1 /* 2 * linux/arch/arm/vfp/vfpmodule.c 3 * 4 * Copyright (C) 2004 ARM Limited. 5 * Written by Deep Blue Solutions Limited. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/module.h> 12 #include <linux/types.h> 13 #include <linux/kernel.h> 14 #include <linux/signal.h> 15 #include <linux/sched.h> 16 #include <linux/init.h> 17 18 #include <asm/thread_notify.h> 19 #include <asm/vfp.h> 20 21 #include "vfpinstr.h" 22 #include "vfp.h" 23 24 /* 25 * Our undef handlers (in entry.S) 26 */ 27 void vfp_testing_entry(void); 28 void vfp_support_entry(void); 29 void vfp_null_entry(void); 30 31 void (*vfp_vector)(void) = vfp_null_entry; 32 union vfp_state *last_VFP_context[NR_CPUS]; 33 34 /* 35 * Dual-use variable. 36 * Used in startup: set to non-zero if VFP checks fail 37 * After startup, holds VFP architecture 38 */ 39 unsigned int VFP_arch; 40 41 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v) 42 { 43 struct thread_info *thread = v; 44 union vfp_state *vfp; 45 __u32 cpu = thread->cpu; 46 47 if (likely(cmd == THREAD_NOTIFY_SWITCH)) { 48 u32 fpexc = fmrx(FPEXC); 49 50 #ifdef CONFIG_SMP 51 /* 52 * On SMP, if VFP is enabled, save the old state in 53 * case the thread migrates to a different CPU. The 54 * restoring is done lazily. 55 */ 56 if ((fpexc & FPEXC_EN) && last_VFP_context[cpu]) { 57 vfp_save_state(last_VFP_context[cpu], fpexc); 58 last_VFP_context[cpu]->hard.cpu = cpu; 59 } 60 /* 61 * Thread migration, just force the reloading of the 62 * state on the new CPU in case the VFP registers 63 * contain stale data. 64 */ 65 if (thread->vfpstate.hard.cpu != cpu) 66 last_VFP_context[cpu] = NULL; 67 #endif 68 69 /* 70 * Always disable VFP so we can lazily save/restore the 71 * old state. 72 */ 73 fmxr(FPEXC, fpexc & ~FPEXC_EN); 74 return NOTIFY_DONE; 75 } 76 77 vfp = &thread->vfpstate; 78 if (cmd == THREAD_NOTIFY_FLUSH) { 79 /* 80 * Per-thread VFP initialisation. 81 */ 82 memset(vfp, 0, sizeof(union vfp_state)); 83 84 vfp->hard.fpexc = FPEXC_EN; 85 vfp->hard.fpscr = FPSCR_ROUND_NEAREST; 86 87 /* 88 * Disable VFP to ensure we initialise it first. 89 */ 90 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); 91 } 92 93 /* flush and release case: Per-thread VFP cleanup. */ 94 if (last_VFP_context[cpu] == vfp) 95 last_VFP_context[cpu] = NULL; 96 97 return NOTIFY_DONE; 98 } 99 100 static struct notifier_block vfp_notifier_block = { 101 .notifier_call = vfp_notifier, 102 }; 103 104 /* 105 * Raise a SIGFPE for the current process. 106 * sicode describes the signal being raised. 107 */ 108 void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs) 109 { 110 siginfo_t info; 111 112 memset(&info, 0, sizeof(info)); 113 114 info.si_signo = SIGFPE; 115 info.si_code = sicode; 116 info.si_addr = (void __user *)(instruction_pointer(regs) - 4); 117 118 /* 119 * This is the same as NWFPE, because it's not clear what 120 * this is used for 121 */ 122 current->thread.error_code = 0; 123 current->thread.trap_no = 6; 124 125 send_sig_info(SIGFPE, &info, current); 126 } 127 128 static void vfp_panic(char *reason, u32 inst) 129 { 130 int i; 131 132 printk(KERN_ERR "VFP: Error: %s\n", reason); 133 printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n", 134 fmrx(FPEXC), fmrx(FPSCR), inst); 135 for (i = 0; i < 32; i += 2) 136 printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n", 137 i, vfp_get_float(i), i+1, vfp_get_float(i+1)); 138 } 139 140 /* 141 * Process bitmask of exception conditions. 142 */ 143 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs) 144 { 145 int si_code = 0; 146 147 pr_debug("VFP: raising exceptions %08x\n", exceptions); 148 149 if (exceptions == VFP_EXCEPTION_ERROR) { 150 vfp_panic("unhandled bounce", inst); 151 vfp_raise_sigfpe(0, regs); 152 return; 153 } 154 155 /* 156 * Update the FPSCR with the additional exception flags. 157 * Comparison instructions always return at least one of 158 * these flags set. 159 */ 160 fpscr |= exceptions; 161 162 fmxr(FPSCR, fpscr); 163 164 #define RAISE(stat,en,sig) \ 165 if (exceptions & stat && fpscr & en) \ 166 si_code = sig; 167 168 /* 169 * These are arranged in priority order, least to highest. 170 */ 171 RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV); 172 RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES); 173 RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND); 174 RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF); 175 RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV); 176 177 if (si_code) 178 vfp_raise_sigfpe(si_code, regs); 179 } 180 181 /* 182 * Emulate a VFP instruction. 