xref: /openbmc/linux/arch/arm/vfp/vfpsingle.c (revision 842ed298)
1 /*
2  *  linux/arch/arm/vfp/vfpsingle.c
3  *
4  * This code is derived in part from John R. Housers softfloat library, which
5  * carries the following notice:
6  *
7  * ===========================================================================
8  * This C source file is part of the SoftFloat IEC/IEEE Floating-point
9  * Arithmetic Package, Release 2.
10  *
11  * Written by John R. Hauser.  This work was made possible in part by the
12  * International Computer Science Institute, located at Suite 600, 1947 Center
13  * Street, Berkeley, California 94704.  Funding was partially provided by the
14  * National Science Foundation under grant MIP-9311980.  The original version
15  * of this code was written as part of a project to build a fixed-point vector
16  * processor in collaboration with the University of California at Berkeley,
17  * overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
18  * is available through the web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
19  * arithmetic/softfloat.html'.
20  *
21  * THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
22  * has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
23  * TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
24  * PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
25  * AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
26  *
27  * Derivative works are acceptable, even for commercial purposes, so long as
28  * (1) they include prominent notice that the work is derivative, and (2) they
29  * include prominent notice akin to these three paragraphs for those parts of
30  * this code that are retained.
31  * ===========================================================================
32  */
33 #include <linux/kernel.h>
34 #include <linux/bitops.h>
35 
36 #include <asm/div64.h>
37 #include <asm/vfp.h>
38 
39 #include "vfpinstr.h"
40 #include "vfp.h"
41 
42 static struct vfp_single vfp_single_default_qnan = {
43 	.exponent	= 255,
44 	.sign		= 0,
45 	.significand	= VFP_SINGLE_SIGNIFICAND_QNAN,
46 };
47 
48 static void vfp_single_dump(const char *str, struct vfp_single *s)
49 {
50 	pr_debug("VFP: %s: sign=%d exponent=%d significand=%08x\n",
51 		 str, s->sign != 0, s->exponent, s->significand);
52 }
53 
54 static void vfp_single_normalise_denormal(struct vfp_single *vs)
55 {
56 	int bits = 31 - fls(vs->significand);
57 
58 	vfp_single_dump("normalise_denormal: in", vs);
59 
60 	if (bits) {
61 		vs->exponent -= bits - 1;
62 		vs->significand <<= bits;
63 	}
64 
65 	vfp_single_dump("normalise_denormal: out", vs);
66 }
67 
68 #ifndef DEBUG
69 #define vfp_single_normaliseround(sd,vsd,fpscr,except,func) __vfp_single_normaliseround(sd,vsd,fpscr,except)
70 u32 __vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions)
71 #else
72 u32 vfp_single_normaliseround(int sd, struct vfp_single *vs, u32 fpscr, u32 exceptions, const char *func)
73 #endif
74 {
75 	u32 significand, incr, rmode;
76 	int exponent, shift, underflow;
77 
78 	vfp_single_dump("pack: in", vs);
79 
80 	/*
81 	 * Infinities and NaNs are a special case.
82 	 */
83 	if (vs->exponent == 255 && (vs->significand == 0 || exceptions))
84 		goto pack;
85 
86 	/*
87 	 * Special-case zero.
88 	 */
89 	if (vs->significand == 0) {
90 		vs->exponent = 0;
91 		goto pack;
92 	}
93 
94 	exponent = vs->exponent;
95 	significand = vs->significand;
96 
97 	/*
98 	 * Normalise first.  Note that we shift the significand up to
99 	 * bit 31, so we have VFP_SINGLE_LOW_BITS + 1 below the least
100 	 * significant bit.
101 	 */
102 	shift = 32 - fls(significand);
103 	if (shift < 32 && shift) {
104 		exponent -= shift;
105 		significand <<= shift;
106 	}
107 
108 #ifdef DEBUG
109 	vs->exponent = exponent;
110 	vs->significand = significand;
111 	vfp_single_dump("pack: normalised", vs);
112 #endif
113 
114 	/*
115 	 * Tiny number?
116 	 */
117 	underflow = exponent < 0;
118 	if (underflow) {
119 		significand = vfp_shiftright32jamming(significand, -exponent);
120 		exponent = 0;
121 #ifdef DEBUG
122 		vs->exponent = exponent;
123 		vs->significand = significand;
124 		vfp_single_dump("pack: tiny number", vs);
125 #endif
126 		if (!(significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1)))
127 			underflow = 0;
128 	}
129 
130 	/*
131 	 * Select rounding increment.
132 	 */
133 	incr = 0;
134 	rmode = fpscr & FPSCR_RMODE_MASK;
135 
136 	if (rmode == FPSCR_ROUND_NEAREST) {
137 		incr = 1 << VFP_SINGLE_LOW_BITS;
138 		if ((significand & (1 << (VFP_SINGLE_LOW_BITS + 1))) == 0)
139 			incr -= 1;
140 	} else if (rmode == FPSCR_ROUND_TOZERO) {
141 		incr = 0;
142 	} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vs->sign != 0))
143 		incr = (1 << (VFP_SINGLE_LOW_BITS + 1)) - 1;
144 
145 	pr_debug("VFP: rounding increment = 0x%08x\n", incr);
146 
147 	/*
148 	 * Is our rounding going to overflow?
149 	 */
150 	if ((significand + incr) < significand) {
151 		exponent += 1;
152 		significand = (significand >> 1) | (significand & 1);
153 		incr >>= 1;
154 #ifdef DEBUG
155 		vs->exponent = exponent;
156 		vs->significand = significand;
157 		vfp_single_dump("pack: overflow", vs);
158 #endif
159 	}
160 
161 	/*
162 	 * If any of the low bits (which will be shifted out of the
163 	 * number) are non-zero, the result is inexact.
164 	 */
165 	if (significand & ((1 << (VFP_SINGLE_LOW_BITS + 1)) - 1))
166 		exceptions |= FPSCR_IXC;
167 
168 	/*
169 	 * Do our rounding.
