xref: /openbmc/linux/arch/arm/vfp/vfpmodule.c (revision ffcdf473)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/vfp/vfpmodule.c
4  *
5  *  Copyright (C) 2004 ARM Limited.
6  *  Written by Deep Blue Solutions Limited.
7  */
8 #include <linux/types.h>
9 #include <linux/cpu.h>
10 #include <linux/cpu_pm.h>
11 #include <linux/hardirq.h>
12 #include <linux/kernel.h>
13 #include <linux/notifier.h>
14 #include <linux/signal.h>
15 #include <linux/sched/signal.h>
16 #include <linux/smp.h>
17 #include <linux/init.h>
18 #include <linux/uaccess.h>
19 #include <linux/user.h>
20 #include <linux/export.h>
21 
22 #include <asm/cp15.h>
23 #include <asm/cputype.h>
24 #include <asm/system_info.h>
25 #include <asm/thread_notify.h>
26 #include <asm/traps.h>
27 #include <asm/vfp.h>
28 
29 #include "vfpinstr.h"
30 #include "vfp.h"
31 
32 /*
33  * Our undef handlers (in entry.S)
34  */
35 asmlinkage void vfp_support_entry(u32, void *, u32, u32);
36 
37 static bool have_vfp __ro_after_init;
38 
39 /*
40  * Dual-use variable.
41  * Used in startup: set to non-zero if VFP checks fail
42  * After startup, holds VFP architecture
43  */
44 static unsigned int __initdata VFP_arch;
45 
46 /*
47  * The pointer to the vfpstate structure of the thread which currently
48  * owns the context held in the VFP hardware, or NULL if the hardware
49  * context is invalid.
50  *
51  * For UP, this is sufficient to tell which thread owns the VFP context.
52  * However, for SMP, we also need to check the CPU number stored in the
53  * saved state too to catch migrations.
54  */
55 union vfp_state *vfp_current_hw_state[NR_CPUS];
56 
57 /*
58  * Is 'thread's most up to date state stored in this CPUs hardware?
59  * Must be called from non-preemptible context.
60  */
61 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread)
62 {
63 #ifdef CONFIG_SMP
64 	if (thread->vfpstate.hard.cpu != cpu)
65 		return false;
66 #endif
67 	return vfp_current_hw_state[cpu] == &thread->vfpstate;
68 }
69 
70 /*
71  * Force a reload of the VFP context from the thread structure.  We do
72  * this by ensuring that access to the VFP hardware is disabled, and
73  * clear vfp_current_hw_state.  Must be called from non-preemptible context.
74  */
75 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread)
76 {
77 	if (vfp_state_in_hw(cpu, thread)) {
78 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
79 		vfp_current_hw_state[cpu] = NULL;
80 	}
81 #ifdef CONFIG_SMP
82 	thread->vfpstate.hard.cpu = NR_CPUS;
83 #endif
84 }
85 
86 /*
87  * Per-thread VFP initialization.
88  */
89 static void vfp_thread_flush(struct thread_info *thread)
90 {
91 	union vfp_state *vfp = &thread->vfpstate;
92 	unsigned int cpu;
93 
94 	/*
95 	 * Disable VFP to ensure we initialize it first.  We must ensure
96 	 * that the modification of vfp_current_hw_state[] and hardware
97 	 * disable are done for the same CPU and without preemption.
98 	 *
99 	 * Do this first to ensure that preemption won't overwrite our
100 	 * state saving should access to the VFP be enabled at this point.
