKAROUND_REPEAT_TLBI 597 bool 598 599config ARM64_ERRATUM_1286807 600 bool "Cortex-A76: Modification of the translation table for a virtual address might lead to read-after-read ordering violation" 601 default y 602 select ARM64_WORKAROUND_REPEAT_TLBI 603 help 604 This option adds a workaround for ARM Cortex-A76 erratum 1286807. 605 606 On the affected Cortex-A76 cores (r0p0 to r3p0), if a virtual 607 address for a cacheable mapping of a location is being 608 accessed by a core while another core is remapping the virtual 609 address to a new physical page using the recommended 610 break-before-make sequence, then under very rare circumstances 611 TLBI+DSB completes before a read using the translation being 612 invalidated has been observed by other observers. The 613 workaround repeats the TLBI+DSB operation. 614 615config ARM64_ERRATUM_1463225 616 bool "Cortex-A76: Software Step might prevent interrupt recognition" 617 default y 618 help 619 This option adds a workaround for Arm Cortex-A76 erratum 1463225. 620 621 On the affected Cortex-A76 cores (r0p0 to r3p1), software stepping 622 of a system call instruction (SVC) can prevent recognition of 623 subsequent interrupts when software stepping is disabled in the 624 exception handler of the system call and either kernel debugging 625 is enabled or VHE is in use. 626 627 Work around the erratum by triggering a dummy step exception 628 when handling a system call from a task that is being stepped 629 in a VHE configuration of the kernel. 630 631 If unsure, say Y. 632 633config ARM64_ERRATUM_1542419 634 bool "Neoverse-N1: workaround mis-ordering of instruction fetches" 635 default y 636 help 637 This option adds a workaround for ARM Neoverse-N1 erratum 638 1542419. 639 640 Affected Neoverse-N1 cores could execute a stale instruction when 641 modified by another CPU. The workaround depends on a firmware 642 counterpart. 643 644 Workaround the issue by hiding the DIC feature from EL0. This 645 forces user-space to perform cache maintenance. 646 647 If unsure, say Y. 648 649config ARM64_ERRATUM_1508412 650 bool "Cortex-A77: 1508412: workaround deadlock on sequence of NC/Device load and store exclusive or PAR read" 651 default y 652 help 653 This option adds a workaround for Arm Cortex-A77 erratum 1508412. 654 655 Affected Cortex-A77 cores (r0p0, r1p0) could deadlock on a sequence 656 of a store-exclusive or read of PAR_EL1 and a load with device or 657 non-cacheable memory attributes. The workaround depends on a firmware 658 counterpart. 659 660 KVM guests must also have the workaround implemented or they can 661 deadlock the system. 662 663 Work around the issue by inserting DMB SY barriers around PAR_EL1 664 register reads and warning KVM users. The DMB barrier is sufficient 665 to prevent a speculative PAR_EL1 read. 666 667 If unsure, say Y. 668 669config CAVIUM_ERRATUM_22375 670 bool "Cavium erratum 22375, 24313" 671 default y 672 help 673 Enable workaround for errata 22375 and 24313. 674 675 This implements two gicv3-its errata workarounds for ThunderX. Both 676 with a small impact affecting only ITS table allocation. 677 678 erratum 22375: only alloc 8MB table size 679 erratum 24313: ignore memory access type 680 681 The fixes are in ITS initialization and basically ignore memory access 682 type and table size provided by the TYPER and BASER registers. 683 684 If unsure, say Y. 685 686config CAVIUM_ERRATUM_23144 687 bool "Cavium erratum 23144: ITS SYNC hang on dual socket system" 688 depends on NUMA 689 default y 690 help 691 ITS SYNC command hang for cross node io and collections/cpu mapping. 692 693 If unsure, say Y. 694 695config CAVIUM_ERRATUM_23154 696 bool "Cavium erratum 23154: Access to ICC_IAR1_EL1 is not sync'ed" 697 default y 698 help 699 The gicv3 of ThunderX requires a modified version for 700 reading the IAR status to ensure data synchronization 701 (access to icc_iar1_el1 is not sync'ed before and after). 702 703 If unsure, say Y. 704 705config CAVIUM_ERRATUM_27456 706 bool "Cavium erratum 27456: Broadcast TLBI instructions may cause icache corruption" 707 default y 708 help 709 On ThunderX T88 pass 1.x through 2.1 parts, broadcast TLBI 710 instructions may cause the icache to become corrupted if it 711 contains data for a non-current ASID. The fix is to 712 invalidate the icache when changing the mm context. 713 714 If unsure, say Y. 715 716config CAVIUM_ERRATUM_30115 717 bool "Cavium erratum 30115: Guest may disable interrupts in host" 718 default y 719 help 720 On ThunderX T88 pass 1.x through 2.2, T81 pass 1.0 through 721 1.2, and T83 Pass 1.0, KVM guest execution may disable 722 interrupts in host. Trapping both GICv3 group-0 and group-1 723 accesses sidesteps the issue. 724 725 If unsure, say Y. 726 727config CAVIUM_TX2_ERRATUM_219 728 bool "Cavium ThunderX2 erratum 219: PRFM between TTBR change and ISB fails" 729 default y 730 help 731 On Cavium ThunderX2, a load, store or prefetch instruction between a 732 TTBR update and the corresponding context synchronizing operation can 733 cause a spurious Data Abort to be delivered to any hardware thread in 734 the CPU core. 735 736 Work around the issue by avoiding the problematic code sequence and 737 trapping KVM guest TTBRx_EL1 writes to EL2 when SMT is enabled. The 738 trap handler performs the corresponding register access, skips the 739 instruction and ensures context synchronization by virtue of the 740 exception return. 741 742 If unsure, say Y. 743 744config FUJITSU_ERRATUM_010001 745 bool "Fujitsu-A64FX erratum E#010001: Undefined fault may occur wrongly" 746 default y 747 help 748 This option adds a workaround for Fujitsu-A64FX erratum E#010001. 749 On some variants of the Fujitsu-A64FX cores ver(1.0, 1.1), memory 750 accesses may cause undefined fault (Data abort, DFSC=0b111111). 751 This fault occurs under a specific hardware condition when a 752 load/store instruction performs an address translation using: 753 case-1 TTBR0_EL1 with TCR_EL1.NFD0 == 1. 754 case-2 TTBR0_EL2 with TCR_EL2.NFD0 == 1. 755 case-3 TTBR1_EL1 with TCR_EL1.NFD1 == 1. 756 case-4 TTBR1_EL2 with TCR_EL2.NFD1 == 1. 