183 */ 184 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs) 185 { 186 u32 exceptions = VFP_EXCEPTION_ERROR; 187 188 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr); 189 190 if (INST_CPRTDO(inst)) { 191 if (!INST_CPRT(inst)) { 192 /* 193 * CPDO 194 */ 195 if (vfp_single(inst)) { 196 exceptions = vfp_single_cpdo(inst, fpscr); 197 } else { 198 exceptions = vfp_double_cpdo(inst, fpscr); 199 } 200 } else { 201 /* 202 * A CPRT instruction can not appear in FPINST2, nor 203 * can it cause an exception. Therefore, we do not 204 * have to emulate it. 205 */ 206 } 207 } else { 208 /* 209 * A CPDT instruction can not appear in FPINST2, nor can 210 * it cause an exception. Therefore, we do not have to 211 * emulate it. 212 */ 213 } 214 return exceptions & ~VFP_NAN_FLAG; 215 } 216 217 /* 218 * Package up a bounce condition. 219 */ 220 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs) 221 { 222 u32 fpscr, orig_fpscr, fpsid, exceptions; 223 224 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc); 225 226 /* 227 * At this point, FPEXC can have the following configuration: 228 * 229 * EX DEX IXE 230 * 0 1 x - synchronous exception 231 * 1 x 0 - asynchronous exception 232 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later 233 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1 234 * implementation), undefined otherwise 235 * 236 * Clear various bits and enable access to the VFP so we can 237 * handle the bounce. 238 */ 239 fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK)); 240 241 fpsid = fmrx(FPSID); 242 orig_fpscr = fpscr = fmrx(FPSCR); 243 244 /* 245 * Check for the special VFP subarch 1 and FPSCR.IXE bit case 246 */ 247 if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT) 248 && (fpscr & FPSCR_IXE)) { 249 /* 250 * Synchronous exception, emulate the trigger instruction 251 */ 252 goto emulate; 253 } 254 255 if (fpexc & FPEXC_EX) { 256 #ifndef CONFIG_CPU_FEROCEON 257 /* 258 * Asynchronous exception. The instruction is read from FPINST 259 * and the interrupted instruction has to be restarted. 260 */ 261 trigger = fmrx(FPINST); 262 regs->ARM_pc -= 4; 263 #endif 264 } else if (!(fpexc & FPEXC_DEX)) { 265 /* 266 * Illegal combination of bits. It can be caused by an 267 * unallocated VFP instruction but with FPSCR.IXE set and not 268 * on VFP subarch 1. 269 */ 270 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs); 271 goto exit; 272 } 273 274 /* 275 * Modify fpscr to indicate the number of iterations remaining. 276 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates 277 * whether FPEXC.VECITR or FPSCR.LEN is used. 278 */ 279 if (fpexc & (FPEXC_EX | FPEXC_VV)) { 280 u32 len; 281 282 len = fpexc + (1 << FPEXC_LENGTH_BIT); 283 284 fpscr &= ~FPSCR_LENGTH_MASK; 285 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT); 286 } 287 288 /* 289 * Handle the first FP instruction. We used to take note of the 290 * FPEXC bounce reason, but this appears to be unreliable. 291 * Emulate the bounced instruction instead. 292 */ 293 exceptions = vfp_emulate_instruction(trigger, fpscr, regs); 294 if (exceptions) 295 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); 296 297 /* 298 * If there isn't a second FP instruction, exit now. Note that 299 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1. 300 */ 301 if (fpexc ^ (FPEXC_EX | FPEXC_FP2V)) 302 goto exit; 303 304 /* 305 * The barrier() here prevents fpinst2 being read 306 * before the condition above. 307 */ 308 barrier(); 309 trigger = fmrx(FPINST2); 310 311 emulate: 312 exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs); 313 if (exceptions) 314 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); 315 exit: 316 preempt_enable(); 317 } 318 319 static void vfp_enable(void *unused) 320 { 321 u32 access = get_copro_access(); 322 323 /* 324 * Enable full access to VFP (cp10 and cp11) 325 */ 326 set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11)); 327 } 328 329 #ifdef CONFIG_PM 330 #include <linux/sysdev.h> 331 332 static int vfp_pm_suspend(struct sys_device *dev, pm_message_t state) 333 { 334 struct thread_info *ti = current_thread_info(); 335 u32 fpexc = fmrx(FPEXC); 336 337 /* if vfp is on, then save state for resumption */ 338 if (fpexc & FPEXC_EN) { 339 printk(KERN_DEBUG "%s: saving vfp