101 	 */
102 	cpu = get_cpu();
103 	if (vfp_current_hw_state[cpu] == vfp)
104 		vfp_current_hw_state[cpu] = NULL;
105 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
106 	put_cpu();
107 
108 	memset(vfp, 0, sizeof(union vfp_state));
109 
110 	vfp->hard.fpexc = FPEXC_EN;
111 	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
112 #ifdef CONFIG_SMP
113 	vfp->hard.cpu = NR_CPUS;
114 #endif
115 }
116 
117 static void vfp_thread_exit(struct thread_info *thread)
118 {
119 	/* release case: Per-thread VFP cleanup. */
120 	union vfp_state *vfp = &thread->vfpstate;
121 	unsigned int cpu = get_cpu();
122 
123 	if (vfp_current_hw_state[cpu] == vfp)
124 		vfp_current_hw_state[cpu] = NULL;
125 	put_cpu();
126 }
127 
128 static void vfp_thread_copy(struct thread_info *thread)
129 {
130 	struct thread_info *parent = current_thread_info();
131 
132 	vfp_sync_hwstate(parent);
133 	thread->vfpstate = parent->vfpstate;
134 #ifdef CONFIG_SMP
135 	thread->vfpstate.hard.cpu = NR_CPUS;
136 #endif
137 }
138 
139 /*
140  * When this function is called with the following 'cmd's, the following
141  * is true while this function is being run:
142  *  THREAD_NOFTIFY_SWTICH:
143  *   - the previously running thread will not be scheduled onto another CPU.
144  *   - the next thread to be run (v) will not be running on another CPU.
145  *   - thread->cpu is the local CPU number
146  *   - not preemptible as we're called in the middle of a thread switch
147  *  THREAD_NOTIFY_FLUSH:
148  *   - the thread (v) will be running on the local CPU, so
149  *	v === current_thread_info()
150  *   - thread->cpu is the local CPU number at the time it is accessed,
151  *	but may change at any time.
152  *   - we could be preempted if tree preempt rcu is enabled, so
153  *	it is unsafe to use thread->cpu.
154  *  THREAD_NOTIFY_EXIT
155  *   - we could be preempted if tree preempt rcu is enabled, so
156  *	it is unsafe to use thread->cpu.
157  */
158 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
159 {
160 	struct thread_info *thread = v;
161 	u32 fpexc;
162 #ifdef CONFIG_SMP
163 	unsigned int cpu;
164 #endif
165 
166 	switch (cmd) {
167 	case THREAD_NOTIFY_SWITCH:
168 		fpexc = fmrx(FPEXC);
169 
170 #ifdef CONFIG_SMP
171 		cpu = thread->cpu;
172 
173 		/*
174 		 * On SMP, if VFP is enabled, save the old state in
175 		 * case the thread migrates to a different CPU. The
176 		 * restoring is done lazily.
177 		 */
178 		if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu])
179 			vfp_save_state(vfp_current_hw_state[cpu], fpexc);
180 #endif
181 
182 		/*
183 		 * Always disable VFP so we can lazily save/restore the
184 		 * old state.
185 		 */
186 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
187 		break;
188 
189 	case THREAD_NOTIFY_FLUSH:
190 		vfp_thread_flush(thread);
191 		break;
192 
193 	case THREAD_NOTIFY_EXIT:
194 		vfp_thread_exit(thread);
195 		break;
196 
197 	case THREAD_NOTIFY_COPY:
198 		vfp_thread_copy(thread);
199 		break;
200 	}
201 
202 	return NOTIFY_DONE;
203 }
204 
205 static struct notifier_block vfp_notifier_block = {
206 	.notifier_call	= vfp_notifier,
207 };
208 
209 /*
210  * Raise a SIGFPE for the current process.
211  * sicode describes the signal being raised.
212  */
213 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
214 {
215 	/*
216 	 * This is the same as NWFPE, because it's not clear what
217 	 * this is used for
218 	 */
219 	current->thread.error_code = 0;
220 	current->thread.trap_no = 6;
221 
222 	send_sig_fault(SIGFPE, sicode,
223 		       (void __user *)(instruction_pointer(regs) - 4),
224 		       current);
225 }
226 
227 static void vfp_panic(char *reason, u32 inst)
228 {
229 	int i;
230 
231 	pr_err("VFP: Error: %s\n", reason);
232 	pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
233 		fmrx(FPEXC), fmrx(FPSCR), inst);
234 	for (i = 0; i < 32; i += 2)
235 		pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
236 		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
237 }
238 
239 /*
240  * Process bitmask of exception conditions.