757 758 The workaround is to ensure these bits are clear in TCR_ELx. 759 The workaround only affects the Fujitsu-A64FX. 760 761 If unsure, say Y. 762 763config HISILICON_ERRATUM_161600802 764 bool "Hip07 161600802: Erroneous redistributor VLPI base" 765 default y 766 help 767 The HiSilicon Hip07 SoC uses the wrong redistributor base 768 when issued ITS commands such as VMOVP and VMAPP, and requires 769 a 128kB offset to be applied to the target address in this commands. 770 771 If unsure, say Y. 772 773config QCOM_FALKOR_ERRATUM_1003 774 bool "Falkor E1003: Incorrect translation due to ASID change" 775 default y 776 help 777 On Falkor v1, an incorrect ASID may be cached in the TLB when ASID 778 and BADDR are changed together in TTBRx_EL1. Since we keep the ASID 779 in TTBR1_EL1, this situation only occurs in the entry trampoline and 780 then only for entries in the walk cache, since the leaf translation 781 is unchanged. Work around the erratum by invalidating the walk cache 782 entries for the trampoline before entering the kernel proper. 783 784config QCOM_FALKOR_ERRATUM_1009 785 bool "Falkor E1009: Prematurely complete a DSB after a TLBI" 786 default y 787 select ARM64_WORKAROUND_REPEAT_TLBI 788 help 789 On Falkor v1, the CPU may prematurely complete a DSB following a 790 TLBI xxIS invalidate maintenance operation. Repeat the TLBI operation 791 one more time to fix the issue. 792 793 If unsure, say Y. 794 795config QCOM_QDF2400_ERRATUM_0065 796 bool "QDF2400 E0065: Incorrect GITS_TYPER.ITT_Entry_size" 797 default y 798 help 799 On Qualcomm Datacenter Technologies QDF2400 SoC, ITS hardware reports 800 ITE size incorrectly. The GITS_TYPER.ITT_Entry_size field should have 801 been indicated as 16Bytes (0xf), not 8Bytes (0x7). 802 803 If unsure, say Y. 804 805config QCOM_FALKOR_ERRATUM_E1041 806 bool "Falkor E1041: Speculative instruction fetches might cause errant memory access" 807 default y 808 help 809 Falkor CPU may speculatively fetch instructions from an improper 810 memory location when MMU translation is changed from SCTLR_ELn[M]=1 811 to SCTLR_ELn[M]=0. Prefix an ISB instruction to fix the problem. 812 813 If unsure, say Y. 814 815config NVIDIA_CARMEL_CNP_ERRATUM 816 bool "NVIDIA Carmel CNP: CNP on Carmel semantically different than ARM cores" 817 default y 818 help 819 If CNP is enabled on Carmel cores, non-sharable TLBIs on a core will not 820 invalidate shared TLB entries installed by a different core, as it would 821 on standard ARM cores. 822 823 If unsure, say Y. 824 825config SOCIONEXT_SYNQUACER_PREITS 826 bool "Socionext Synquacer: Workaround for GICv3 pre-ITS" 827 default y 828 help 829 Socionext Synquacer SoCs implement a separate h/w block to generate 830 MSI doorbell writes with non-zero values for the device ID. 831 832 If unsure, say Y. 833 834endmenu 835 836 837choice 838 prompt "Page size" 839 default ARM64_4K_PAGES 840 help 841 Page size (translation granule) configuration. 842 843config ARM64_4K_PAGES 844 bool "4KB" 845 help 846 This feature enables 4KB pages support. 847 848config ARM64_16K_PAGES 849 bool "16KB" 850 help 851 The system will use 16KB pages support. AArch32 emulation 852 requires applications compiled with 16K (or a multiple of 16K) 853 aligned segments. 854 855config ARM64_64K_PAGES 856 bool "64KB" 857 help 858 This feature enables 64KB pages support (4KB by default) 859 allowing only two levels of page tables and faster TLB 860 look-up. AArch32 emulation requires applications compiled 861 with 64K aligned segments. 862 863endchoice 864 865choice 866 prompt "Virtual address space size" 867 default ARM64_VA_BITS_39 if ARM64_4K_PAGES 868 default ARM64_VA_BITS_47 if ARM64_16K_PAGES 869 default ARM64_VA_BITS_42 if ARM64_64K_PAGES 870 help 871 Allows choosing one of multiple possible virtual address 872 space sizes. The level of translation table is determined by 873 a combination of page size and virtual address space size. 874 875config ARM64_VA_BITS_36 876 bool "36-bit" if EXPERT 877 depends on ARM64_16K_PAGES 878 879config ARM64_VA_BITS_39 880 bool "39-bit" 881 depends on ARM64_4K_PAGES 882 883config ARM64_VA_BITS_42 884 bool "42-bit" 885 depends on ARM64_64K_PAGES 886 887config ARM64_VA_BITS_47 888 bool "47-bit" 889 depends on ARM64_16K_PAGES 890 891config ARM64_VA_BITS_48 892 bool "48-bit" 893 894config ARM64_VA_BITS_52 895 bool "52-bit" 896 depends on ARM64_64K_PAGES && (ARM64_PAN || !ARM64_SW_TTBR0_PAN) 897 help 898 Enable 52-bit virtual addressing for userspace when explicitly 899 requested via a hint to mmap(). The kernel will also use 52-bit 900 virtual addresses for its own mappings (provided HW support for 901 this feature is available, otherwise it reverts to 48-bit). 902 903 NOTE: Enabling 52-bit virtual addressing in conjunction with 904 ARMv8.3 Pointer Authentication will result in the PAC being 905 reduced from 7 bits to 3 bits, which may have a significant 906 impact on its susceptibility to brute-force attacks. 907 908 If unsure, select 48-bit virtual addressing instead. 909 910endchoice 911 912config ARM64_FORCE_52BIT 913 bool "Force 52-bit virtual addresses for userspace" 914 depends on ARM64_VA_BITS_52 && EXPERT 915 help 916 For systems with 52-bit userspace VAs enabled, the kernel will attempt 917 to maintain compatibility with older software by providing 48-bit VAs 918 unless a hint is supplied to mmap. 919 920 This configuration option disables the 48-bit compatibility logic, and 921 forces all userspace addresses to be 52-bit on HW that supports it. One 922 should only enable this configuration option for stress testing userspace 923 memory management code. If unsure say N here. 924 925config ARM64_VA_BITS 926 int 927 default 36 if ARM64_VA_BITS_36 928 default 39 if ARM64_VA_BITS_39 929 default 42 if ARM64_VA_BITS_42 930 default 47 if ARM64_VA_BITS_47 931 default 48 if ARM64_VA_BITS_48 932 default 52 if ARM64_VA_BITS_52 933 934choice 935 prompt "Physical address space size" 936 default ARM64_PA_BITS_48 937 help 938 Choose the maximum physical address range that the kernel will 939 support. 