170 	 */
171 	significand += incr;
172 
173 	/*
174 	 * Infinity?
175 	 */
176 	if (exponent >= 254) {
177 		exceptions |= FPSCR_OFC | FPSCR_IXC;
178 		if (incr == 0) {
179 			vs->exponent = 253;
180 			vs->significand = 0x7fffffff;
181 		} else {
182 			vs->exponent = 255;		/* infinity */
183 			vs->significand = 0;
184 		}
185 	} else {
186 		if (significand >> (VFP_SINGLE_LOW_BITS + 1) == 0)
187 			exponent = 0;
188 		if (exponent || significand > 0x80000000)
189 			underflow = 0;
190 		if (underflow)
191 			exceptions |= FPSCR_UFC;
192 		vs->exponent = exponent;
193 		vs->significand = significand >> 1;
194 	}
195 
196  pack:
197 	vfp_single_dump("pack: final", vs);
198 	{
199 		s32 d = vfp_single_pack(vs);
200 #ifdef DEBUG
201 		pr_debug("VFP: %s: d(s%d)=%08x exceptions=%08x\n", func,
202 			 sd, d, exceptions);
203 #endif
204 		vfp_put_float(d, sd);
205 	}
206 
207 	return exceptions;
208 }
209 
210 /*
211  * Propagate the NaN, setting exceptions if it is signalling.
212  * 'n' is always a NaN.  'm' may be a number, NaN or infinity.
213  */
214 static u32
215 vfp_propagate_nan(struct vfp_single *vsd, struct vfp_single *vsn,
216 		  struct vfp_single *vsm, u32 fpscr)
217 {
218 	struct vfp_single *nan;
219 	int tn, tm = 0;
220 
221 	tn = vfp_single_type(vsn);
222 
223 	if (vsm)
224 		tm = vfp_single_type(vsm);
225 
226 	if (fpscr & FPSCR_DEFAULT_NAN)
227 		/*
228 		 * Default NaN mode - always returns a quiet NaN
229 		 */
230 		nan = &vfp_single_default_qnan;
231 	else {
232 		/*
233 		 * Contemporary mode - select the first signalling
234 		 * NAN, or if neither are signalling, the first
235 		 * quiet NAN.
236 		 */
237 		if (tn == VFP_SNAN || (tm != VFP_SNAN && tn == VFP_QNAN))
238 			nan = vsn;
239 		else
240 			nan = vsm;
241 		/*
242 		 * Make the NaN quiet.
243 		 */
244 		nan->significand |= VFP_SINGLE_SIGNIFICAND_QNAN;
245 	}
246 
247 	*vsd = *nan;
248 
249 	/*
250 	 * If one was a signalling NAN, raise invalid operation.
251 	 */
252 	return tn == VFP_SNAN || tm == VFP_SNAN ? FPSCR_IOC : VFP_NAN_FLAG;
253 }
254 
255 
256 /*
257  * Extended operations
258  */
259 static u32 vfp_single_fabs(int sd, int unused, s32 m, u32 fpscr)
260 {
261 	vfp_put_float(vfp_single_packed_abs(m), sd);
262 	return 0;
263 }
264 
265 static u32 vfp_single_fcpy(int sd, int unused, s32 m, u32 fpscr)
266 {
267 	vfp_put_float(m, sd);
268 	return 0;
269 }
270 
271 static u32 vfp_single_fneg(int sd, int unused, s32 m, u32 fpscr)
272 {
273 	vfp_put_float(vfp_single_packed_negate(m), sd);
274 	return 0;
275 }
276 
277 static const u16 sqrt_oddadjust[] = {
278 	0x0004, 0x0022, 0x005d, 0x00b1, 0x011d, 0x019f, 0x0236, 0x02e0,
279 	0x039c, 0x0468, 0x0545, 0x0631, 0x072b, 0x0832, 0x0946, 0x0a67
280 };
281 
282 static const u16 sqrt_evenadjust[] = {
283 	0x0a2d, 0x08af, 0x075a, 0x0629, 0x051a, 0x0429, 0x0356, 0x029e,
284 	0x0200, 0x0179, 0x0109, 0x00af, 0x0068, 0x0034, 0x0012, 0x0002
285 };
286 
287 u32 vfp_estimate_sqrt_significand(u32 exponent, u32 significand)
288 {
289 	int index;
290 	u32 z, a;
291 
292 	if ((significand & 0xc0000000) != 0x40000000) {
293 		pr_warn("VFP: estimate_sqrt: invalid significand\n");
294 	}
295 
296 	a = significand << 1;
297 	index = (a >> 27) & 15;
298 	if (exponent & 1) {
299 		z = 0x4000 + (a >> 17) - sqrt_oddadjust[index];
300 		z = ((a / z) << 14) + (z << 15);
301 		a >>= 1;
302 	} else {
303 		z = 0x8000 + (a >> 17) - sqrt_evenadjust[index];
304 		z = a / z + z;
305 		z = (z >= 0x20000) ? 0xffff8000 : (z << 15);
306 		if (z <= a)
307 			return (s32)a >> 1;
308 	}
309 	{
310 		u64 v = (u64)a << 31;
311 		do_div(v, z);
312 		return v + (z >> 1);
313 	}
314 }
315 
316 static u32 vfp_single_fsqrt(int sd, int unused, s32 m, u32 fpscr)
317 {
318 	struct vfp_single vsm, vsd;
319 	int ret, tm;
320 
321 	vfp_single_unpack(&vsm, m);
322 	tm = vfp_single_type(&vsm);
323 	if (tm & (VFP_NAN|VFP_INFINITY)) {
324 		struct vfp_single *vsp = &vsd;
325 
326 		if (tm & VFP_NAN)
327 			ret = vfp_propagate_nan(vsp, &vsm, NULL, fpscr);
328 		else if (vsm.sign == 0) {
329  sqrt_copy:
330 			vsp = &vsm;
331 			ret = 0;
332 		} else {
333  sqrt_invalid:
334 			vsp = &vfp_single_default_qnan;
335 			ret = FPSCR_IOC;
336 		}
337 		vfp_put_float(vfp_single_pack(vsp), sd);
338 		return ret;
339 	}
340 
341 	/*
342 	 * sqrt(+/- 0) == +/- 0
343 	 */
344 	if (tm & VFP_ZERO)
345 		goto sqrt_copy;
346 
347 	/*
348 	 * Normalise a denormalised number
349 	 */
350 	if (tm & VFP_DENORMAL)
351 		vfp_single_normalise_denormal(&vsm);
352 
353 	/*
354 	 * sqrt(<0) = invalid
355 	 */
356 	if (vsm.sign)
357 		goto sqrt_invalid;
358 
359 	vfp_single_dump("sqrt", &vsm);
360 
361 	/*
362 	 * Estimate the square root.