241  */
242 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
243 {
244 	int si_code = 0;
245 
246 	pr_debug("VFP: raising exceptions %08x\n", exceptions);
247 
248 	if (exceptions == VFP_EXCEPTION_ERROR) {
249 		vfp_panic("unhandled bounce", inst);
250 		vfp_raise_sigfpe(FPE_FLTINV, regs);
251 		return;
252 	}
253 
254 	/*
255 	 * If any of the status flags are set, update the FPSCR.
256 	 * Comparison instructions always return at least one of
257 	 * these flags set.
258 	 */
259 	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
260 		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
261 
262 	fpscr |= exceptions;
263 
264 	fmxr(FPSCR, fpscr);
265 
266 #define RAISE(stat,en,sig)				\
267 	if (exceptions & stat && fpscr & en)		\
268 		si_code = sig;
269 
270 	/*
271 	 * These are arranged in priority order, least to highest.
272 	 */
273 	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
274 	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
275 	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
276 	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
277 	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
278 
279 	if (si_code)
280 		vfp_raise_sigfpe(si_code, regs);
281 }
282 
283 /*
284  * Emulate a VFP instruction.
285  */
286 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
287 {
288 	u32 exceptions = VFP_EXCEPTION_ERROR;
289 
290 	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
291 
292 	if (INST_CPRTDO(inst)) {
293 		if (!INST_CPRT(inst)) {
294 			/*
295 			 * CPDO
296 			 */
297 			if (vfp_single(inst)) {
298 				exceptions = vfp_single_cpdo(inst, fpscr);
299 			} else {
300 				exceptions = vfp_double_cpdo(inst, fpscr);
301 			}
302 		} else {
303 			/*
304 			 * A CPRT instruction can not appear in FPINST2, nor
305 			 * can it cause an exception.  Therefore, we do not
306 			 * have to emulate it.
307 			 */
308 		}
309 	} else {
310 		/*
311 		 * A CPDT instruction can not appear in FPINST2, nor can
312 		 * it cause an exception.  Therefore, we do not have to
313 		 * emulate it.
314 		 */
315 	}
316 	return exceptions & ~VFP_NAN_FLAG;
317 }
318 
319 /*
320  * Package up a bounce condition.
321  */
322 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
323 {
324 	u32 fpscr, orig_fpscr, fpsid, exceptions;
325 
326 	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
327 
328 	/*
329 	 * At this point, FPEXC can have the following configuration:
330 	 *
331 	 *  EX DEX IXE
332 	 *  0   1   x   - synchronous exception
333 	 *  1   x   0   - asynchronous exception
334 	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
335 	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
336 	 *                implementation), undefined otherwise
337 	 *
338 	 * Clear various bits and enable access to the VFP so we can
339 	 * handle the bounce.
340 	 */
341 	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
342 
343 	fpsid = fmrx(FPSID);
344 	orig_fpscr = fpscr = fmrx(FPSCR);
345 
346 	/*
347 	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
348 	 */
349 	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
350 	    && (fpscr & FPSCR_IXE)) {
351 		/*
352 		 * Synchronous exception, emulate the trigger instruction
353 		 */
354 		goto emulate;
355 	}
356 
357 	if (fpexc & FPEXC_EX) {
358 #ifndef CONFIG_CPU_FEROCEON
359 		/*
360 		 * Asynchronous exception. The instruction is read from FPINST
361 		 * and the interrupted instruction has to be restarted.
362 		 */
363 		trigger = fmrx(FPINST);
364 		regs->ARM_pc -= 4;
365 #endif
366 	} else if (!(fpexc & FPEXC_DEX)) {
367 		/*
368 		 * Illegal combination of bits. It can be caused by an
369 		 * unallocated VFP instruction but with FPSCR.IXE set and not
370 		 * on VFP subarch 1.