940 941config ARM64_PA_BITS_48 942 bool "48-bit" 943 944config ARM64_PA_BITS_52 945 bool "52-bit (ARMv8.2)" 946 depends on ARM64_64K_PAGES 947 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 948 help 949 Enable support for a 52-bit physical address space, introduced as 950 part of the ARMv8.2-LPA extension. 951 952 With this enabled, the kernel will also continue to work on CPUs that 953 do not support ARMv8.2-LPA, but with some added memory overhead (and 954 minor performance overhead). 955 956endchoice 957 958config ARM64_PA_BITS 959 int 960 default 48 if ARM64_PA_BITS_48 961 default 52 if ARM64_PA_BITS_52 962 963choice 964 prompt "Endianness" 965 default CPU_LITTLE_ENDIAN 966 help 967 Select the endianness of data accesses performed by the CPU. Userspace 968 applications will need to be compiled and linked for the endianness 969 that is selected here. 970 971config CPU_BIG_ENDIAN 972 bool "Build big-endian kernel" 973 depends on !LD_IS_LLD || LLD_VERSION >= 130000 974 help 975 Say Y if you plan on running a kernel with a big-endian userspace. 976 977config CPU_LITTLE_ENDIAN 978 bool "Build little-endian kernel" 979 help 980 Say Y if you plan on running a kernel with a little-endian userspace. 981 This is usually the case for distributions targeting arm64. 982 983endchoice 984 985config SCHED_MC 986 bool "Multi-core scheduler support" 987 help 988 Multi-core scheduler support improves the CPU scheduler's decision 989 making when dealing with multi-core CPU chips at a cost of slightly 990 increased overhead in some places. If unsure say N here. 991 992config SCHED_SMT 993 bool "SMT scheduler support" 994 help 995 Improves the CPU scheduler's decision making when dealing with 996 MultiThreading at a cost of slightly increased overhead in some 997 places. If unsure say N here. 998 999config NR_CPUS 1000 int "Maximum number of CPUs (2-4096)" 1001 range 2 4096 1002 default "256" 1003 1004config HOTPLUG_CPU 1005 bool "Support for hot-pluggable CPUs" 1006 select GENERIC_IRQ_MIGRATION 1007 help 1008 Say Y here to experiment with turning CPUs off and on. CPUs 1009 can be controlled through /sys/devices/system/cpu. 1010 1011# Common NUMA Features 1012config NUMA 1013 bool "NUMA Memory Allocation and Scheduler Support" 1014 select GENERIC_ARCH_NUMA 1015 select ACPI_NUMA if ACPI 1016 select OF_NUMA 1017 help 1018 Enable NUMA (Non-Uniform Memory Access) support. 1019 1020 The kernel will try to allocate memory used by a CPU on the 1021 local memory of the CPU and add some more 1022 NUMA awareness to the kernel. 1023 1024config NODES_SHIFT 1025 int "Maximum NUMA Nodes (as a power of 2)" 1026 range 1 10 1027 default "4" 1028 depends on NUMA 1029 help 1030 Specify the maximum number of NUMA Nodes available on the target 1031 system. Increases memory reserved to accommodate various tables. 1032 1033config USE_PERCPU_NUMA_NODE_ID 1034 def_bool y 1035 depends on NUMA 1036 1037config HAVE_SETUP_PER_CPU_AREA 1038 def_bool y 1039 depends on NUMA 1040 1041config NEED_PER_CPU_EMBED_FIRST_CHUNK 1042 def_bool y 1043 depends on NUMA 1044 1045source "kernel/Kconfig.hz" 1046 1047config ARCH_SPARSEMEM_ENABLE 1048 def_bool y 1049 select SPARSEMEM_VMEMMAP_ENABLE 1050 select SPARSEMEM_VMEMMAP 1051 1052config HW_PERF_EVENTS 1053 def_bool y 1054 depends on ARM_PMU 1055 1056config ARCH_HAS_FILTER_PGPROT 1057 def_bool y 1058 1059# Supported by clang >= 7.0 1060config CC_HAVE_SHADOW_CALL_STACK 1061 def_bool $(cc-option, -fsanitize=shadow-call-stack -ffixed-x18) 1062 1063config PARAVIRT 1064 bool "Enable paravirtualization code" 1065 help 1066 This changes the kernel so it can modify itself when it is run 1067 under a hypervisor, potentially improving performance significantly 1068 over full virtualization. 1069 1070config PARAVIRT_TIME_ACCOUNTING 1071 bool "Paravirtual steal time accounting" 1072 select PARAVIRT 1073 help 1074 Select this option to enable fine granularity task steal time 1075 accounting. Time spent executing other tasks in parallel with 1076 the current vCPU is discounted from the vCPU power. To account for 1077 that, there can be a small performance impact. 1078 1079 If in doubt, say N here. 1080 1081config KEXEC 1082 depends on PM_SLEEP_SMP 1083 select KEXEC_CORE 1084 bool "kexec system call" 1085 help 1086 kexec is a system call that implements the ability to shutdown your 1087 current kernel, and to start another kernel. It is like a reboot 1088 but it is independent of the system firmware. And like a reboot 1089 you can start any kernel with it, not just Linux. 1090 1091config KEXEC_FILE 1092 bool "kexec file based system call" 1093 select KEXEC_CORE 1094 select HAVE_IMA_KEXEC if IMA 1095 help 1096 This is new version of kexec system call. This system call is 1097 file based and takes file descriptors as system call argument 1098 for kernel and initramfs as opposed to list of segments as 1099 accepted by previous system call. 1100 1101config KEXEC_SIG 1102 bool "Verify kernel signature during kexec_file_load() syscall" 1103 depends on KEXEC_FILE 1104 help 1105 Select this option to verify a signature with loaded kernel 1106 image. If configured, any attempt of loading a image without 1107 valid signature will fail. 1108 1109 In addition to that option, you need to enable signature 1110 verification for the corresponding kernel image type being 1111 loaded in order for this to work. 1112 1113config KEXEC_IMAGE_VERIFY_SIG 1114 bool "Enable Image signature verification support" 1115 default y 1116 depends on KEXEC_SIG 1117 depends on EFI && SIGNED_PE_FILE_VERIFICATION 1118 help 1119 Enable Image signature verification support. 1120 1121comment "Support for PE file signature verification disabled" 1122 depends on KEXEC_SIG 1123 depends on !EFI || !SIGNED_PE_FILE_VERIFICATION 1124 1125config CRASH_DUMP 1126 bool "Build kdump crash kernel" 1127 help 1128 Generate crash dump after being started by kexec. This should 1129 be normally only set in special crash dump kernels which are 1130 loaded in the main kernel with kexec-tools into a specially 1131 reserved region and then later executed after a crash by 1132 kdump/kexec. 