363 	 */
364 	vsd.sign = 0;
365 	vsd.exponent = ((vsm.exponent - 127) >> 1) + 127;
366 	vsd.significand = vfp_estimate_sqrt_significand(vsm.exponent, vsm.significand) + 2;
367 
368 	vfp_single_dump("sqrt estimate", &vsd);
369 
370 	/*
371 	 * And now adjust.
372 	 */
373 	if ((vsd.significand & VFP_SINGLE_LOW_BITS_MASK) <= 5) {
374 		if (vsd.significand < 2) {
375 			vsd.significand = 0xffffffff;
376 		} else {
377 			u64 term;
378 			s64 rem;
379 			vsm.significand <<= !(vsm.exponent & 1);
380 			term = (u64)vsd.significand * vsd.significand;
381 			rem = ((u64)vsm.significand << 32) - term;
382 
383 			pr_debug("VFP: term=%016llx rem=%016llx\n", term, rem);
384 
385 			while (rem < 0) {
386 				vsd.significand -= 1;
387 				rem += ((u64)vsd.significand << 1) | 1;
388 			}
389 			vsd.significand |= rem != 0;
390 		}
391 	}
392 	vsd.significand = vfp_shiftright32jamming(vsd.significand, 1);
393 
394 	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fsqrt");
395 }
396 
397 /*
398  * Equal	:= ZC
399  * Less than	:= N
400  * Greater than	:= C
401  * Unordered	:= CV
402  */
403 static u32 vfp_compare(int sd, int signal_on_qnan, s32 m, u32 fpscr)
404 {
405 	s32 d;
406 	u32 ret = 0;
407 
408 	d = vfp_get_float(sd);
409 	if (vfp_single_packed_exponent(m) == 255 && vfp_single_packed_mantissa(m)) {
410 		ret |= FPSCR_C | FPSCR_V;
411 		if (signal_on_qnan || !(vfp_single_packed_mantissa(m) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
412 			/*
413 			 * Signalling NaN, or signalling on quiet NaN
414 			 */
415 			ret |= FPSCR_IOC;
416 	}
417 
418 	if (vfp_single_packed_exponent(d) == 255 && vfp_single_packed_mantissa(d)) {
419 		ret |= FPSCR_C | FPSCR_V;
420 		if (signal_on_qnan || !(vfp_single_packed_mantissa(d) & (1 << (VFP_SINGLE_MANTISSA_BITS - 1))))
421 			/*
422 			 * Signalling NaN, or signalling on quiet NaN
423 			 */
424 			ret |= FPSCR_IOC;
425 	}
426 
427 	if (ret == 0) {
428 		if (d == m || vfp_single_packed_abs(d | m) == 0) {
429 			/*
430 			 * equal
431 			 */
432 			ret |= FPSCR_Z | FPSCR_C;
433 		} else if (vfp_single_packed_sign(d ^ m)) {
434 			/*
435 			 * different signs
436 			 */
437 			if (vfp_single_packed_sign(d))
438 				/*
439 				 * d is negative, so d < m
440 				 */
441 				ret |= FPSCR_N;
442 			else
443 				/*
444 				 * d is positive, so d > m
445 				 */
446 				ret |= FPSCR_C;
447 		} else if ((vfp_single_packed_sign(d) != 0) ^ (d < m)) {
448 			/*
449 			 * d < m
450 			 */
451 			ret |= FPSCR_N;
452 		} else if ((vfp_single_packed_sign(d) != 0) ^ (d > m)) {
453 			/*
454 			 * d > m
455 			 */
456 			ret |= FPSCR_C;
457 		}
458 	}
459 	return ret;
460 }
461 
462 static u32 vfp_single_fcmp(int sd, int unused, s32 m, u32 fpscr)
463 {
464 	return vfp_compare(sd, 0, m, fpscr);
465 }
466 
467 static u32 vfp_single_fcmpe(int sd, int unused, s32 m, u32 fpscr)
468 {
469 	return vfp_compare(sd, 1, m, fpscr);
470 }
471 
472 static u32 vfp_single_fcmpz(int sd, int unused, s32 m, u32 fpscr)
473 {
474 	return vfp_compare(sd, 0, 0, fpscr);
475 }
476 
477 static u32 vfp_single_fcmpez(int sd, int unused, s32 m, u32 fpscr)
478 {
479 	return vfp_compare(sd, 1, 0, fpscr);
480 }
481 
482 static u32 vfp_single_fcvtd(int dd, int unused, s32 m, u32 fpscr)
483 {
484 	struct vfp_single vsm;
485 	struct vfp_double vdd;
486 	int tm;
487 	u32 exceptions = 0;
488 
489 	vfp_single_unpack(&vsm, m);
490 
491 	tm = vfp_single_type(&vsm);
492 
493 	/*
494 	 * If we have a signalling NaN, signal invalid operation.
495 	 */
496 	if (tm == VFP_SNAN)
497 		exceptions = FPSCR_IOC;
498 
499 	if (tm & VFP_DENORMAL)
500 		vfp_single_normalise_denormal(&vsm);
501 
502 	vdd.sign = vsm.sign;
503 	vdd.significand = (u64)vsm.significand << 32;
504 
505 	/*
506 	 * If we have an infinity or NaN, the exponent must be 2047.
