xref: /openbmc/linux/arch/arm/vfp/vfpmodule.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  *  linux/arch/arm/vfp/vfpmodule.c
3  *
4  *  Copyright (C) 2004 ARM Limited.
5  *  Written by Deep Blue Solutions Limited.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 
18 #include <asm/thread_notify.h>
19 #include <asm/vfp.h>
20 
21 #include "vfpinstr.h"
22 #include "vfp.h"
23 
24 /*
25  * Our undef handlers (in entry.S)
26  */
27 void vfp_testing_entry(void);
28 void vfp_support_entry(void);
29 void vfp_null_entry(void);
30 
31 void (*vfp_vector)(void) = vfp_null_entry;
32 union vfp_state *last_VFP_context[NR_CPUS];
33 
34 /*
35  * Dual-use variable.
36  * Used in startup: set to non-zero if VFP checks fail
37  * After startup, holds VFP architecture
38  */
39 unsigned int VFP_arch;
40 
41 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
42 {
43 	struct thread_info *thread = v;
44 	union vfp_state *vfp;
45 	__u32 cpu = thread->cpu;
46 
47 	if (likely(cmd == THREAD_NOTIFY_SWITCH)) {
48 		u32 fpexc = fmrx(FPEXC);
49 
50 #ifdef CONFIG_SMP
51 		/*
52 		 * On SMP, if VFP is enabled, save the old state in
53 		 * case the thread migrates to a different CPU. The
54 		 * restoring is done lazily.
55 		 */
56 		if ((fpexc & FPEXC_EN) && last_VFP_context[cpu]) {
57 			vfp_save_state(last_VFP_context[cpu], fpexc);
58 			last_VFP_context[cpu]->hard.cpu = cpu;
59 		}
60 		/*
61 		 * Thread migration, just force the reloading of the
62 		 * state on the new CPU in case the VFP registers
63 		 * contain stale data.
64 		 */
65 		if (thread->vfpstate.hard.cpu != cpu)
66 			last_VFP_context[cpu] = NULL;
67 #endif
68 
69 		/*
70 		 * Always disable VFP so we can lazily save/restore the
71 		 * old state.
72 		 */
73 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
74 		return NOTIFY_DONE;
75 	}
76 
77 	vfp = &thread->vfpstate;
78 	if (cmd == THREAD_NOTIFY_FLUSH) {
79 		/*
80 		 * Per-thread VFP initialisation.
81 		 */
82 		memset(vfp, 0, sizeof(union vfp_state));
83 
84 		vfp->hard.fpexc = FPEXC_EN;
85 		vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
86 
87 		/*
88 		 * Disable VFP to ensure we initialise it first.
89 		 */
90 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
91 	}
92 
93 	/* flush and release case: Per-thread VFP cleanup. */
94 	if (last_VFP_context[cpu] == vfp)
95 		last_VFP_context[cpu] = NULL;
96 
97 	return NOTIFY_DONE;
98 }
99 
100 static struct notifier_block vfp_notifier_block = {
101 	.notifier_call	= vfp_notifier,
102 };
103 
104 /*
105  * Raise a SIGFPE for the current process.
106  * sicode describes the signal being raised.
107  */
108 void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
109 {
110 	siginfo_t info;
111 
112 	memset(&info, 0, sizeof(info));
113 
114 	info.si_signo = SIGFPE;
115 	info.si_code = sicode;
116 	info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
117 
118 	/*
119 	 * This is the same as NWFPE, because it's not clear what
120 	 * this is used for
121 	 */
122 	current->thread.error_code = 0;
123 	current->thread.trap_no = 6;
124 
125 	send_sig_info(SIGFPE, &info, current);
126 }
127 
128 static void vfp_panic(char *reason, u32 inst)
129 {
130 	int i;
131 
132 	printk(KERN_ERR "VFP: Error: %s\n", reason);
133 	printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
134 		fmrx(FPEXC), fmrx(FPSCR), inst);
135 	for (i = 0; i < 32; i += 2)
136 		printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
137 		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
138 }
139 
140 /*
141  * Process bitmask of exception conditions.
142  */
143 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
144 {
145 	int si_code = 0;
146 
147 	pr_debug("VFP: raising exceptions %08x\n", exceptions);
148 
149 	if (exceptions == VFP_EXCEPTION_ERROR) {
150 		vfp_panic("unhandled bounce", inst);
151 		vfp_raise_sigfpe(0, regs);
152 		return;
153 	}
154 
155 	/*
156 	 * Update the FPSCR with the additional exception flags.
157 	 * Comparison instructions always return at least one of
158 	 * these flags set.
159 	 */
160 	fpscr |= exceptions;
161 
162 	fmxr(FPSCR, fpscr);
163 
164 #define RAISE(stat,en,sig)				\
165 	if (exceptions & stat && fpscr & en)		\
166 		si_code = sig;
167 
168 	/*
169 	 * These are arranged in priority order, least to highest.