371 		 */
372 		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
373 		goto exit;
374 	}
375 
376 	/*
377 	 * Modify fpscr to indicate the number of iterations remaining.
378 	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
379 	 * whether FPEXC.VECITR or FPSCR.LEN is used.
380 	 */
381 	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
382 		u32 len;
383 
384 		len = fpexc + (1 << FPEXC_LENGTH_BIT);
385 
386 		fpscr &= ~FPSCR_LENGTH_MASK;
387 		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
388 	}
389 
390 	/*
391 	 * Handle the first FP instruction.  We used to take note of the
392 	 * FPEXC bounce reason, but this appears to be unreliable.
393 	 * Emulate the bounced instruction instead.
394 	 */
395 	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
396 	if (exceptions)
397 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
398 
399 	/*
400 	 * If there isn't a second FP instruction, exit now. Note that
401 	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
402 	 */
403 	if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V))
404 		goto exit;
405 
406 	/*
407 	 * The barrier() here prevents fpinst2 being read
408 	 * before the condition above.
409 	 */
410 	barrier();
411 	trigger = fmrx(FPINST2);
412 
413  emulate:
414 	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
415 	if (exceptions)
416 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
417  exit:
418 	local_bh_enable();
419 }
420 
421 static void vfp_enable(void *unused)
422 {
423 	u32 access;
424 
425 	BUG_ON(preemptible());
426 	access = get_copro_access();
427 
428 	/*
429 	 * Enable full access to VFP (cp10 and cp11)
430 	 */
431 	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
432 }
433 
434 /* Called by platforms on which we want to disable VFP because it may not be
435  * present on all CPUs within a SMP complex. Needs to be called prior to
436  * vfp_init().
437  */
438 void __init vfp_disable(void)
439 {
440 	if (VFP_arch) {
441 		pr_debug("%s: should be called prior to vfp_init\n", __func__);
442 		return;
443 	}
444 	VFP_arch = 1;
445 }
446 
447 #ifdef CONFIG_CPU_PM
448 static int vfp_pm_suspend(void)
449 {
450 	struct thread_info *ti = current_thread_info();
451 	u32 fpexc = fmrx(FPEXC);
452 
453 	/* if vfp is on, then save state for resumption */
454 	if (fpexc & FPEXC_EN) {
455 		pr_debug("%s: saving vfp state\n", __func__);
456 		vfp_save_state(&ti->vfpstate, fpexc);
457 
458 		/* disable, just in case */
459 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
460 	} else if (vfp_current_hw_state[ti->cpu]) {
461 #ifndef CONFIG_SMP
462 		fmxr(FPEXC, fpexc | FPEXC_EN);
463 		vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc);
464 		fmxr(FPEXC, fpexc);
465 #endif
466 	}
467 
468 	/* clear any information we had about last context state */
469 	vfp_current_hw_state[ti->cpu] = NULL;
470 
471 	return 0;
472 }
473 
474 static void vfp_pm_resume(void)
475 {
476 	/* ensure we have access to the vfp */
477 	vfp_enable(NULL);
478 
479 	/* and disable it to ensure the next usage restores the state */
480 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
481 }
482 
483 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd,
484 	void *v)
485 {
486 	switch (cmd) {
487 	case CPU_PM_ENTER:
488 		vfp_pm_suspend();
489 		break;
490 	case CPU_PM_ENTER_FAILED:
491 	case CPU_PM_EXIT:
492 		vfp_pm_resume();
493 		break;
494 	}
495 	return NOTIFY_OK;
496 }
497 
498 static struct notifier_block vfp_cpu_pm_notifier_block = {
499 	.notifier_call = vfp_cpu_pm_notifier,
500 };
501 
502 static void vfp_pm_init(void)
503 {
504 	cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block);
505 }
506 
507 #else
508 static inline void vfp_pm_init(void) { }
509 #endif /* CONFIG_CPU_PM */
510 
511 /*
512  * Ensure that the VFP state stored in 'thread->vfpstate' is up to date
513  * with the hardware state.