507 	 */
508 	if (tm & (VFP_INFINITY|VFP_NAN)) {
509 		vdd.exponent = 2047;
510 		if (tm == VFP_QNAN)
511 			vdd.significand |= VFP_DOUBLE_SIGNIFICAND_QNAN;
512 		goto pack_nan;
513 	} else if (tm & VFP_ZERO)
514 		vdd.exponent = 0;
515 	else
516 		vdd.exponent = vsm.exponent + (1023 - 127);
517 
518 	return vfp_double_normaliseround(dd, &vdd, fpscr, exceptions, "fcvtd");
519 
520  pack_nan:
521 	vfp_put_double(vfp_double_pack(&vdd), dd);
522 	return exceptions;
523 }
524 
525 static u32 vfp_single_fuito(int sd, int unused, s32 m, u32 fpscr)
526 {
527 	struct vfp_single vs;
528 
529 	vs.sign = 0;
530 	vs.exponent = 127 + 31 - 1;
531 	vs.significand = (u32)m;
532 
533 	return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fuito");
534 }
535 
536 static u32 vfp_single_fsito(int sd, int unused, s32 m, u32 fpscr)
537 {
538 	struct vfp_single vs;
539 
540 	vs.sign = (m & 0x80000000) >> 16;
541 	vs.exponent = 127 + 31 - 1;
542 	vs.significand = vs.sign ? -m : m;
543 
544 	return vfp_single_normaliseround(sd, &vs, fpscr, 0, "fsito");
545 }
546 
547 static u32 vfp_single_ftoui(int sd, int unused, s32 m, u32 fpscr)
548 {
549 	struct vfp_single vsm;
550 	u32 d, exceptions = 0;
551 	int rmode = fpscr & FPSCR_RMODE_MASK;
552 	int tm;
553 
554 	vfp_single_unpack(&vsm, m);
555 	vfp_single_dump("VSM", &vsm);
556 
557 	/*
558 	 * Do we have a denormalised number?
559 	 */
560 	tm = vfp_single_type(&vsm);
561 	if (tm & VFP_DENORMAL)
562 		exceptions |= FPSCR_IDC;
563 
564 	if (tm & VFP_NAN)
565 		vsm.sign = 0;
566 
567 	if (vsm.exponent >= 127 + 32) {
568 		d = vsm.sign ? 0 : 0xffffffff;
569 		exceptions = FPSCR_IOC;
570 	} else if (vsm.exponent >= 127 - 1) {
571 		int shift = 127 + 31 - vsm.exponent;
572 		u32 rem, incr = 0;
573 
574 		/*
575 		 * 2^0 <= m < 2^32-2^8
576 		 */
577 		d = (vsm.significand << 1) >> shift;
578 		rem = vsm.significand << (33 - shift);
579 
580 		if (rmode == FPSCR_ROUND_NEAREST) {
581 			incr = 0x80000000;
582 			if ((d & 1) == 0)
583 				incr -= 1;
584 		} else if (rmode == FPSCR_ROUND_TOZERO) {
585 			incr = 0;
586 		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
587 			incr = ~0;
588 		}
589 
590 		if ((rem + incr) < rem) {
591 			if (d < 0xffffffff)
592 				d += 1;
593 			else
594 				exceptions |= FPSCR_IOC;
595 		}
596 
597 		if (d && vsm.sign) {
598 			d = 0;
599 			exceptions |= FPSCR_IOC;
600 		} else if (rem)
601 			exceptions |= FPSCR_IXC;
602 	} else {
603 		d = 0;
604 		if (vsm.exponent | vsm.significand) {
605 			exceptions |= FPSCR_IXC;
606 			if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
607 				d = 1;
608 			else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign) {
609 				d = 0;
610 				exceptions |= FPSCR_IOC;
611 			}
612 		}
613 	}
614 
615 	pr_debug("VFP: ftoui: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
616 
617 	vfp_put_float(d, sd);
618 
619 	return exceptions;
620 }
621 
622 static u32 vfp_single_ftouiz(int sd, int unused, s32 m, u32 fpscr)
623 {
624 	return vfp_single_ftoui(sd, unused, m, FPSCR_ROUND_TOZERO);
625 }
626 
627 static u32 vfp_single_ftosi(int sd, int unused, s32 m, u32 fpscr)
628 {
629 	struct vfp_single vsm;
630 	u32 d, exceptions = 0;
631 	int rmode = fpscr & FPSCR_RMODE_MASK;
632 	int tm;
633 
634 	vfp_single_unpack(&vsm, m);
635 	vfp_single_dump("VSM", &vsm);
636 
637 	/*
638 	 * Do we have a denormalised number?