170 	 */
171 	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
172 	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
173 	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
174 	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
175 	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
176 
177 	if (si_code)
178 		vfp_raise_sigfpe(si_code, regs);
179 }
180 
181 /*
182  * Emulate a VFP instruction.
183  */
184 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
185 {
186 	u32 exceptions = VFP_EXCEPTION_ERROR;
187 
188 	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
189 
190 	if (INST_CPRTDO(inst)) {
191 		if (!INST_CPRT(inst)) {
192 			/*
193 			 * CPDO
194 			 */
195 			if (vfp_single(inst)) {
196 				exceptions = vfp_single_cpdo(inst, fpscr);
197 			} else {
198 				exceptions = vfp_double_cpdo(inst, fpscr);
199 			}
200 		} else {
201 			/*
202 			 * A CPRT instruction can not appear in FPINST2, nor
203 			 * can it cause an exception.  Therefore, we do not
204 			 * have to emulate it.
205 			 */
206 		}
207 	} else {
208 		/*
209 		 * A CPDT instruction can not appear in FPINST2, nor can
210 		 * it cause an exception.  Therefore, we do not have to
211 		 * emulate it.
212 		 */
213 	}
214 	return exceptions & ~VFP_NAN_FLAG;
215 }
216 
217 /*
218  * Package up a bounce condition.
219  */
220 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
221 {
222 	u32 fpscr, orig_fpscr, fpsid, exceptions;
223 
224 	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
225 
226 	/*
227 	 * At this point, FPEXC can have the following configuration:
228 	 *
229 	 *  EX DEX IXE
230 	 *  0   1   x   - synchronous exception
231 	 *  1   x   0   - asynchronous exception
232 	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
233 	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
234 	 *                implementation), undefined otherwise
235 	 *
236 	 * Clear various bits and enable access to the VFP so we can
237 	 * handle the bounce.
238 	 */
239 	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
240 
241 	fpsid = fmrx(FPSID);
242 	orig_fpscr = fpscr = fmrx(FPSCR);
243 
244 	/*
245 	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
246 	 */
247 	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
248 	    && (fpscr & FPSCR_IXE)) {
249 		/*
250 		 * Synchronous exception, emulate the trigger instruction
251 		 */
252 		goto emulate;
253 	}
254 
255 	if (fpexc & FPEXC_EX) {
256 		/*
257 		 * Asynchronous exception. The instruction is read from FPINST
258 		 * and the interrupted instruction has to be restarted.
259 		 */
260 		trigger = fmrx(FPINST);
261 		regs->ARM_pc -= 4;
262 	} else if (!(fpexc & FPEXC_DEX)) {
263 		/*
264 		 * Illegal combination of bits. It can be caused by an
265 		 * unallocated VFP instruction but with FPSCR.IXE set and not
266 		 * on VFP subarch 1.
267 		 */
268 		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
269 		 return;
270 	}
271 
272 	/*
273 	 * Modify fpscr to indicate the number of iterations remaining.
274 	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
275 	 * whether FPEXC.VECITR or FPSCR.LEN is used.
276 	 */
277 	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
278 		u32 len;
279 
280 		len = fpexc + (1 << FPEXC_LENGTH_BIT);
281 
282 		fpscr &= ~FPSCR_LENGTH_MASK;
283 		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
284 	}
285 
286 	/*
287 	 * Handle the first FP instruction.  We used to take note of the
288 	 * FPEXC bounce reason, but this appears to be unreliable.
289 	 * Emulate the bounced instruction instead.
290 	 */
291 	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
292 	if (exceptions)
293 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
294 
295 	/*
296 	 * If there isn't a second FP instruction, exit now. Note that
297 	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
298 	 */
299 	if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
300 		return;
301 
302 	/*
303 	 * The barrier() here prevents fpinst2 being read
304 	 * before the condition above.
305 	 */
306 	barrier();
307 	trigger = fmrx(FPINST2);
308 
309  emulate:
310 	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
311 	if (exceptions)
312 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
313 }
314 
315 static void vfp_enable(void *unused)
316 {
317 	u32 access = get_copro_access();
318 
319 	/*
320 	 * Enable full access to VFP (cp10 and cp11)
321 	 */
322 	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
323 }
324 
325 #ifdef CONFIG_PM
326 #include <linux/sysdev.h>
327 
328 static int vfp_pm_suspend(struct sys_device *dev, pm_message_t state)
329 {
330 	struct thread_info *ti = current_thread_info();
331 	u32 fpexc = fmrx(FPEXC);
332 
333 	/* if vfp is on, then save state for resumption */
334 	if (fpexc & FPEXC_EN) {
335 		printk(KERN_DEBUG "%s: saving vfp state\n", __func__);
336 		vfp_save_state(&ti->vfpstate, fpexc);
337 
338 		/* disable, just in case */
339 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
340 	}
341 
342 	/* clear any information we had about last context state */
343 	memset(last_VFP_context, 0, sizeof(last_VFP_context));
344 
345 	return 0;
346 }
347 
348 static int vfp_pm_resume(struct sys_device *dev)
349 {
350 	/* ensure we have access to the vfp */
351 	vfp_enable(NULL);
352 
353 	/* and disable it to ensure the next usage restores the state */
354 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
355 
356 	return 0;
357 }
358 
359 static struct sysdev_class vfp_pm_sysclass = {
360 	.name		= "vfp",
361 	.suspend	= vfp_pm_suspend,
362 	.resume		= vfp_pm_resume,
363 };
364 
365 static struct sys_device vfp_pm_sysdev = {
366 	.cls	= &vfp_pm_sysclass,
367 };
368 
369 static void vfp_pm_init(void)
370 {
371 	sysdev_class_register(&vfp_pm_sysclass);
372 	sysdev_register(&vfp_pm_sysdev);
373 }
374 
375 
376 #else
377 static inline void vfp_pm_init(void) { }
378 #endif /* CONFIG_PM */
379 
380 /*
381  * Synchronise the hardware VFP state of a thread other than current with the
382  * saved one. This function is used by the ptrace mechanism.