1133 1134 For more details see Documentation/admin-guide/kdump/kdump.rst 1135 1136config TRANS_TABLE 1137 def_bool y 1138 depends on HIBERNATION 1139 1140config XEN_DOM0 1141 def_bool y 1142 depends on XEN 1143 1144config XEN 1145 bool "Xen guest support on ARM64" 1146 depends on ARM64 && OF 1147 select SWIOTLB_XEN 1148 select PARAVIRT 1149 help 1150 Say Y if you want to run Linux in a Virtual Machine on Xen on ARM64. 1151 1152config FORCE_MAX_ZONEORDER 1153 int 1154 default "14" if ARM64_64K_PAGES 1155 default "12" if ARM64_16K_PAGES 1156 default "11" 1157 help 1158 The kernel memory allocator divides physically contiguous memory 1159 blocks into "zones", where each zone is a power of two number of 1160 pages. This option selects the largest power of two that the kernel 1161 keeps in the memory allocator. If you need to allocate very large 1162 blocks of physically contiguous memory, then you may need to 1163 increase this value. 1164 1165 This config option is actually maximum order plus one. For example, 1166 a value of 11 means that the largest free memory block is 2^10 pages. 1167 1168 We make sure that we can allocate upto a HugePage size for each configuration. 1169 Hence we have : 1170 MAX_ORDER = (PMD_SHIFT - PAGE_SHIFT) + 1 => PAGE_SHIFT - 2 1171 1172 However for 4K, we choose a higher default value, 11 as opposed to 10, giving us 1173 4M allocations matching the default size used by generic code. 1174 1175config UNMAP_KERNEL_AT_EL0 1176 bool "Unmap kernel when running in userspace (aka \"KAISER\")" if EXPERT 1177 default y 1178 help 1179 Speculation attacks against some high-performance processors can 1180 be used to bypass MMU permission checks and leak kernel data to 1181 userspace. This can be defended against by unmapping the kernel 1182 when running in userspace, mapping it back in on exception entry 1183 via a trampoline page in the vector table. 1184 1185 If unsure, say Y. 1186 1187config RODATA_FULL_DEFAULT_ENABLED 1188 bool "Apply r/o permissions of VM areas also to their linear aliases" 1189 default y 1190 help 1191 Apply read-only attributes of VM areas to the linear alias of 1192 the backing pages as well. This prevents code or read-only data 1193 from being modified (inadvertently or intentionally) via another 1194 mapping of the same memory page. This additional enhancement can 1195 be turned off at runtime by passing rodata=[off|on] (and turned on 1196 with rodata=full if this option is set to 'n') 1197 1198 This requires the linear region to be mapped down to pages, 1199 which may adversely affect performance in some cases. 1200 1201config ARM64_SW_TTBR0_PAN 1202 bool "Emulate Privileged Access Never using TTBR0_EL1 switching" 1203 help 1204 Enabling this option prevents the kernel from accessing 1205 user-space memory directly by pointing TTBR0_EL1 to a reserved 1206 zeroed area and reserved ASID. The user access routines 1207 restore the valid TTBR0_EL1 temporarily. 1208 1209config ARM64_TAGGED_ADDR_ABI 1210 bool "Enable the tagged user addresses syscall ABI" 1211 default y 1212 help 1213 When this option is enabled, user applications can opt in to a 1214 relaxed ABI via prctl() allowing tagged addresses to be passed 1215 to system calls as pointer arguments. For details, see 1216 Documentation/arm64/tagged-address-abi.rst. 1217 1218menuconfig COMPAT 1219 bool "Kernel support for 32-bit EL0" 1220 depends on ARM64_4K_PAGES || EXPERT 1221 select HAVE_UID16 1222 select OLD_SIGSUSPEND3 1223 select COMPAT_OLD_SIGACTION 1224 help 1225 This option enables support for a 32-bit EL0 running under a 64-bit 1226 kernel at EL1. AArch32-specific components such as system calls, 1227 the user helper functions, VFP support and the ptrace interface are 1228 handled appropriately by the kernel. 1229 1230 If you use a page size other than 4KB (i.e, 16KB or 64KB), please be aware 1231 that you will only be able to execute AArch32 binaries that were compiled 1232 with page size aligned segments. 1233 1234 If you want to execute 32-bit userspace applications, say Y. 1235 1236if COMPAT 1237 1238config KUSER_HELPERS 1239 bool "Enable kuser helpers page for 32-bit applications" 1240 default y 1241 help 1242 Warning: disabling this option may break 32-bit user programs. 1243 1244 Provide kuser helpers to compat tasks. The kernel provides 1245 helper code to userspace in read only form at a fixed location 1246 to allow userspace to be independent of the CPU type fitted to 1247 the system. This permits binaries to be run on ARMv4 through 1248 to ARMv8 without modification. 1249 1250 See Documentation/arm/kernel_user_helpers.rst for details. 1251 1252 However, the fixed address nature of these helpers can be used 1253 by ROP (return orientated programming) authors when creating 1254 exploits. 1255 1256 If all of the binaries and libraries which run on your platform 1257 are built specifically for your platform, and make no use of 1258 these helpers, then you can turn this option off to hinder 1259 such exploits. However, in that case, if a binary or library 1260 relying on those helpers is run, it will not function correctly. 1261 1262 Say N here only if you are absolutely certain that you do not 1263 need these helpers; otherwise, the safe option is to say Y. 1264 1265config COMPAT_VDSO 1266 bool "Enable vDSO for 32-bit applications" 1267 depends on !CPU_BIG_ENDIAN && "$(CROSS_COMPILE_COMPAT)" != "" 1268 select GENERIC_COMPAT_VDSO 1269 default y 1270 help 1271 Place in the process address space of 32-bit applications an 1272 ELF shared object providing fast implementations of gettimeofday 1273 and clock_gettime. 1274 1275 You must have a 32-bit build of glibc 2.22 or later for programs 1276 to seamlessly take advantage of this. 1277 1278config THUMB2_COMPAT_VDSO 1279 bool "Compile the 32-bit vDSO for Thumb-2 mode" if EXPERT 1280 depends on COMPAT_VDSO 1281 default y 1282 help 1283 Compile the compat vDSO with '-mthumb -fomit-frame-pointer' if y, 1284 otherwise with '-marm'. 1285 1286menuconfig ARMV8_DEPRECATED 1287 bool "Emulate deprecated/obsolete ARMv8 instructions" 1288 depends on SYSCTL 1289 help 1290 Legacy software support may require certain instructions 1291 that have been deprecated or obsoleted in the architecture. 1292 1293 Enable this config to enable selective emulation of these 1294 features. 