514  */
515 void vfp_sync_hwstate(struct thread_info *thread)
516 {
517 	unsigned int cpu = get_cpu();
518 
519 	local_bh_disable();
520 
521 	if (vfp_state_in_hw(cpu, thread)) {
522 		u32 fpexc = fmrx(FPEXC);
523 
524 		/*
525 		 * Save the last VFP state on this CPU.
526 		 */
527 		fmxr(FPEXC, fpexc | FPEXC_EN);
528 		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
529 		fmxr(FPEXC, fpexc);
530 	}
531 
532 	local_bh_enable();
533 	put_cpu();
534 }
535 
536 /* Ensure that the thread reloads the hardware VFP state on the next use. */
537 void vfp_flush_hwstate(struct thread_info *thread)
538 {
539 	unsigned int cpu = get_cpu();
540 
541 	vfp_force_reload(cpu, thread);
542 
543 	put_cpu();
544 }
545 
546 /*
547  * Save the current VFP state into the provided structures and prepare
548  * for entry into a new function (signal handler).
549  */
550 int vfp_preserve_user_clear_hwstate(struct user_vfp *ufp,
551 				    struct user_vfp_exc *ufp_exc)
552 {
553 	struct thread_info *thread = current_thread_info();
554 	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
555 
556 	/* Ensure that the saved hwstate is up-to-date. */
557 	vfp_sync_hwstate(thread);
558 
559 	/*
560 	 * Copy the floating point registers. There can be unused
561 	 * registers see asm/hwcap.h for details.
562 	 */
563 	memcpy(&ufp->fpregs, &hwstate->fpregs, sizeof(hwstate->fpregs));
564 
565 	/*
566 	 * Copy the status and control register.
567 	 */
568 	ufp->fpscr = hwstate->fpscr;
569 
570 	/*
571 	 * Copy the exception registers.
572 	 */
573 	ufp_exc->fpexc = hwstate->fpexc;
574 	ufp_exc->fpinst = hwstate->fpinst;
575 	ufp_exc->fpinst2 = hwstate->fpinst2;
576 
577 	/* Ensure that VFP is disabled. */
578 	vfp_flush_hwstate(thread);
579 
580 	/*
581 	 * As per the PCS, clear the length and stride bits for function
582 	 * entry.
583 	 */
584 	hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK);
585 	return 0;
586 }
587 
588 /* Sanitise and restore the current VFP state from the provided structures. */
589 int vfp_restore_user_hwstate(struct user_vfp *ufp, struct user_vfp_exc *ufp_exc)
590 {
591 	struct thread_info *thread = current_thread_info();
592 	struct vfp_hard_struct *hwstate = &thread->vfpstate.hard;
593 	unsigned long fpexc;
594 
595 	/* Disable VFP to avoid corrupting the new thread state. */
596 	vfp_flush_hwstate(thread);
597 
598 	/*
599 	 * Copy the floating point registers. There can be unused
600 	 * registers see asm/hwcap.h for details.
601 	 */
602 	memcpy(&hwstate->fpregs, &ufp->fpregs, sizeof(hwstate->fpregs));
603 	/*
604 	 * Copy the status and control register.
605 	 */
606 	hwstate->fpscr = ufp->fpscr;
607 
608 	/*
609 	 * Sanitise and restore the exception registers.
610 	 */
611 	fpexc = ufp_exc->fpexc;
612 
613 	/* Ensure the VFP is enabled. */
614 	fpexc |= FPEXC_EN;
615 
616 	/* Ensure FPINST2 is invalid and the exception flag is cleared. */
617 	fpexc &= ~(FPEXC_EX | FPEXC_FP2V);
618 	hwstate->fpexc = fpexc;
619 
620 	hwstate->fpinst = ufp_exc->fpinst;
621 	hwstate->fpinst2 = ufp_exc->fpinst2;
622 
623 	return 0;
624 }
625 
626 /*
627  * VFP hardware can lose all context when a CPU goes offline.