639 	 */
640 	tm = vfp_single_type(&vsm);
641 	if (vfp_single_type(&vsm) & VFP_DENORMAL)
642 		exceptions |= FPSCR_IDC;
643 
644 	if (tm & VFP_NAN) {
645 		d = 0;
646 		exceptions |= FPSCR_IOC;
647 	} else if (vsm.exponent >= 127 + 32) {
648 		/*
649 		 * m >= 2^31-2^7: invalid
650 		 */
651 		d = 0x7fffffff;
652 		if (vsm.sign)
653 			d = ~d;
654 		exceptions |= FPSCR_IOC;
655 	} else if (vsm.exponent >= 127 - 1) {
656 		int shift = 127 + 31 - vsm.exponent;
657 		u32 rem, incr = 0;
658 
659 		/* 2^0 <= m <= 2^31-2^7 */
660 		d = (vsm.significand << 1) >> shift;
661 		rem = vsm.significand << (33 - shift);
662 
663 		if (rmode == FPSCR_ROUND_NEAREST) {
664 			incr = 0x80000000;
665 			if ((d & 1) == 0)
666 				incr -= 1;
667 		} else if (rmode == FPSCR_ROUND_TOZERO) {
668 			incr = 0;
669 		} else if ((rmode == FPSCR_ROUND_PLUSINF) ^ (vsm.sign != 0)) {
670 			incr = ~0;
671 		}
672 
673 		if ((rem + incr) < rem && d < 0xffffffff)
674 			d += 1;
675 		if (d > 0x7fffffff + (vsm.sign != 0)) {
676 			d = 0x7fffffff + (vsm.sign != 0);
677 			exceptions |= FPSCR_IOC;
678 		} else if (rem)
679 			exceptions |= FPSCR_IXC;
680 
681 		if (vsm.sign)
682 			d = -d;
683 	} else {
684 		d = 0;
685 		if (vsm.exponent | vsm.significand) {
686 			exceptions |= FPSCR_IXC;
687 			if (rmode == FPSCR_ROUND_PLUSINF && vsm.sign == 0)
688 				d = 1;
689 			else if (rmode == FPSCR_ROUND_MINUSINF && vsm.sign)
690 				d = -1;
691 		}
692 	}
693 
694 	pr_debug("VFP: ftosi: d(s%d)=%08x exceptions=%08x\n", sd, d, exceptions);
695 
696 	vfp_put_float((s32)d, sd);
697 
698 	return exceptions;
699 }
700 
701 static u32 vfp_single_ftosiz(int sd, int unused, s32 m, u32 fpscr)
702 {
703 	return vfp_single_ftosi(sd, unused, m, FPSCR_ROUND_TOZERO);
704 }
705 
706 static struct op fops_ext[32] = {
707 	[FEXT_TO_IDX(FEXT_FCPY)]	= { vfp_single_fcpy,   0 },
708 	[FEXT_TO_IDX(FEXT_FABS)]	= { vfp_single_fabs,   0 },
709 	[FEXT_TO_IDX(FEXT_FNEG)]	= { vfp_single_fneg,   0 },
710 	[FEXT_TO_IDX(FEXT_FSQRT)]	= { vfp_single_fsqrt,  0 },
711 	[FEXT_TO_IDX(FEXT_FCMP)]	= { vfp_single_fcmp,   OP_SCALAR },
712 	[FEXT_TO_IDX(FEXT_FCMPE)]	= { vfp_single_fcmpe,  OP_SCALAR },
713 	[FEXT_TO_IDX(FEXT_FCMPZ)]	= { vfp_single_fcmpz,  OP_SCALAR },
714 	[FEXT_TO_IDX(FEXT_FCMPEZ)]	= { vfp_single_fcmpez, OP_SCALAR },
715 	[FEXT_TO_IDX(FEXT_FCVT)]	= { vfp_single_fcvtd,  OP_SCALAR|OP_DD },
716 	[FEXT_TO_IDX(FEXT_FUITO)]	= { vfp_single_fuito,  OP_SCALAR },
717 	[FEXT_TO_IDX(FEXT_FSITO)]	= { vfp_single_fsito,  OP_SCALAR },
718 	[FEXT_TO_IDX(FEXT_FTOUI)]	= { vfp_single_ftoui,  OP_SCALAR },
719 	[FEXT_TO_IDX(FEXT_FTOUIZ)]	= { vfp_single_ftouiz, OP_SCALAR },
720 	[FEXT_TO_IDX(FEXT_FTOSI)]	= { vfp_single_ftosi,  OP_SCALAR },
721 	[FEXT_TO_IDX(FEXT_FTOSIZ)]	= { vfp_single_ftosiz, OP_SCALAR },
722 };
723 
724 
725 
726 
727 
728 static u32
729 vfp_single_fadd_nonnumber(struct vfp_single *vsd, struct vfp_single *vsn,
730 			  struct vfp_single *vsm, u32 fpscr)
731 {
732 	struct vfp_single *vsp;
733 	u32 exceptions = 0;
734 	int tn, tm;
735 
736 	tn = vfp_single_type(vsn);
737 	tm = vfp_single_type(vsm);
738 
739 	if (tn & tm & VFP_INFINITY) {
740 		/*
741 		 * Two infinities.  Are they different signs?
742 		 */
743 		if (vsn->sign ^ vsm->sign) {
744 			/*
745 			 * different signs -> invalid
746 			 */
747 			exceptions = FPSCR_IOC;
748 			vsp = &vfp_single_default_qnan;
749 		} else {
750 			/*
751 			 * same signs -> valid
752 			 */
753 			vsp = vsn;
754 		}
755 	} else if (tn & VFP_INFINITY && tm & VFP_NUMBER) {
756 		/*
757 		 * One infinity and one number -> infinity
758 		 */
759 		vsp = vsn;
760 	} else {
761 		/*
762 		 * 'n' is a NaN of some type
763 		 */
764 		return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
765 	}
766 	*vsd = *vsp;
767 	return exceptions;
768 }
769 
770 static u32
771 vfp_single_add(struct vfp_single *vsd, struct vfp_single *vsn,
772 	       struct vfp_single *vsm, u32 fpscr)
773 {
774 	u32 exp_diff, m_sig;
775 
776 	if (vsn->significand & 0x80000000 ||
777 	    vsm->significand & 0x80000000) {
778 		pr_info("VFP: bad FP values in %s\n", __func__);
779 		vfp_single_dump("VSN", vsn);
780 		vfp_single_dump("VSM", vsm);
781 	}
782 
783 	/*
784 	 * Ensure that 'n' is the largest magnitude number.  Note that
785 	 * if 'n' and 'm' have equal exponents, we do not swap them.
786 	 * This ensures that NaN propagation works correctly.
787 	 */
788 	if (vsn->exponent < vsm->exponent) {
789 		struct vfp_single *t = vsn;
790 		vsn = vsm;
791 		vsm = t;
792 	}
793 
794 	/*
795 	 * Is 'n' an infinity or a NaN?  Note that 'm' may be a number,
796 	 * infinity or a NaN here.
797 	 */
798 	if (vsn->exponent == 255)
799 		return vfp_single_fadd_nonnumber(vsd, vsn, vsm, fpscr);
800 
801 	/*
802 	 * We have two proper numbers, where 'vsn' is the larger magnitude.
803 	 *
804 	 * Copy 'n' to 'd' before doing the arithmetic.