1295 1296 If unsure, say Y 1297 1298if ARMV8_DEPRECATED 1299 1300config SWP_EMULATION 1301 bool "Emulate SWP/SWPB instructions" 1302 help 1303 ARMv8 obsoletes the use of A32 SWP/SWPB instructions such that 1304 they are always undefined. Say Y here to enable software 1305 emulation of these instructions for userspace using LDXR/STXR. 1306 This feature can be controlled at runtime with the abi.swp 1307 sysctl which is disabled by default. 1308 1309 In some older versions of glibc [<=2.8] SWP is used during futex 1310 trylock() operations with the assumption that the code will not 1311 be preempted. This invalid assumption may be more likely to fail 1312 with SWP emulation enabled, leading to deadlock of the user 1313 application. 1314 1315 NOTE: when accessing uncached shared regions, LDXR/STXR rely 1316 on an external transaction monitoring block called a global 1317 monitor to maintain update atomicity. If your system does not 1318 implement a global monitor, this option can cause programs that 1319 perform SWP operations to uncached memory to deadlock. 1320 1321 If unsure, say Y 1322 1323config CP15_BARRIER_EMULATION 1324 bool "Emulate CP15 Barrier instructions" 1325 help 1326 The CP15 barrier instructions - CP15ISB, CP15DSB, and 1327 CP15DMB - are deprecated in ARMv8 (and ARMv7). It is 1328 strongly recommended to use the ISB, DSB, and DMB 1329 instructions instead. 1330 1331 Say Y here to enable software emulation of these 1332 instructions for AArch32 userspace code. When this option is 1333 enabled, CP15 barrier usage is traced which can help 1334 identify software that needs updating. This feature can be 1335 controlled at runtime with the abi.cp15_barrier sysctl. 1336 1337 If unsure, say Y 1338 1339config SETEND_EMULATION 1340 bool "Emulate SETEND instruction" 1341 help 1342 The SETEND instruction alters the data-endianness of the 1343 AArch32 EL0, and is deprecated in ARMv8. 1344 1345 Say Y here to enable software emulation of the instruction 1346 for AArch32 userspace code. This feature can be controlled 1347 at runtime with the abi.setend sysctl. 1348 1349 Note: All the cpus on the system must have mixed endian support at EL0 1350 for this feature to be enabled. If a new CPU - which doesn't support mixed 1351 endian - is hotplugged in after this feature has been enabled, there could 1352 be unexpected results in the applications. 1353 1354 If unsure, say Y 1355endif 1356 1357endif 1358 1359menu "ARMv8.1 architectural features" 1360 1361config ARM64_HW_AFDBM 1362 bool "Support for hardware updates of the Access and Dirty page flags" 1363 default y 1364 help 1365 The ARMv8.1 architecture extensions introduce support for 1366 hardware updates of the access and dirty information in page 1367 table entries. When enabled in TCR_EL1 (HA and HD bits) on 1368 capable processors, accesses to pages with PTE_AF cleared will 1369 set this bit instead of raising an access flag fault. 1370 Similarly, writes to read-only pages with the DBM bit set will 1371 clear the read-only bit (AP[2]) instead of raising a 1372 permission fault. 1373 1374 Kernels built with this configuration option enabled continue 1375 to work on pre-ARMv8.1 hardware and the performance impact is 1376 minimal. If unsure, say Y. 1377 1378config ARM64_PAN 1379 bool "Enable support for Privileged Access Never (PAN)" 1380 default y 1381 help 1382 Privileged Access Never (PAN; part of the ARMv8.1 Extensions) 1383 prevents the kernel or hypervisor from accessing user-space (EL0) 1384 memory directly. 1385 1386 Choosing this option will cause any unprotected (not using 1387 copy_to_user et al) memory access to fail with a permission fault. 1388 1389 The feature is detected at runtime, and will remain as a 'nop' 1390 instruction if the cpu does not implement the feature. 1391 1392config AS_HAS_LDAPR 1393 def_bool $(as-instr,.arch_extension rcpc) 1394 1395config AS_HAS_LSE_ATOMICS 1396 def_bool $(as-instr,.arch_extension lse) 1397 1398config ARM64_LSE_ATOMICS 1399 bool 1400 default ARM64_USE_LSE_ATOMICS 1401 depends on AS_HAS_LSE_ATOMICS 1402 1403config ARM64_USE_LSE_ATOMICS 1404 bool "Atomic instructions" 1405 depends on JUMP_LABEL 1406 default y 1407 help 1408 As part of the Large System Extensions, ARMv8.1 introduces new 1409 atomic instructions that are designed specifically to scale in 1410 very large systems. 1411 1412 Say Y here to make use of these instructions for the in-kernel 1413 atomic routines. This incurs a small overhead on CPUs that do 1414 not support these instructions and requires the kernel to be 1415 built with binutils >= 2.25 in order for the new instructions 1416 to be used. 1417 1418endmenu 1419 1420menu "ARMv8.2 architectural features" 1421 1422config ARM64_PMEM 1423 bool "Enable support for persistent memory" 1424 select ARCH_HAS_PMEM_API 1425 select ARCH_HAS_UACCESS_FLUSHCACHE 1426 help 1427 Say Y to enable support for the persistent memory API based on the 1428 ARMv8.2 DCPoP feature. 1429 1430 The feature is detected at runtime, and the kernel will use DC CVAC 1431 operations if DC CVAP is not supported (following the behaviour of 1432 DC CVAP itself if the system does not define a point of persistence). 1433 1434config ARM64_RAS_EXTN 1435 bool "Enable support for RAS CPU Extensions" 1436 default y 1437 help 1438 CPUs that support the Reliability, Availability and Serviceability 1439 (RAS) Extensions, part of ARMv8.2 are able to track faults and 1440 errors, classify them and report them to software. 1441 1442 On CPUs with these extensions system software can use additional 1443 barriers to determine if faults are pending and read the 1444 classification from a new set of registers. 1445 1446 Selecting this feature will allow the kernel to use these barriers 1447 and access the new registers if the system supports the extension. 1448 Platform RAS features may additionally depend on firmware support. 