xref: /openbmc/linux/arch/arm/vfp/vfpmodule.c (revision df2634f43f5106947f3735a0b61a6527a4b278cd)
1 /*
2  *  linux/arch/arm/vfp/vfpmodule.c
3  *
4  *  Copyright (C) 2004 ARM Limited.
5  *  Written by Deep Blue Solutions Limited.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/cpu.h>
14 #include <linux/kernel.h>
15 #include <linux/notifier.h>
16 #include <linux/signal.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/init.h>
20 
21 #include <asm/cputype.h>
22 #include <asm/thread_notify.h>
23 #include <asm/vfp.h>
24 
25 #include "vfpinstr.h"
26 #include "vfp.h"
27 
28 /*
29  * Our undef handlers (in entry.S)
30  */
31 void vfp_testing_entry(void);
32 void vfp_support_entry(void);
33 void vfp_null_entry(void);
34 
35 void (*vfp_vector)(void) = vfp_null_entry;
36 union vfp_state *last_VFP_context[NR_CPUS];
37 
38 /*
39  * Dual-use variable.
40  * Used in startup: set to non-zero if VFP checks fail
41  * After startup, holds VFP architecture
42  */
43 unsigned int VFP_arch;
44 
45 /*
46  * Per-thread VFP initialization.
47  */
48 static void vfp_thread_flush(struct thread_info *thread)
49 {
50 	union vfp_state *vfp = &thread->vfpstate;
51 	unsigned int cpu;
52 
53 	memset(vfp, 0, sizeof(union vfp_state));
54 
55 	vfp->hard.fpexc = FPEXC_EN;
56 	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
57 
58 	/*
59 	 * Disable VFP to ensure we initialize it first.  We must ensure
60 	 * that the modification of last_VFP_context[] and hardware disable
61 	 * are done for the same CPU and without preemption.
62 	 */
63 	cpu = get_cpu();
64 	if (last_VFP_context[cpu] == vfp)
65 		last_VFP_context[cpu] = NULL;
66 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
67 	put_cpu();
68 }
69 
70 static void vfp_thread_exit(struct thread_info *thread)
71 {
72 	/* release case: Per-thread VFP cleanup. */
73 	union vfp_state *vfp = &thread->vfpstate;
74 	unsigned int cpu = get_cpu();
75 
76 	if (last_VFP_context[cpu] == vfp)
77 		last_VFP_context[cpu] = NULL;
78 	put_cpu();
79 }
80 
81 /*
82  * When this function is called with the following 'cmd's, the following
83  * is true while this function is being run:
84  *  THREAD_NOFTIFY_SWTICH:
85  *   - the previously running thread will not be scheduled onto another CPU.
86  *   - the next thread to be run (v) will not be running on another CPU.
87  *   - thread->cpu is the local CPU number
88  *   - not preemptible as we're called in the middle of a thread switch
89  *  THREAD_NOTIFY_FLUSH:
90  *   - the thread (v) will be running on the local CPU, so
91  *	v === current_thread_info()
92  *   - thread->cpu is the local CPU number at the time it is accessed,
93  *	but may change at any time.
94  *   - we could be preempted if tree preempt rcu is enabled, so
95  *	it is unsafe to use thread->cpu.
96  *  THREAD_NOTIFY_EXIT
97  *   - the thread (v) will be running on the local CPU, so
98  *	v === current_thread_info()
99  *   - thread->cpu is the local CPU number at the time it is accessed,
100  *	but may change at any time.
101  *   - we could be preempted if tree preempt rcu is enabled, so
102  *	it is unsafe to use thread->cpu.
103  */
104 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
105 {
106 	struct thread_info *thread = v;
107 
108 	if (likely(cmd == THREAD_NOTIFY_SWITCH)) {
109 		u32 fpexc = fmrx(FPEXC);
110 
111 #ifdef CONFIG_SMP
112 		unsigned int cpu = thread->cpu;
113 
114 		/*
115 		 * On SMP, if VFP is enabled, save the old state in
116 		 * case the thread migrates to a different CPU. The
117 		 * restoring is done lazily.
118 		 */
119 		if ((fpexc & FPEXC_EN) && last_VFP_context[cpu]) {
120 			vfp_save_state(last_VFP_context[cpu], fpexc);
121 			last_VFP_context[cpu]->hard.cpu = cpu;
122 		}
123 		/*
124 		 * Thread migration, just force the reloading of the
125 		 * state on the new CPU in case the VFP registers
126 		 * contain stale data.