state\n", __func__); 340 vfp_save_state(&ti->vfpstate, fpexc); 341 342 /* disable, just in case */ 343 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); 344 } 345 346 /* clear any information we had about last context state */ 347 memset(last_VFP_context, 0, sizeof(last_VFP_context)); 348 349 return 0; 350 } 351 352 static int vfp_pm_resume(struct sys_device *dev) 353 { 354 /* ensure we have access to the vfp */ 355 vfp_enable(NULL); 356 357 /* and disable it to ensure the next usage restores the state */ 358 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); 359 360 return 0; 361 } 362 363 static struct sysdev_class vfp_pm_sysclass = { 364 .name = "vfp", 365 .suspend = vfp_pm_suspend, 366 .resume = vfp_pm_resume, 367 }; 368 369 static struct sys_device vfp_pm_sysdev = { 370 .cls = &vfp_pm_sysclass, 371 }; 372 373 static void vfp_pm_init(void) 374 { 375 sysdev_class_register(&vfp_pm_sysclass); 376 sysdev_register(&vfp_pm_sysdev); 377 } 378 379 380 #else 381 static inline void vfp_pm_init(void) { } 382 #endif /* CONFIG_PM */ 383 384 /* 385 * Synchronise the hardware VFP state of a thread other than current with the 386 * saved one. This function is used by the ptrace mechanism. 387 */ 388 #ifdef CONFIG_SMP 389 void vfp_sync_state(struct thread_info *thread) 390 { 391 /* 392 * On SMP systems, the VFP state is automatically saved at every 393 * context switch. We mark the thread VFP state as belonging to a 394 * non-existent CPU so that the saved one will be reloaded when 395 * needed. 396 */ 397 thread->vfpstate.hard.cpu = NR_CPUS; 398 } 399 #else 400 void vfp_sync_state(struct thread_info *thread) 401 { 402 unsigned int cpu = get_cpu(); 403 u32 fpexc = fmrx(FPEXC); 404 405 /* 406 * If VFP is enabled, the previous state was already saved and 407 * last_VFP_context updated. 408 */ 409 if (fpexc & FPEXC_EN) 410 goto out; 411 412 if (!last_VFP_context[cpu]) 413 goto out; 414 415 /* 416 * Save the last VFP state on this CPU. 417 */ 418 fmxr(FPEXC, fpexc | FPEXC_EN); 419 vfp_save_state(last_VFP_context[cpu], fpexc); 420 fmxr(FPEXC, fpexc); 421 422 /* 423 * Set the context to NULL to force a reload the next time the thread 424 * uses the VFP. 425 */ 426 last_VFP_context[cpu] = NULL; 427 428 out: 429 put_cpu(); 430 } 431 #endif 432 433 #include <linux/smp.h> 434 435 /* 436 * VFP support code initialisation. 437 */ 438 static int __init vfp_init(void) 439 { 440 unsigned int vfpsid; 441 unsigned int cpu_arch = cpu_architecture(); 442 443 if (cpu_arch >= CPU_ARCH_ARMv6) 444 vfp_enable(NULL); 445 446 /* 447 * First check that there is a VFP that we can use. 448 * The handler is already setup to just log calls, so 449 * we just need to read the VFPSID register. 450 */ 451 vfp_vector = vfp_testing_entry; 452 barrier(); 453 vfpsid = fmrx(FPSID); 454 barrier(); 455 vfp_vector = vfp_null_entry; 456 457 printk(KERN_INFO "VFP support v0.3: "); 458 if (VFP_arch) 459 printk("not present\n"); 460 else if (vfpsid & FPSID_NODOUBLE) { 461 printk("no double precision support\n"); 462 } else { 463 smp_call_function(vfp_enable, NULL, 1); 464 465 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */ 466 printk("implementor %02x architecture %d part %02x variant %x rev %x\n", 467 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT, 468 (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT, 469 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT, 470 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT, 471 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT); 472 473 vfp_vector = vfp_support_entry; 474 475 thread_register_notifier(&vfp_notifier_block); 476 vfp_pm_init(); 477 478 /* 479 * We detected VFP, and the support code is 480 * in place; report VFP support to userspace. 481 */ 482 elf_hwcap |= HWCAP_VFP; 483 #ifdef CONFIG_VFPv3 484 if (VFP_arch >= 3) { 485 elf_hwcap |= HWCAP_VFPv3; 486 487 /* 488 * Check for VFPv3 D16. CPUs in this configuration 489 * only have 16 x 64bit registers. 490 */ 491 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1) 492 elf_hwcap |= HWCAP_VFPv3D16; 493 } 494 #endif 495 #ifdef CONFIG_NEON 496 /* 497 * Check for the presence of the Advanced SIMD 498 * load/store instructions, integer and single 499 * precision floating point operations. 500 */ 501 if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100) 502 elf_hwcap |= HWCAP_NEON; 503 #endif 504 } 505 return 0; 506 } 507 508 late_initcall(vfp_init); 509