1449 1450config ARM64_CNP 1451 bool "Enable support for Common Not Private (CNP) translations" 1452 default y 1453 depends on ARM64_PAN || !ARM64_SW_TTBR0_PAN 1454 help 1455 Common Not Private (CNP) allows translation table entries to 1456 be shared between different PEs in the same inner shareable 1457 domain, so the hardware can use this fact to optimise the 1458 caching of such entries in the TLB. 1459 1460 Selecting this option allows the CNP feature to be detected 1461 at runtime, and does not affect PEs that do not implement 1462 this feature. 1463 1464endmenu 1465 1466menu "ARMv8.3 architectural features" 1467 1468config ARM64_PTR_AUTH 1469 bool "Enable support for pointer authentication" 1470 default y 1471 help 1472 Pointer authentication (part of the ARMv8.3 Extensions) provides 1473 instructions for signing and authenticating pointers against secret 1474 keys, which can be used to mitigate Return Oriented Programming (ROP) 1475 and other attacks. 1476 1477 This option enables these instructions at EL0 (i.e. for userspace). 1478 Choosing this option will cause the kernel to initialise secret keys 1479 for each process at exec() time, with these keys being 1480 context-switched along with the process. 1481 1482 The feature is detected at runtime. If the feature is not present in 1483 hardware it will not be advertised to userspace/KVM guest nor will it 1484 be enabled. 1485 1486 If the feature is present on the boot CPU but not on a late CPU, then 1487 the late CPU will be parked. Also, if the boot CPU does not have 1488 address auth and the late CPU has then the late CPU will still boot 1489 but with the feature disabled. On such a system, this option should 1490 not be selected. 1491 1492config ARM64_PTR_AUTH_KERNEL 1493 bool "Use pointer authentication for kernel" 1494 default y 1495 depends on ARM64_PTR_AUTH 1496 depends on (CC_HAS_SIGN_RETURN_ADDRESS || CC_HAS_BRANCH_PROT_PAC_RET) && AS_HAS_PAC 1497 # Modern compilers insert a .note.gnu.property section note for PAC 1498 # which is only understood by binutils starting with version 2.33.1. 1499 depends on LD_IS_LLD || LD_VERSION >= 23301 || (CC_IS_GCC && GCC_VERSION < 90100) 1500 depends on !CC_IS_CLANG || AS_HAS_CFI_NEGATE_RA_STATE 1501 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1502 help 1503 If the compiler supports the -mbranch-protection or 1504 -msign-return-address flag (e.g. GCC 7 or later), then this option 1505 will cause the kernel itself to be compiled with return address 1506 protection. In this case, and if the target hardware is known to 1507 support pointer authentication, then CONFIG_STACKPROTECTOR can be 1508 disabled with minimal loss of protection. 1509 1510 This feature works with FUNCTION_GRAPH_TRACER option only if 1511 DYNAMIC_FTRACE_WITH_REGS is enabled. 1512 1513config CC_HAS_BRANCH_PROT_PAC_RET 1514 # GCC 9 or later, clang 8 or later 1515 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf) 1516 1517config CC_HAS_SIGN_RETURN_ADDRESS 1518 # GCC 7, 8 1519 def_bool $(cc-option,-msign-return-address=all) 1520 1521config AS_HAS_PAC 1522 def_bool $(cc-option,-Wa$(comma)-march=armv8.3-a) 1523 1524config AS_HAS_CFI_NEGATE_RA_STATE 1525 def_bool $(as-instr,.cfi_startproc\n.cfi_negate_ra_state\n.cfi_endproc\n) 1526 1527endmenu 1528 1529menu "ARMv8.4 architectural features" 1530 1531config ARM64_AMU_EXTN 1532 bool "Enable support for the Activity Monitors Unit CPU extension" 1533 default y 1534 help 1535 The activity monitors extension is an optional extension introduced 1536 by the ARMv8.4 CPU architecture. This enables support for version 1 1537 of the activity monitors architecture, AMUv1. 1538 1539 To enable the use of this extension on CPUs that implement it, say Y. 1540 1541 Note that for architectural reasons, firmware _must_ implement AMU 1542 support when running on CPUs that present the activity monitors 1543 extension. The required support is present in: 1544 * Version 1.5 and later of the ARM Trusted Firmware 1545 1546 For kernels that have this configuration enabled but boot with broken 1547 firmware, you may need to say N here until the firmware is fixed. 1548 Otherwise you may experience firmware panics or lockups when 1549 accessing the counter registers. Even if you are not observing these 1550 symptoms, the values returned by the register reads might not 1551 correctly reflect reality. Most commonly, the value read will be 0, 1552 indicating that the counter is not enabled. 1553 1554config AS_HAS_ARMV8_4 1555 def_bool $(cc-option,-Wa$(comma)-march=armv8.4-a) 1556 1557config ARM64_TLB_RANGE 1558 bool "Enable support for tlbi range feature" 1559 default y 1560 depends on AS_HAS_ARMV8_4 1561 help 1562 ARMv8.4-TLBI provides TLBI invalidation instruction that apply to a 1563 range of input addresses. 1564 1565 The feature introduces new assembly instructions, and they were 1566 support when binutils >= 2.30. 1567 1568endmenu 1569 1570menu "ARMv8.5 architectural features" 1571 1572config AS_HAS_ARMV8_5 1573 def_bool $(cc-option,-Wa$(comma)-march=armv8.5-a) 1574 1575config ARM64_BTI 1576 bool "Branch Target Identification support" 1577 default y 1578 help 1579 Branch Target Identification (part of the ARMv8.5 Extensions) 1580 provides a mechanism to limit the set of locations to which computed 1581 branch instructions such as BR or BLR can jump. 1582 1583 To make use of BTI on CPUs that support it, say Y. 1584 1585 BTI is intended to provide complementary protection to other control 1586 flow integrity protection mechanisms, such as the Pointer 1587 authentication mechanism provided as part of the ARMv8.3 Extensions. 1588 For this reason, it does not make sense to enable this option without 1589 also enabling support for pointer authentication. Thus, when 1590 enabling this option you should also select ARM64_PTR_AUTH=y. 1591 1592 Userspace binaries must also be specifically compiled to make use of 1593 this mechanism. If you say N here or the hardware does not support 1594 BTI, such binaries can still run, but you get no additional 1595 enforcement of branch destinations. 