805 	 */
806 	*vsd = *vsn;
807 
808 	/*
809 	 * Align both numbers.
810 	 */
811 	exp_diff = vsn->exponent - vsm->exponent;
812 	m_sig = vfp_shiftright32jamming(vsm->significand, exp_diff);
813 
814 	/*
815 	 * If the signs are different, we are really subtracting.
816 	 */
817 	if (vsn->sign ^ vsm->sign) {
818 		m_sig = vsn->significand - m_sig;
819 		if ((s32)m_sig < 0) {
820 			vsd->sign = vfp_sign_negate(vsd->sign);
821 			m_sig = -m_sig;
822 		} else if (m_sig == 0) {
823 			vsd->sign = (fpscr & FPSCR_RMODE_MASK) ==
824 				      FPSCR_ROUND_MINUSINF ? 0x8000 : 0;
825 		}
826 	} else {
827 		m_sig = vsn->significand + m_sig;
828 	}
829 	vsd->significand = m_sig;
830 
831 	return 0;
832 }
833 
834 static u32
835 vfp_single_multiply(struct vfp_single *vsd, struct vfp_single *vsn, struct vfp_single *vsm, u32 fpscr)
836 {
837 	vfp_single_dump("VSN", vsn);
838 	vfp_single_dump("VSM", vsm);
839 
840 	/*
841 	 * Ensure that 'n' is the largest magnitude number.  Note that
842 	 * if 'n' and 'm' have equal exponents, we do not swap them.
843 	 * This ensures that NaN propagation works correctly.
844 	 */
845 	if (vsn->exponent < vsm->exponent) {
846 		struct vfp_single *t = vsn;
847 		vsn = vsm;
848 		vsm = t;
849 		pr_debug("VFP: swapping M <-> N\n");
850 	}
851 
852 	vsd->sign = vsn->sign ^ vsm->sign;
853 
854 	/*
855 	 * If 'n' is an infinity or NaN, handle it.  'm' may be anything.
856 	 */
857 	if (vsn->exponent == 255) {
858 		if (vsn->significand || (vsm->exponent == 255 && vsm->significand))
859 			return vfp_propagate_nan(vsd, vsn, vsm, fpscr);
860 		if ((vsm->exponent | vsm->significand) == 0) {
861 			*vsd = vfp_single_default_qnan;
862 			return FPSCR_IOC;
863 		}
864 		vsd->exponent = vsn->exponent;
865 		vsd->significand = 0;
866 		return 0;
867 	}
868 
869 	/*
870 	 * If 'm' is zero, the result is always zero.  In this case,
871 	 * 'n' may be zero or a number, but it doesn't matter which.
872 	 */
873 	if ((vsm->exponent | vsm->significand) == 0) {
874 		vsd->exponent = 0;
875 		vsd->significand = 0;
876 		return 0;
877 	}
878 
879 	/*
880 	 * We add 2 to the destination exponent for the same reason as
881 	 * the addition case - though this time we have +1 from each
882 	 * input operand.
883 	 */
884 	vsd->exponent = vsn->exponent + vsm->exponent - 127 + 2;
885 	vsd->significand = vfp_hi64to32jamming((u64)vsn->significand * vsm->significand);
886 
887 	vfp_single_dump("VSD", vsd);
888 	return 0;
889 }
890 
891 #define NEG_MULTIPLY	(1 << 0)
892 #define NEG_SUBTRACT	(1 << 1)
893 
894 static u32
895 vfp_single_multiply_accumulate(int sd, int sn, s32 m, u32 fpscr, u32 negate, char *func)
896 {
897 	struct vfp_single vsd, vsp, vsn, vsm;
898 	u32 exceptions;
899 	s32 v;
900 
901 	v = vfp_get_float(sn);
902 	pr_debug("VFP: s%u = %08x\n", sn, v);
903 	vfp_single_unpack(&vsn, v);
904 	if (vsn.exponent == 0 && vsn.significand)
905 		vfp_single_normalise_denormal(&vsn);
906 
907 	vfp_single_unpack(&vsm, m);
908 	if (vsm.exponent == 0 && vsm.significand)
909 		vfp_single_normalise_denormal(&vsm);
910 
911 	exceptions = vfp_single_multiply(&vsp, &vsn, &vsm, fpscr);
912 	if (negate & NEG_MULTIPLY)
913 		vsp.sign = vfp_sign_negate(vsp.sign);
914 
915 	v = vfp_get_float(sd);
916 	pr_debug("VFP: s%u = %08x\n", sd, v);
917 	vfp_single_unpack(&vsn, v);
918 	if (vsn.exponent == 0 && vsn.significand)
919 		vfp_single_normalise_denormal(&vsn);
920 	if (negate & NEG_SUBTRACT)
921 		vsn.sign = vfp_sign_negate(vsn.sign);
922 
923 	exceptions |= vfp_single_add(&vsd, &vsn, &vsp, fpscr);
924 
925 	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, func);
926 }
927 
928 /*
929  * Standard operations
930  */
931 
932 /*
933  * sd = sd + (sn * sm)
934  */
935 static u32 vfp_single_fmac(int sd, int sn, s32 m, u32 fpscr)
936 {
937 	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, 0, "fmac");
938 }
939 
940 /*
941  * sd = sd - (sn * sm)
942  */
943 static u32 vfp_single_fnmac(int sd, int sn, s32 m, u32 fpscr)
944 {
945 	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_MULTIPLY, "fnmac");
946 }
947 
948 /*
949  * sd = -sd + (sn * sm)
950  */
951 static u32 vfp_single_fmsc(int sd, int sn, s32 m, u32 fpscr)