127 		 */
128 		if (thread->vfpstate.hard.cpu != cpu)
129 			last_VFP_context[cpu] = NULL;
130 #endif
131 
132 		/*
133 		 * Always disable VFP so we can lazily save/restore the
134 		 * old state.
135 		 */
136 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
137 		return NOTIFY_DONE;
138 	}
139 
140 	if (cmd == THREAD_NOTIFY_FLUSH)
141 		vfp_thread_flush(thread);
142 	else
143 		vfp_thread_exit(thread);
144 
145 	return NOTIFY_DONE;
146 }
147 
148 static struct notifier_block vfp_notifier_block = {
149 	.notifier_call	= vfp_notifier,
150 };
151 
152 /*
153  * Raise a SIGFPE for the current process.
154  * sicode describes the signal being raised.
155  */
156 void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
157 {
158 	siginfo_t info;
159 
160 	memset(&info, 0, sizeof(info));
161 
162 	info.si_signo = SIGFPE;
163 	info.si_code = sicode;
164 	info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
165 
166 	/*
167 	 * This is the same as NWFPE, because it's not clear what
168 	 * this is used for
169 	 */
170 	current->thread.error_code = 0;
171 	current->thread.trap_no = 6;
172 
173 	send_sig_info(SIGFPE, &info, current);
174 }
175 
176 static void vfp_panic(char *reason, u32 inst)
177 {
178 	int i;
179 
180 	printk(KERN_ERR "VFP: Error: %s\n", reason);
181 	printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
182 		fmrx(FPEXC), fmrx(FPSCR), inst);
183 	for (i = 0; i < 32; i += 2)
184 		printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
185 		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
186 }
187 
188 /*
189  * Process bitmask of exception conditions.
190  */
191 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
192 {
193 	int si_code = 0;
194 
195 	pr_debug("VFP: raising exceptions %08x\n", exceptions);
196 
197 	if (exceptions == VFP_EXCEPTION_ERROR) {
198 		vfp_panic("unhandled bounce", inst);
199 		vfp_raise_sigfpe(0, regs);
200 		return;
201 	}
202 
203 	/*
204 	 * If any of the status flags are set, update the FPSCR.
205 	 * Comparison instructions always return at least one of
206 	 * these flags set.
207 	 */
208 	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
209 		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
210 
211 	fpscr |= exceptions;
212 
213 	fmxr(FPSCR, fpscr);
214 
215 #define RAISE(stat,en,sig)				\
216 	if (exceptions & stat && fpscr & en)		\
217 		si_code = sig;
218 
219 	/*
220 	 * These are arranged in priority order, least to highest.
221 	 */
222 	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
223 	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
224 	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
225 	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
226 	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
227 
228 	if (si_code)
229 		vfp_raise_sigfpe(si_code, regs);
230 }
231 
232 /*
233  * Emulate a VFP instruction.
234  */
235 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
236 {
237 	u32 exceptions = VFP_EXCEPTION_ERROR;
238 
239 	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
240 
241 	if (INST_CPRTDO(inst)) {
242 		if (!INST_CPRT(inst)) {
243 			/*
244 			 * CPDO
245 			 */
246 			if (vfp_single(inst)) {
247 				exceptions = vfp_single_cpdo(inst, fpscr);
248 			} else {
249 				exceptions = vfp_double_cpdo(inst, fpscr);
250 			}
251 		} else {
252 			/*
253 			 * A CPRT instruction can not appear in FPINST2, nor
254 			 * can it cause an exception.  Therefore, we do not
255 			 * have to emulate it.
256 			 */
257 		}
258 	} else {
259 		/*
260 		 * A CPDT instruction can not appear in FPINST2, nor can
261 		 * it cause an exception.  Therefore, we do not have to
262 		 * emulate it.
263 		 */
264 	}
265 	return exceptions & ~VFP_NAN_FLAG;
266 }
267 
268 /*
269  * Package up a bounce condition.
270  */
271 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
272 {
273 	u32 fpscr, orig_fpscr, fpsid, exceptions;
274 
275 	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
276 
277 	/*
278 	 * At this point, FPEXC can have the following configuration:
279 	 *
280 	 *  EX DEX IXE
281 	 *  0   1   x   - synchronous exception
282 	 *  1   x   0   - asynchronous exception
283 	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
284 	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
285 	 *                implementation), undefined otherwise
286 	 *
287 	 * Clear various bits and enable access to the VFP so we can
288 	 * handle the bounce.