1596 1597config ARM64_BTI_KERNEL 1598 bool "Use Branch Target Identification for kernel" 1599 default y 1600 depends on ARM64_BTI 1601 depends on ARM64_PTR_AUTH_KERNEL 1602 depends on CC_HAS_BRANCH_PROT_PAC_RET_BTI 1603 # https://gcc.gnu.org/bugzilla/show_bug.cgi?id=94697 1604 depends on !CC_IS_GCC || GCC_VERSION >= 100100 1605 # https://github.com/llvm/llvm-project/commit/a88c722e687e6780dcd6a58718350dc76fcc4cc9 1606 depends on !CC_IS_CLANG || CLANG_VERSION >= 120000 1607 depends on (!FUNCTION_GRAPH_TRACER || DYNAMIC_FTRACE_WITH_REGS) 1608 help 1609 Build the kernel with Branch Target Identification annotations 1610 and enable enforcement of this for kernel code. When this option 1611 is enabled and the system supports BTI all kernel code including 1612 modular code must have BTI enabled. 1613 1614config CC_HAS_BRANCH_PROT_PAC_RET_BTI 1615 # GCC 9 or later, clang 8 or later 1616 def_bool $(cc-option,-mbranch-protection=pac-ret+leaf+bti) 1617 1618config ARM64_E0PD 1619 bool "Enable support for E0PD" 1620 default y 1621 help 1622 E0PD (part of the ARMv8.5 extensions) allows us to ensure 1623 that EL0 accesses made via TTBR1 always fault in constant time, 1624 providing similar benefits to KASLR as those provided by KPTI, but 1625 with lower overhead and without disrupting legitimate access to 1626 kernel memory such as SPE. 1627 1628 This option enables E0PD for TTBR1 where available. 1629 1630config ARCH_RANDOM 1631 bool "Enable support for random number generation" 1632 default y 1633 help 1634 Random number generation (part of the ARMv8.5 Extensions) 1635 provides a high bandwidth, cryptographically secure 1636 hardware random number generator. 1637 1638config ARM64_AS_HAS_MTE 1639 # Initial support for MTE went in binutils 2.32.0, checked with 1640 # ".arch armv8.5-a+memtag" below. However, this was incomplete 1641 # as a late addition to the final architecture spec (LDGM/STGM) 1642 # is only supported in the newer 2.32.x and 2.33 binutils 1643 # versions, hence the extra "stgm" instruction check below. 1644 def_bool $(as-instr,.arch armv8.5-a+memtag\nstgm xzr$(comma)[x0]) 1645 1646config ARM64_MTE 1647 bool "Memory Tagging Extension support" 1648 default y 1649 depends on ARM64_AS_HAS_MTE && ARM64_TAGGED_ADDR_ABI 1650 depends on AS_HAS_ARMV8_5 1651 depends on AS_HAS_LSE_ATOMICS 1652 # Required for tag checking in the uaccess routines 1653 depends on ARM64_PAN 1654 select ARCH_USES_HIGH_VMA_FLAGS 1655 help 1656 Memory Tagging (part of the ARMv8.5 Extensions) provides 1657 architectural support for run-time, always-on detection of 1658 various classes of memory error to aid with software debugging 1659 to eliminate vulnerabilities arising from memory-unsafe 1660 languages. 1661 1662 This option enables the support for the Memory Tagging 1663 Extension at EL0 (i.e. for userspace). 1664 1665 Selecting this option allows the feature to be detected at 1666 runtime. Any secondary CPU not implementing this feature will 1667 not be allowed a late bring-up. 1668 1669 Userspace binaries that want to use this feature must 1670 explicitly opt in. The mechanism for the userspace is 1671 described in: 1672 1673 Documentation/arm64/memory-tagging-extension.rst. 1674 1675endmenu 1676 1677menu "ARMv8.7 architectural features" 1678 1679config ARM64_EPAN 1680 bool "Enable support for Enhanced Privileged Access Never (EPAN)" 1681 default y 1682 depends on ARM64_PAN 1683 help 1684 Enhanced Privileged Access Never (EPAN) allows Privileged 1685 Access Never to be used with Execute-only mappings. 1686 1687 The feature is detected at runtime, and will remain disabled 1688 if the cpu does not implement the feature. 1689endmenu 1690 1691config ARM64_SVE 1692 bool "ARM Scalable Vector Extension support" 1693 default y 1694 help 1695 The Scalable Vector Extension (SVE) is an extension to the AArch64 1696 execution state which complements and extends the SIMD functionality 1697 of the base architecture to support much larger vectors and to enable 1698 additional vectorisation opportunities. 1699 1700 To enable use of this extension on CPUs that implement it, say Y. 1701 1702 On CPUs that support the SVE2 extensions, this option will enable 1703 those too. 1704 1705 Note that for architectural reasons, firmware _must_ implement SVE 1706 support when running on SVE capable hardware. The required support 1707 is present in: 1708 1709 * version 1.5 and later of the ARM Trusted Firmware 1710 * the AArch64 boot wrapper since commit 5e1261e08abf 1711 ("bootwrapper: SVE: Enable SVE for EL2 and below"). 1712 1713 For other firmware implementations, consult the firmware documentation 1714 or vendor. 1715 1716 If you need the kernel to boot on SVE-capable hardware with broken 1717 firmware, you may need to say N here until you get your firmware 1718 fixed. Otherwise, you may experience firmware panics or lockups when 1719 booting the kernel. If unsure and you are not observing these 1720 symptoms, you should assume that it is safe to say Y. 1721 1722config ARM64_MODULE_PLTS 1723 bool "Use PLTs to allow module memory to spill over into vmalloc area" 1724 depends on MODULES 1725 select HAVE_MOD_ARCH_SPECIFIC 1726 help 1727 Allocate PLTs when loading modules so that jumps and calls whose 1728 targets are too far away for their relative offsets to be encoded 1729 in the instructions themselves can be bounced via veneers in the 1730 module's PLT. This allows modules to be allocated in the generic 1731 vmalloc area after the dedicated module memory area has been 1732 exhausted. 1733 1734 When running with address space randomization (KASLR), the module 1735 region itself may be too far away for ordinary relative jumps and 1736 calls, and so in that case, module PLTs are required and cannot be 1737 disabled. 1738 1739 Specific errata workaround(s) might also force module PLTs to be 1740 enabled (ARM64_ERRATUM_843419). 1741 1742config ARM64_PSEUDO_NMI 1743 bool "Support for NMI-like interrupts" 1744 select ARM_GIC_V3 1745 help 1746 Adds support for mimicking Non-Maskable Interrupts through the use of 1747 GIC interrupt priority. This support requires version 3 or later of 1748 ARM GIC. 1749 1750 This high priority configuration for interrupts needs to be 1751 explicitly enabled by setting the kernel parameter 1752 "irqchip.gicv3_pseudo_nmi" to 1. 