952 {
953 	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT, "fmsc");
954 }
955 
956 /*
957  * sd = -sd - (sn * sm)
958  */
959 static u32 vfp_single_fnmsc(int sd, int sn, s32 m, u32 fpscr)
960 {
961 	return vfp_single_multiply_accumulate(sd, sn, m, fpscr, NEG_SUBTRACT | NEG_MULTIPLY, "fnmsc");
962 }
963 
964 /*
965  * sd = sn * sm
966  */
967 static u32 vfp_single_fmul(int sd, int sn, s32 m, u32 fpscr)
968 {
969 	struct vfp_single vsd, vsn, vsm;
970 	u32 exceptions;
971 	s32 n = vfp_get_float(sn);
972 
973 	pr_debug("VFP: s%u = %08x\n", sn, n);
974 
975 	vfp_single_unpack(&vsn, n);
976 	if (vsn.exponent == 0 && vsn.significand)
977 		vfp_single_normalise_denormal(&vsn);
978 
979 	vfp_single_unpack(&vsm, m);
980 	if (vsm.exponent == 0 && vsm.significand)
981 		vfp_single_normalise_denormal(&vsm);
982 
983 	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
984 	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fmul");
985 }
986 
987 /*
988  * sd = -(sn * sm)
989  */
990 static u32 vfp_single_fnmul(int sd, int sn, s32 m, u32 fpscr)
991 {
992 	struct vfp_single vsd, vsn, vsm;
993 	u32 exceptions;
994 	s32 n = vfp_get_float(sn);
995 
996 	pr_debug("VFP: s%u = %08x\n", sn, n);
997 
998 	vfp_single_unpack(&vsn, n);
999 	if (vsn.exponent == 0 && vsn.significand)
1000 		vfp_single_normalise_denormal(&vsn);
1001 
1002 	vfp_single_unpack(&vsm, m);
1003 	if (vsm.exponent == 0 && vsm.significand)
1004 		vfp_single_normalise_denormal(&vsm);
1005 
1006 	exceptions = vfp_single_multiply(&vsd, &vsn, &vsm, fpscr);
1007 	vsd.sign = vfp_sign_negate(vsd.sign);
1008 	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fnmul");
1009 }
1010 
1011 /*
1012  * sd = sn + sm
1013  */
1014 static u32 vfp_single_fadd(int sd, int sn, s32 m, u32 fpscr)
1015 {
1016 	struct vfp_single vsd, vsn, vsm;
1017 	u32 exceptions;
1018 	s32 n = vfp_get_float(sn);
1019 
1020 	pr_debug("VFP: s%u = %08x\n", sn, n);
1021 
1022 	/*
1023 	 * Unpack and normalise denormals.
1024 	 */
1025 	vfp_single_unpack(&vsn, n);
1026 	if (vsn.exponent == 0 && vsn.significand)
1027 		vfp_single_normalise_denormal(&vsn);
1028 
1029 	vfp_single_unpack(&vsm, m);
1030 	if (vsm.exponent == 0 && vsm.significand)
1031 		vfp_single_normalise_denormal(&vsm);
1032 
1033 	exceptions = vfp_single_add(&vsd, &vsn, &vsm, fpscr);
1034 
1035 	return vfp_single_normaliseround(sd, &vsd, fpscr, exceptions, "fadd");
1036 }
1037 
1038 /*
1039  * sd = sn - sm
1040  */
1041 static u32 vfp_single_fsub(int sd, int sn, s32 m, u32 fpscr)
1042 {
1043 	/*
1044 	 * Subtraction is addition with one sign inverted.
1045 	 */
1046 	return vfp_single_fadd(sd, sn, vfp_single_packed_negate(m), fpscr);
1047 }
1048 
1049 /*
1050  * sd = sn / sm
1051  */
1052 static u32 vfp_single_fdiv(int sd, int sn, s32 m, u32 fpscr)
1053 {
1054 	struct vfp_single vsd, vsn, vsm;
1055 	u32 exceptions = 0;
1056 	s32 n = vfp_get_float(sn);
1057 	int tm, tn;
1058 
1059 	pr_debug("VFP: s%u = %08x\n", sn, n);
1060 
1061 	vfp_single_unpack(&vsn, n);
1062 	vfp_single_unpack(&vsm, m);
1063 
1064 	vsd.sign = vsn.sign ^ vsm.sign;
1065 
1066 	tn = vfp_single_type(&vsn);
1067 	tm = vfp_single_type(&vsm);
1068 
1069 	/*
1070 	 * Is n a NAN?
1071 	 */
1072 	if (tn & VFP_NAN)
1073 		goto vsn_nan;
1074 
1075 	/*
1076 	 * Is m a NAN?
1077 	 */
1078 	if (tm & VFP_NAN)
1079 		goto vsm_nan;
1080 
1081 	/*
1082 	 * If n and m are infinity, the result is invalid
1083 	 * If n and m are zero, the result is invalid
1084 	 */
1085 	if (tm & tn & (VFP_INFINITY|VFP_ZERO))
1086 		goto invalid;
1087 
1088 	/*
1089 	 * If n is infinity, the result is infinity
1090 	 */
1091 	if (tn & VFP_INFINITY)
1092 		goto infinity;
1093 
1094 	/*
1095 	 * If m is zero, raise div0 exception
1096 	 */
1097 	if (tm & VFP_ZERO)
1098 		goto divzero;
1099 
1100 	/*
1101 	 * If m is infinity, or n is zero, the result is zero
1102 	 */
1103 	if (tm & VFP_INFINITY || tn & VFP_ZERO)
1104 		goto zero;
1105 
1106 	if (tn & VFP_DENORMAL)
1107 		vfp_single_normalise_denormal(&vsn);
1108 	if (tm & VFP_DENORMAL)
1109 		vfp_single_normalise_denormal(&vsm);
1110 
1111 	/*
1112 	 * Ok, we have two numbers, we can perform division.