289 	 */
290 	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
291 
292 	fpsid = fmrx(FPSID);
293 	orig_fpscr = fpscr = fmrx(FPSCR);
294 
295 	/*
296 	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
297 	 */
298 	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
299 	    && (fpscr & FPSCR_IXE)) {
300 		/*
301 		 * Synchronous exception, emulate the trigger instruction
302 		 */
303 		goto emulate;
304 	}
305 
306 	if (fpexc & FPEXC_EX) {
307 #ifndef CONFIG_CPU_FEROCEON
308 		/*
309 		 * Asynchronous exception. The instruction is read from FPINST
310 		 * and the interrupted instruction has to be restarted.
311 		 */
312 		trigger = fmrx(FPINST);
313 		regs->ARM_pc -= 4;
314 #endif
315 	} else if (!(fpexc & FPEXC_DEX)) {
316 		/*
317 		 * Illegal combination of bits. It can be caused by an
318 		 * unallocated VFP instruction but with FPSCR.IXE set and not
319 		 * on VFP subarch 1.
320 		 */
321 		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
322 		goto exit;
323 	}
324 
325 	/*
326 	 * Modify fpscr to indicate the number of iterations remaining.
327 	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
328 	 * whether FPEXC.VECITR or FPSCR.LEN is used.
329 	 */
330 	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
331 		u32 len;
332 
333 		len = fpexc + (1 << FPEXC_LENGTH_BIT);
334 
335 		fpscr &= ~FPSCR_LENGTH_MASK;
336 		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
337 	}
338 
339 	/*
340 	 * Handle the first FP instruction.  We used to take note of the
341 	 * FPEXC bounce reason, but this appears to be unreliable.
342 	 * Emulate the bounced instruction instead.
343 	 */
344 	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
345 	if (exceptions)
346 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
347 
348 	/*
349 	 * If there isn't a second FP instruction, exit now. Note that
350 	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
351 	 */
352 	if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
353 		goto exit;
354 
355 	/*
356 	 * The barrier() here prevents fpinst2 being read
357 	 * before the condition above.
358 	 */
359 	barrier();
360 	trigger = fmrx(FPINST2);
361 
362  emulate:
363 	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
364 	if (exceptions)
365 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
366  exit:
367 	preempt_enable();
368 }
369 
370 static void vfp_enable(void *unused)
371 {
372 	u32 access = get_copro_access();
373 
374 	/*
375 	 * Enable full access to VFP (cp10 and cp11)
376 	 */
377 	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
378 }
379 
380 #ifdef CONFIG_PM
381 #include <linux/sysdev.h>
382 
383 static int vfp_pm_suspend(struct sys_device *dev, pm_message_t state)
384 {
385 	struct thread_info *ti = current_thread_info();
386 	u32 fpexc = fmrx(FPEXC);
387 
388 	/* if vfp is on, then save state for resumption */
389 	if (fpexc & FPEXC_EN) {
390 		printk(KERN_DEBUG "%s: saving vfp state\n", __func__);
391 		vfp_save_state(&ti->vfpstate, fpexc);
392 
393 		/* disable, just in case */
394 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
395 	}
396 
397 	/* clear any information we had about last context state */
398 	memset(last_VFP_context, 0, sizeof(last_VFP_context));
399 
400 	return 0;
401 }
402 
403 static int vfp_pm_resume(struct sys_device *dev)
404 {
405 	/* ensure we have access to the vfp */
406 	vfp_enable(NULL);
407 
408 	/* and disable it to ensure the next usage restores the state */
409 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
410 
411 	return 0;
412 }
413 
414 static struct sysdev_class vfp_pm_sysclass = {
415 	.name		= "vfp",
416 	.suspend	= vfp_pm_suspend,
417 	.resume		= vfp_pm_resume,
418 };
419 
420 static struct sys_device vfp_pm_sysdev = {
421 	.cls	= &vfp_pm_sysclass,
422 };
423 
424 static void vfp_pm_init(void)
425 {
426 	sysdev_class_register(&vfp_pm_sysclass);
427 	sysdev_register(&vfp_pm_sysdev);
428 }
429 
430 
431 #else
432 static inline void vfp_pm_init(void) { }
433 #endif /* CONFIG_PM */
434 
435 void vfp_sync_hwstate(struct thread_info *thread)
436 {
437 	unsigned int cpu = get_cpu();
438 
439 	/*
440 	 * If the thread we're interested in is the current owner of the
441 	 * hardware VFP state, then we need to save its state.
442 	 */
443 	if (last_VFP_context[cpu] == &thread->vfpstate) {
444 		u32 fpexc = fmrx(FPEXC);
445 
446 		/*
447 		 * Save the last VFP state on this CPU.