628  * As we will be running in SMP mode with CPU hotplug, we will save the
629  * hardware state at every thread switch.  We clear our held state when
630  * a CPU has been killed, indicating that the VFP hardware doesn't contain
631  * a threads VFP state.  When a CPU starts up, we re-enable access to the
632  * VFP hardware. The callbacks below are called on the CPU which
633  * is being offlined/onlined.
634  */
635 static int vfp_dying_cpu(unsigned int cpu)
636 {
637 	vfp_current_hw_state[cpu] = NULL;
638 	return 0;
639 }
640 
641 static int vfp_starting_cpu(unsigned int unused)
642 {
643 	vfp_enable(NULL);
644 	return 0;
645 }
646 
647 /*
648  * Entered with:
649  *
650  *  r0  = instruction opcode (32-bit ARM or two 16-bit Thumb)
651  *  r1  = thread_info pointer
652  *  r2  = PC value to resume execution after successful emulation
653  *  r3  = normal "successful" return address
654  *  lr  = unrecognised instruction return address
655  */
656 asmlinkage void vfp_entry(u32 trigger, struct thread_info *ti, u32 resume_pc,
657 			  u32 resume_return_address)
658 {
659 	if (unlikely(!have_vfp))
660 		return;
661 
662 	local_bh_disable();
663 	vfp_support_entry(trigger, ti, resume_pc, resume_return_address);
664 }
665 
666 #ifdef CONFIG_KERNEL_MODE_NEON
667 
668 static int vfp_kmode_exception(struct pt_regs *regs, unsigned int instr)
669 {
670 	/*
671 	 * If we reach this point, a floating point exception has been raised
672 	 * while running in kernel mode. If the NEON/VFP unit was enabled at the
673 	 * time, it means a VFP instruction has been issued that requires
674 	 * software assistance to complete, something which is not currently
675 	 * supported in kernel mode.
676 	 * If the NEON/VFP unit was disabled, and the location pointed to below
677 	 * is properly preceded by a call to kernel_neon_begin(), something has
678 	 * caused the task to be scheduled out and back in again. In this case,
679 	 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should
680 	 * be helpful in localizing the problem.
681 	 */
682 	if (fmrx(FPEXC) & FPEXC_EN)
683 		pr_crit("BUG: unsupported FP instruction in kernel mode\n");
684 	else
685 		pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n");
686 	pr_crit("FPEXC == 0x%08x\n", fmrx(FPEXC));
687 	return 1;
688 }
689 
690 static struct undef_hook vfp_kmode_exception_hook[] = {{
691 	.instr_mask	= 0xfe000000,
692 	.instr_val	= 0xf2000000,
693 	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
694 	.cpsr_val	= SVC_MODE,
695 	.fn		= vfp_kmode_exception,
696 }, {
697 	.instr_mask	= 0xff100000,
698 	.instr_val	= 0xf4000000,
699 	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
700 	.cpsr_val	= SVC_MODE,
701 	.fn		= vfp_kmode_exception,
702 }, {
703 	.instr_mask	= 0xef000000,
704 	.instr_val	= 0xef000000,
705 	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
706 	.cpsr_val	= SVC_MODE | PSR_T_BIT,
707 	.fn		= vfp_kmode_exception,
708 }, {
709 	.instr_mask	= 0xff100000,
710 	.instr_val	= 0xf9000000,
711 	.cpsr_mask	= MODE_MASK | PSR_T_BIT,
712 	.cpsr_val	= SVC_MODE | PSR_T_BIT,
713 	.fn		= vfp_kmode_exception,
714 }, {
715 	.instr_mask	= 0x0c000e00,
716 	.instr_val	= 0x0c000a00,
717 	.cpsr_mask	= MODE_MASK,
718 	.cpsr_val	= SVC_MODE,
719 	.fn		= vfp_kmode_exception,
720 }};
721 
722 static int __init vfp_kmode_exception_hook_init(void)
723 {
724 	int i;
725 
726 	for (i = 0; i < ARRAY_SIZE(vfp_kmode_exception_hook); i++)
727 		register_undef_hook(&vfp_kmode_exception_hook[i]);
728 	return 0;
729 }
730 subsys_initcall(vfp_kmode_exception_hook_init);
731 
732 /*
733  * Kernel-side NEON support functions
734  */
735 void kernel_neon_begin(void)
736 {
737 	struct thread_info *thread = current_thread_info();
738 	unsigned int cpu;
739 	u32 fpexc;
740 
741 	local_bh_disable();
742 
743 	/*
744 	 * Kernel mode NEON is only allowed outside of hardirq context with
745 	 * preemption and softirq processing disabled. This will make sure that
746 	 * the kernel mode NEON register contents never need to be preserved.