1113 	 */
1114 	vsd.exponent = vsn.exponent - vsm.exponent + 127 - 1;
1115 	vsm.significand <<= 1;
1116 	if (vsm.significand <= (2 * vsn.significand)) {
1117 		vsn.significand >>= 1;
1118 		vsd.exponent++;
1119 	}
1120 	{
1121 		u64 significand = (u64)vsn.significand << 32;
1122 		do_div(significand, vsm.significand);
1123 		vsd.significand = significand;
1124 	}
1125 	if ((vsd.significand & 0x3f) == 0)
1126 		vsd.significand |= ((u64)vsm.significand * vsd.significand != (u64)vsn.significand << 32);
1127 
1128 	return vfp_single_normaliseround(sd, &vsd, fpscr, 0, "fdiv");
1129 
1130  vsn_nan:
1131 	exceptions = vfp_propagate_nan(&vsd, &vsn, &vsm, fpscr);
1132  pack:
1133 	vfp_put_float(vfp_single_pack(&vsd), sd);
1134 	return exceptions;
1135 
1136  vsm_nan:
1137 	exceptions = vfp_propagate_nan(&vsd, &vsm, &vsn, fpscr);
1138 	goto pack;
1139 
1140  zero:
1141 	vsd.exponent = 0;
1142 	vsd.significand = 0;
1143 	goto pack;
1144 
1145  divzero:
1146 	exceptions = FPSCR_DZC;
1147  infinity:
1148 	vsd.exponent = 255;
1149 	vsd.significand = 0;
1150 	goto pack;
1151 
1152  invalid:
1153 	vfp_put_float(vfp_single_pack(&vfp_single_default_qnan), sd);
1154 	return FPSCR_IOC;
1155 }
1156 
1157 static struct op fops[16] = {
1158 	[FOP_TO_IDX(FOP_FMAC)]	= { vfp_single_fmac,  0 },
1159 	[FOP_TO_IDX(FOP_FNMAC)]	= { vfp_single_fnmac, 0 },
1160 	[FOP_TO_IDX(FOP_FMSC)]	= { vfp_single_fmsc,  0 },
1161 	[FOP_TO_IDX(FOP_FNMSC)]	= { vfp_single_fnmsc, 0 },
1162 	[FOP_TO_IDX(FOP_FMUL)]	= { vfp_single_fmul,  0 },
1163 	[FOP_TO_IDX(FOP_FNMUL)]	= { vfp_single_fnmul, 0 },
1164 	[FOP_TO_IDX(FOP_FADD)]	= { vfp_single_fadd,  0 },
1165 	[FOP_TO_IDX(FOP_FSUB)]	= { vfp_single_fsub,  0 },
1166 	[FOP_TO_IDX(FOP_FDIV)]	= { vfp_single_fdiv,  0 },
1167 };
1168 
1169 #define FREG_BANK(x)	((x) & 0x18)
1170 #define FREG_IDX(x)	((x) & 7)
1171 
1172 u32 vfp_single_cpdo(u32 inst, u32 fpscr)
1173 {
1174 	u32 op = inst & FOP_MASK;
1175 	u32 exceptions = 0;
1176 	unsigned int dest;
1177 	unsigned int sn = vfp_get_sn(inst);
1178 	unsigned int sm = vfp_get_sm(inst);
1179 	unsigned int vecitr, veclen, vecstride;
1180 	struct op *fop;
1181 
1182 	vecstride = 1 + ((fpscr & FPSCR_STRIDE_MASK) == FPSCR_STRIDE_MASK);
1183 
1184 	fop = (op == FOP_EXT) ? &fops_ext[FEXT_TO_IDX(inst)] : &fops[FOP_TO_IDX(op)];
1185 
1186 	/*
1187 	 * fcvtsd takes a dN register number as destination, not sN.
1188 	 * Technically, if bit 0 of dd is set, this is an invalid
1189 	 * instruction.  However, we ignore this for efficiency.
1190 	 * It also only operates on scalars.
1191 	 */
1192 	if (fop->flags & OP_DD)
1193 		dest = vfp_get_dd(inst);
1194 	else
1195 		dest = vfp_get_sd(inst);
1196 
1197 	/*
1198 	 * If destination bank is zero, vector length is always '1'.
1199 	 * ARM DDI0100F C5.1.3, C5.3.2.
1200 	 */
1201 	if ((fop->flags & OP_SCALAR) || FREG_BANK(dest) == 0)
1202 		veclen = 0;
1203 	else
1204 		veclen = fpscr & FPSCR_LENGTH_MASK;
1205 
1206 	pr_debug("VFP: vecstride=%u veclen=%u\n", vecstride,
1207 		 (veclen >> FPSCR_LENGTH_BIT) + 1);
1208 
1209 	if (!fop->fn)
1210 		goto invalid;
1211 
1212 	for (vecitr = 0; vecitr <= veclen; vecitr += 1 << FPSCR_LENGTH_BIT) {
1213 		s32 m = vfp_get_float(sm);
1214 		u32 except;
1215 		char type;
1216 
1217 		type = fop->flags & OP_DD ? 'd' : 's';
1218 		if (op == FOP_EXT)
1219 			pr_debug("VFP: itr%d (%c%u) = op[%u] (s%u=%08x)\n",
1220 				 vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
1221 				 sm, m);
1222 		else
1223 			pr_debug("VFP: itr%d (%c%u) = (s%u) op[%u] (s%u=%08x)\n",
1224 				 vecitr >> FPSCR_LENGTH_BIT, type, dest, sn,
1225 				 FOP_TO_IDX(op), sm, m);
1226 
1227 		except = fop->fn(dest, sn, m, fpscr);
1228 		pr_debug("VFP: itr%d: exceptions=%08x\n",
1229 			 vecitr >> FPSCR_LENGTH_BIT, except);
1230 
1231 		exceptions |= except;
1232 
1233 		/*
1234 		 * CHECK: It appears to be undefined whether we stop when
1235 		 * we encounter an exception.  We continue.
1236 		 */
1237 		dest = FREG_BANK(dest) + ((FREG_IDX(dest) + vecstride) & 7);
1238 		sn = FREG_BANK(sn) + ((FREG_IDX(sn) + vecstride) & 7);
1239 		if (FREG_BANK(sm) != 0)
1240 			sm = FREG_BANK(sm) + ((FREG_IDX(sm) + vecstride) & 7);
1241 	}
1242 	return exceptions;
1243 
1244  invalid:
1245 	return (u32)-1;
1246 }
1247