448 		 */
449 		fmxr(FPEXC, fpexc | FPEXC_EN);
450 		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
451 		fmxr(FPEXC, fpexc);
452 	}
453 
454 	put_cpu();
455 }
456 
457 void vfp_flush_hwstate(struct thread_info *thread)
458 {
459 	unsigned int cpu = get_cpu();
460 
461 	/*
462 	 * If the thread we're interested in is the current owner of the
463 	 * hardware VFP state, then we need to save its state.
464 	 */
465 	if (last_VFP_context[cpu] == &thread->vfpstate) {
466 		u32 fpexc = fmrx(FPEXC);
467 
468 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
469 
470 		/*
471 		 * Set the context to NULL to force a reload the next time
472 		 * the thread uses the VFP.
473 		 */
474 		last_VFP_context[cpu] = NULL;
475 	}
476 
477 #ifdef CONFIG_SMP
478 	/*
479 	 * For SMP we still have to take care of the case where the thread
480 	 * migrates to another CPU and then back to the original CPU on which
481 	 * the last VFP user is still the same thread. Mark the thread VFP
482 	 * state as belonging to a non-existent CPU so that the saved one will
483 	 * be reloaded in the above case.
484 	 */
485 	thread->vfpstate.hard.cpu = NR_CPUS;
486 #endif
487 	put_cpu();
488 }
489 
490 /*
491  * VFP hardware can lose all context when a CPU goes offline.
492  * Safely clear our held state when a CPU has been killed, and
493  * re-enable access to VFP when the CPU comes back online.
494  *
495  * Both CPU_DYING and CPU_STARTING are called on the CPU which
496  * is being offlined/onlined.
497  */
498 static int vfp_hotplug(struct notifier_block *b, unsigned long action,
499 	void *hcpu)
500 {
501 	if (action == CPU_DYING || action == CPU_DYING_FROZEN) {
502 		unsigned int cpu = (long)hcpu;
503 		last_VFP_context[cpu] = NULL;
504 	} else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
505 		vfp_enable(NULL);
506 	return NOTIFY_OK;
507 }
508 
509 /*
510  * VFP support code initialisation.
511  */
512 static int __init vfp_init(void)
513 {
514 	unsigned int vfpsid;
515 	unsigned int cpu_arch = cpu_architecture();
516 
517 	if (cpu_arch >= CPU_ARCH_ARMv6)
518 		vfp_enable(NULL);
519 
520 	/*
521 	 * First check that there is a VFP that we can use.
522 	 * The handler is already setup to just log calls, so
523 	 * we just need to read the VFPSID register.
524 	 */
525 	vfp_vector = vfp_testing_entry;
526 	barrier();
527 	vfpsid = fmrx(FPSID);
528 	barrier();
529 	vfp_vector = vfp_null_entry;
530 
531 	printk(KERN_INFO "VFP support v0.3: ");
532 	if (VFP_arch)
533 		printk("not present\n");
534 	else if (vfpsid & FPSID_NODOUBLE) {
535 		printk("no double precision support\n");
536 	} else {
537 		hotcpu_notifier(vfp_hotplug, 0);
538 
539 		smp_call_function(vfp_enable, NULL, 1);
540 
541 		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;  /* Extract the architecture version */
542 		printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
543 			(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
544 			(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
545 			(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
546 			(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
547 			(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
548 
549 		vfp_vector = vfp_support_entry;
550 
551 		thread_register_notifier(&vfp_notifier_block);
552 		vfp_pm_init();
553 
554 		/*
555 		 * We detected VFP, and the support code is
556 		 * in place; report VFP support to userspace.
557 		 */
558 		elf_hwcap |= HWCAP_VFP;
559 #ifdef CONFIG_VFPv3
560 		if (VFP_arch >= 2) {
561 			elf_hwcap |= HWCAP_VFPv3;
562 
563 			/*
564 			 * Check for VFPv3 D16. CPUs in this configuration
565 			 * only have 16 x 64bit registers.
566 			 */
567 			if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
568 				elf_hwcap |= HWCAP_VFPv3D16;
569 		}
570 #endif
571 #ifdef CONFIG_NEON
572 		/*
573 		 * Check for the presence of the Advanced SIMD
574 		 * load/store instructions, integer and single
575 		 * precision floating point operations. Only check
576 		 * for NEON if the hardware has the MVFR registers.
577 		 */
578 		if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
579 			if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
580 				elf_hwcap |= HWCAP_NEON;
581 		}
582 #endif
583 	}
584 	return 0;
585 }
586 
587 late_initcall(vfp_init);
588