747 	 */
748 	BUG_ON(in_hardirq());
749 	cpu = __smp_processor_id();
750 
751 	fpexc = fmrx(FPEXC) | FPEXC_EN;
752 	fmxr(FPEXC, fpexc);
753 
754 	/*
755 	 * Save the userland NEON/VFP state. Under UP,
756 	 * the owner could be a task other than 'current'
757 	 */
758 	if (vfp_state_in_hw(cpu, thread))
759 		vfp_save_state(&thread->vfpstate, fpexc);
760 #ifndef CONFIG_SMP
761 	else if (vfp_current_hw_state[cpu] != NULL)
762 		vfp_save_state(vfp_current_hw_state[cpu], fpexc);
763 #endif
764 	vfp_current_hw_state[cpu] = NULL;
765 }
766 EXPORT_SYMBOL(kernel_neon_begin);
767 
768 void kernel_neon_end(void)
769 {
770 	/* Disable the NEON/VFP unit. */
771 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
772 	local_bh_enable();
773 }
774 EXPORT_SYMBOL(kernel_neon_end);
775 
776 #endif /* CONFIG_KERNEL_MODE_NEON */
777 
778 static int __init vfp_detect(struct pt_regs *regs, unsigned int instr)
779 {
780 	VFP_arch = UINT_MAX;	/* mark as not present */
781 	regs->ARM_pc += 4;
782 	return 0;
783 }
784 
785 static struct undef_hook vfp_detect_hook __initdata = {
786 	.instr_mask	= 0x0c000e00,
787 	.instr_val	= 0x0c000a00,
788 	.cpsr_mask	= MODE_MASK,
789 	.cpsr_val	= SVC_MODE,
790 	.fn		= vfp_detect,
791 };
792 
793 /*
794  * VFP support code initialisation.
795  */
796 static int __init vfp_init(void)
797 {
798 	unsigned int vfpsid;
799 	unsigned int cpu_arch = cpu_architecture();
800 	unsigned int isar6;
801 
802 	/*
803 	 * Enable the access to the VFP on all online CPUs so the
804 	 * following test on FPSID will succeed.
805 	 */
806 	if (cpu_arch >= CPU_ARCH_ARMv6)
807 		on_each_cpu(vfp_enable, NULL, 1);
808 
809 	/*
810 	 * First check that there is a VFP that we can use.
811 	 * The handler is already setup to just log calls, so
812 	 * we just need to read the VFPSID register.
813 	 */
814 	register_undef_hook(&vfp_detect_hook);
815 	barrier();
816 	vfpsid = fmrx(FPSID);
817 	barrier();
818 	unregister_undef_hook(&vfp_detect_hook);
819 
820 	pr_info("VFP support v0.3: ");
821 	if (VFP_arch) {
822 		pr_cont("not present\n");
823 		return 0;
824 	/* Extract the architecture on CPUID scheme */
825 	} else if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
826 		VFP_arch = vfpsid & FPSID_CPUID_ARCH_MASK;
827 		VFP_arch >>= FPSID_ARCH_BIT;
828 		/*
829 		 * Check for the presence of the Advanced SIMD
830 		 * load/store instructions, integer and single
831 		 * precision floating point operations. Only check
832 		 * for NEON if the hardware has the MVFR registers.