1753 1754 If unsure, say N 1755 1756if ARM64_PSEUDO_NMI 1757config ARM64_DEBUG_PRIORITY_MASKING 1758 bool "Debug interrupt priority masking" 1759 help 1760 This adds runtime checks to functions enabling/disabling 1761 interrupts when using priority masking. The additional checks verify 1762 the validity of ICC_PMR_EL1 when calling concerned functions. 1763 1764 If unsure, say N 1765endif 1766 1767config RELOCATABLE 1768 bool "Build a relocatable kernel image" if EXPERT 1769 select ARCH_HAS_RELR 1770 default y 1771 help 1772 This builds the kernel as a Position Independent Executable (PIE), 1773 which retains all relocation metadata required to relocate the 1774 kernel binary at runtime to a different virtual address than the 1775 address it was linked at. 1776 Since AArch64 uses the RELA relocation format, this requires a 1777 relocation pass at runtime even if the kernel is loaded at the 1778 same address it was linked at. 1779 1780config RANDOMIZE_BASE 1781 bool "Randomize the address of the kernel image" 1782 select ARM64_MODULE_PLTS if MODULES 1783 select RELOCATABLE 1784 help 1785 Randomizes the virtual address at which the kernel image is 1786 loaded, as a security feature that deters exploit attempts 1787 relying on knowledge of the location of kernel internals. 1788 1789 It is the bootloader's job to provide entropy, by passing a 1790 random u64 value in /chosen/kaslr-seed at kernel entry. 1791 1792 When booting via the UEFI stub, it will invoke the firmware's 1793 EFI_RNG_PROTOCOL implementation (if available) to supply entropy 1794 to the kernel proper. In addition, it will randomise the physical 1795 location of the kernel Image as well. 1796 1797 If unsure, say N. 1798 1799config RANDOMIZE_MODULE_REGION_FULL 1800 bool "Randomize the module region over a 2 GB range" 1801 depends on RANDOMIZE_BASE 1802 default y 1803 help 1804 Randomizes the location of the module region inside a 2 GB window 1805 covering the core kernel. This way, it is less likely for modules 1806 to leak information about the location of core kernel data structures 1807 but it does imply that function calls between modules and the core 1808 kernel will need to be resolved via veneers in the module PLT. 1809 1810 When this option is not set, the module region will be randomized over 1811 a limited range that contains the [_stext, _etext] interval of the 1812 core kernel, so branch relocations are almost always in range unless 1813 ARM64_MODULE_PLTS is enabled and the region is exhausted. In this 1814 particular case of region exhaustion, modules might be able to fall 1815 back to a larger 2GB area. 1816 1817config CC_HAVE_STACKPROTECTOR_SYSREG 1818 def_bool $(cc-option,-mstack-protector-guard=sysreg -mstack-protector-guard-reg=sp_el0 -mstack-protector-guard-offset=0) 1819 1820config STACKPROTECTOR_PER_TASK 1821 def_bool y 1822 depends on STACKPROTECTOR && CC_HAVE_STACKPROTECTOR_SYSREG 1823 1824endmenu 1825 1826menu "Boot options" 1827 1828config ARM64_ACPI_PARKING_PROTOCOL 1829 bool "Enable support for the ARM64 ACPI parking protocol" 1830 depends on ACPI 1831 help 1832 Enable support for the ARM64 ACPI parking protocol. If disabled 1833 the kernel will not allow booting through the ARM64 ACPI parking 1834 protocol even if the corresponding data is present in the ACPI 1835 MADT table. 1836 1837config CMDLINE 1838 string "Default kernel command string" 1839 default "" 1840 help 1841 Provide a set of default command-line options at build time by 1842 entering them here. As a minimum, you should specify the the 1843 root device (e.g. root=/dev/nfs). 1844 1845choice 1846 prompt "Kernel command line type" if CMDLINE != "" 1847 default CMDLINE_FROM_BOOTLOADER 1848 help 1849 Choose how the kernel will handle the provided default kernel 1850 command line string. 1851 1852config CMDLINE_FROM_BOOTLOADER 1853 bool "Use bootloader kernel arguments if available" 1854 help 1855 Uses the command-line options passed by the boot loader. If 1856 the boot loader doesn't provide any, the default kernel command 1857 string provided in CMDLINE will be used. 1858 1859config CMDLINE_FORCE 1860 bool "Always use the default kernel command string" 1861 help 1862 Always use the default kernel command string, even if the boot 1863 loader passes other arguments to the kernel. 1864 This is useful if you cannot or don't want to change the 1865 command-line options your boot loader passes to the kernel. 1866 1867endchoice 1868 1869config EFI_STUB 1870 bool 1871 1872config EFI 1873 bool "UEFI runtime support" 1874 depends on OF && !CPU_BIG_ENDIAN 1875 depends on KERNEL_MODE_NEON 1876 select ARCH_SUPPORTS_ACPI 1877 select LIBFDT 1878 select UCS2_STRING 1879 select EFI_PARAMS_FROM_FDT 1880 select EFI_RUNTIME_WRAPPERS 1881 select EFI_STUB 1882 select EFI_GENERIC_STUB 1883 imply IMA_SECURE_AND_OR_TRUSTED_BOOT 1884 default y 1885 help 1886 This option provides support for runtime services provided 1887 by UEFI firmware (such as non-volatile variables, realtime 1888 clock, and platform reset). A UEFI stub is also provided to 1889 allow the kernel to be booted as an EFI application. This 1890 is only useful on systems that have UEFI firmware. 1891 1892config DMI 1893 bool "Enable support for SMBIOS (DMI) tables" 1894 depends on EFI 1895 default y 1896 help 1897 This enables SMBIOS/DMI feature for systems. 1898 1899 This option is only useful on systems that have UEFI firmware. 1900 However, even with this option, the resultant kernel should 1901 continue to boot on existing non-UEFI platforms. 1902 1903endmenu 1904 1905config SYSVIPC_COMPAT 1906 def_bool y 1907 depends on COMPAT && SYSVIPC 1908 1909menu "Power management options" 1910 1911source "kernel/power/Kconfig" 1912 1913config ARCH_HIBERNATION_POSSIBLE 1914 def_bool y 1915 depends on CPU_PM 1916 1917config ARCH_HIBERNATION_HEADER 1918 def_bool y 1919 depends on HIBERNATION 1920 1921config ARCH_SUSPEND_POSSIBLE 1922 def_bool y 1923 1924endmenu 1925 1926menu "CPU Power Management" 1927 1928source "drivers/cpuidle/Kconfig" 1929 1930source "drivers/cpufreq/Kconfig" 1931 1932endmenu 1933 1934source "drivers/firmware/Kconfig" 1935 1936source "drivers/acpi/Kconfig" 1937 1938source "arch/arm64/kvm/Kconfig" 1939 1940if CRYPTO 1941source "arch/arm64/crypto/Kconfig" 1942endif 1943