383  */
384 #ifdef CONFIG_SMP
385 void vfp_sync_state(struct thread_info *thread)
386 {
387 	/*
388 	 * On SMP systems, the VFP state is automatically saved at every
389 	 * context switch. We mark the thread VFP state as belonging to a
390 	 * non-existent CPU so that the saved one will be reloaded when
391 	 * needed.
392 	 */
393 	thread->vfpstate.hard.cpu = NR_CPUS;
394 }
395 #else
396 void vfp_sync_state(struct thread_info *thread)
397 {
398 	unsigned int cpu = get_cpu();
399 	u32 fpexc = fmrx(FPEXC);
400 
401 	/*
402 	 * If VFP is enabled, the previous state was already saved and
403 	 * last_VFP_context updated.
404 	 */
405 	if (fpexc & FPEXC_EN)
406 		goto out;
407 
408 	if (!last_VFP_context[cpu])
409 		goto out;
410 
411 	/*
412 	 * Save the last VFP state on this CPU.
413 	 */
414 	fmxr(FPEXC, fpexc | FPEXC_EN);
415 	vfp_save_state(last_VFP_context[cpu], fpexc);
416 	fmxr(FPEXC, fpexc);
417 
418 	/*
419 	 * Set the context to NULL to force a reload the next time the thread
420 	 * uses the VFP.
421 	 */
422 	last_VFP_context[cpu] = NULL;
423 
424 out:
425 	put_cpu();
426 }
427 #endif
428 
429 #include <linux/smp.h>
430 
431 /*
432  * VFP support code initialisation.
433  */
434 static int __init vfp_init(void)
435 {
436 	unsigned int vfpsid;
437 	unsigned int cpu_arch = cpu_architecture();
438 
439 	if (cpu_arch >= CPU_ARCH_ARMv6)
440 		vfp_enable(NULL);
441 
442 	/*
443 	 * First check that there is a VFP that we can use.
444 	 * The handler is already setup to just log calls, so
445 	 * we just need to read the VFPSID register.
446 	 */
447 	vfp_vector = vfp_testing_entry;
448 	barrier();
449 	vfpsid = fmrx(FPSID);
450 	barrier();
451 	vfp_vector = vfp_null_entry;
452 
453 	printk(KERN_INFO "VFP support v0.3: ");
454 	if (VFP_arch)
455 		printk("not present\n");
456 	else if (vfpsid & FPSID_NODOUBLE) {
457 		printk("no double precision support\n");
458 	} else {
459 		smp_call_function(vfp_enable, NULL, 1);
460 
461 		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;  /* Extract the architecture version */
462 		printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
463 			(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
464 			(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
465 			(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
466 			(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
467 			(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
468 
469 		vfp_vector = vfp_support_entry;
470 
471 		thread_register_notifier(&vfp_notifier_block);
472 		vfp_pm_init();
473 
474 		/*
475 		 * We detected VFP, and the support code is
476 		 * in place; report VFP support to userspace.
477 		 */
478 		elf_hwcap |= HWCAP_VFP;
479 #ifdef CONFIG_VFPv3
480 		if (VFP_arch >= 3) {
481 			elf_hwcap |= HWCAP_VFPv3;
482 
483 			/*
484 			 * Check for VFPv3 D16. CPUs in this configuration
485 			 * only have 16 x 64bit registers.
486 			 */
487 			if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
488 				elf_hwcap |= HWCAP_VFPv3D16;
489 		}
490 #endif
491 #ifdef CONFIG_NEON
492 		/*
493 		 * Check for the presence of the Advanced SIMD
494 		 * load/store instructions, integer and single
495 		 * precision floating point operations.
496 		 */
497 		if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
498 			elf_hwcap |= HWCAP_NEON;
499 #endif
500 	}
501 	return 0;
502 }
503 
504 late_initcall(vfp_init);
505