833 		 */
834 		if (IS_ENABLED(CONFIG_NEON) &&
835 		   (fmrx(MVFR1) & 0x000fff00) == 0x00011100)
836 			elf_hwcap |= HWCAP_NEON;
837 
838 		if (IS_ENABLED(CONFIG_VFPv3)) {
839 			u32 mvfr0 = fmrx(MVFR0);
840 			if (((mvfr0 & MVFR0_DP_MASK) >> MVFR0_DP_BIT) == 0x2 ||
841 			    ((mvfr0 & MVFR0_SP_MASK) >> MVFR0_SP_BIT) == 0x2) {
842 				elf_hwcap |= HWCAP_VFPv3;
843 				/*
844 				 * Check for VFPv3 D16 and VFPv4 D16.  CPUs in
845 				 * this configuration only have 16 x 64bit
846 				 * registers.
847 				 */
848 				if ((mvfr0 & MVFR0_A_SIMD_MASK) == 1)
849 					/* also v4-D16 */
850 					elf_hwcap |= HWCAP_VFPv3D16;
851 				else
852 					elf_hwcap |= HWCAP_VFPD32;
853 			}
854 
855 			if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000)
856 				elf_hwcap |= HWCAP_VFPv4;
857 			if (((fmrx(MVFR1) & MVFR1_ASIMDHP_MASK) >> MVFR1_ASIMDHP_BIT) == 0x2)
858 				elf_hwcap |= HWCAP_ASIMDHP;
859 			if (((fmrx(MVFR1) & MVFR1_FPHP_MASK) >> MVFR1_FPHP_BIT) == 0x3)
860 				elf_hwcap |= HWCAP_FPHP;
861 		}
862 
863 		/*
864 		 * Check for the presence of Advanced SIMD Dot Product
865 		 * instructions.
866 		 */
867 		isar6 = read_cpuid_ext(CPUID_EXT_ISAR6);
868 		if (cpuid_feature_extract_field(isar6, 4) == 0x1)
869 			elf_hwcap |= HWCAP_ASIMDDP;
870 		/*
871 		 * Check for the presence of Advanced SIMD Floating point
872 		 * half-precision multiplication instructions.
873 		 */
874 		if (cpuid_feature_extract_field(isar6, 8) == 0x1)
875 			elf_hwcap |= HWCAP_ASIMDFHM;
876 		/*
877 		 * Check for the presence of Advanced SIMD Bfloat16
878 		 * floating point instructions.
879 		 */
880 		if (cpuid_feature_extract_field(isar6, 20) == 0x1)
881 			elf_hwcap |= HWCAP_ASIMDBF16;
882 		/*
883 		 * Check for the presence of Advanced SIMD and floating point
884 		 * Int8 matrix multiplication instructions instructions.
885 		 */
886 		if (cpuid_feature_extract_field(isar6, 24) == 0x1)
887 			elf_hwcap |= HWCAP_I8MM;
888 
889 	/* Extract the architecture version on pre-cpuid scheme */
890 	} else {
891 		if (vfpsid & FPSID_NODOUBLE) {
892 			pr_cont("no double precision support\n");
893 			return 0;
894 		}
895 
896 		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;
897 	}
898 
899 	cpuhp_setup_state_nocalls(CPUHP_AP_ARM_VFP_STARTING,
900 				  "arm/vfp:starting", vfp_starting_cpu,
901 				  vfp_dying_cpu);
902 
903 	have_vfp = true;
904 
905 	thread_register_notifier(&vfp_notifier_block);
906 	vfp_pm_init();
907 
908 	/*
909 	 * We detected VFP, and the support code is
910 	 * in place; report VFP support to userspace.
911 	 */
912 	elf_hwcap |= HWCAP_VFP;
913 
914 	pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n",
915 		(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
916 		VFP_arch,
917 		(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
918 		(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
919 		(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
920 
921 	return 0;
922 }
923 
924 core_initcall(vfp_init);
925