xref: /openbmc/linux/arch/arm/vfp/vfpmodule.c (revision 81d67439)
1 /*
2  *  linux/arch/arm/vfp/vfpmodule.c
3  *
4  *  Copyright (C) 2004 ARM Limited.
5  *  Written by Deep Blue Solutions Limited.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/cpu.h>
14 #include <linux/kernel.h>
15 #include <linux/notifier.h>
16 #include <linux/signal.h>
17 #include <linux/sched.h>
18 #include <linux/smp.h>
19 #include <linux/init.h>
20 
21 #include <asm/cputype.h>
22 #include <asm/thread_notify.h>
23 #include <asm/vfp.h>
24 
25 #include "vfpinstr.h"
26 #include "vfp.h"
27 
28 /*
29  * Our undef handlers (in entry.S)
30  */
31 void vfp_testing_entry(void);
32 void vfp_support_entry(void);
33 void vfp_null_entry(void);
34 
35 void (*vfp_vector)(void) = vfp_null_entry;
36 union vfp_state *last_VFP_context[NR_CPUS];
37 
38 /*
39  * Dual-use variable.
40  * Used in startup: set to non-zero if VFP checks fail
41  * After startup, holds VFP architecture
42  */
43 unsigned int VFP_arch;
44 
45 /*
46  * Per-thread VFP initialization.
47  */
48 static void vfp_thread_flush(struct thread_info *thread)
49 {
50 	union vfp_state *vfp = &thread->vfpstate;
51 	unsigned int cpu;
52 
53 	memset(vfp, 0, sizeof(union vfp_state));
54 
55 	vfp->hard.fpexc = FPEXC_EN;
56 	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
57 
58 	/*
59 	 * Disable VFP to ensure we initialize it first.  We must ensure
60 	 * that the modification of last_VFP_context[] and hardware disable
61 	 * are done for the same CPU and without preemption.
62 	 */
63 	cpu = get_cpu();
64 	if (last_VFP_context[cpu] == vfp)
65 		last_VFP_context[cpu] = NULL;
66 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
67 	put_cpu();
68 }
69 
70 static void vfp_thread_exit(struct thread_info *thread)
71 {
72 	/* release case: Per-thread VFP cleanup. */
73 	union vfp_state *vfp = &thread->vfpstate;
74 	unsigned int cpu = get_cpu();
75 
76 	if (last_VFP_context[cpu] == vfp)
77 		last_VFP_context[cpu] = NULL;
78 	put_cpu();
79 }
80 
81 static void vfp_thread_copy(struct thread_info *thread)
82 {
83 	struct thread_info *parent = current_thread_info();
84 
85 	vfp_sync_hwstate(parent);
86 	thread->vfpstate = parent->vfpstate;
87 }
88 
89 /*
90  * When this function is called with the following 'cmd's, the following
91  * is true while this function is being run:
92  *  THREAD_NOFTIFY_SWTICH:
93  *   - the previously running thread will not be scheduled onto another CPU.
94  *   - the next thread to be run (v) will not be running on another CPU.
95  *   - thread->cpu is the local CPU number
96  *   - not preemptible as we're called in the middle of a thread switch
97  *  THREAD_NOTIFY_FLUSH:
98  *   - the thread (v) will be running on the local CPU, so
99  *	v === current_thread_info()
100  *   - thread->cpu is the local CPU number at the time it is accessed,
101  *	but may change at any time.
102  *   - we could be preempted if tree preempt rcu is enabled, so
103  *	it is unsafe to use thread->cpu.
104  *  THREAD_NOTIFY_EXIT
105  *   - the thread (v) will be running on the local CPU, so
106  *	v === current_thread_info()
107  *   - thread->cpu is the local CPU number at the time it is accessed,
108  *	but may change at any time.
109  *   - we could be preempted if tree preempt rcu is enabled, so
110  *	it is unsafe to use thread->cpu.
111  */
112 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
113 {
114 	struct thread_info *thread = v;
115 	u32 fpexc;
116 #ifdef CONFIG_SMP
117 	unsigned int cpu;
118 #endif
119 
120 	switch (cmd) {
121 	case THREAD_NOTIFY_SWITCH:
122 		fpexc = fmrx(FPEXC);
123 
124 #ifdef CONFIG_SMP
125 		cpu = thread->cpu;
126 
127 		/*
128 		 * On SMP, if VFP is enabled, save the old state in
129 		 * case the thread migrates to a different CPU. The
130 		 * restoring is done lazily.
131 		 */
132 		if ((fpexc & FPEXC_EN) && last_VFP_context[cpu]) {
133 			vfp_save_state(last_VFP_context[cpu], fpexc);
134 			last_VFP_context[cpu]->hard.cpu = cpu;
135 		}
136 		/*
137 		 * Thread migration, just force the reloading of the
138 		 * state on the new CPU in case the VFP registers
139 		 * contain stale data.
140 		 */
141 		if (thread->vfpstate.hard.cpu != cpu)
142 			last_VFP_context[cpu] = NULL;
143 #endif
144 
145 		/*
146 		 * Always disable VFP so we can lazily save/restore the
147 		 * old state.
148 		 */
149 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
150 		break;
151 
152 	case THREAD_NOTIFY_FLUSH:
153 		vfp_thread_flush(thread);
154 		break;
155 
156 	case THREAD_NOTIFY_EXIT:
157 		vfp_thread_exit(thread);
158 		break;
159 
160 	case THREAD_NOTIFY_COPY:
161 		vfp_thread_copy(thread);
162 		break;
163 	}
164 
165 	return NOTIFY_DONE;
166 }
167 
168 static struct notifier_block vfp_notifier_block = {
169 	.notifier_call	= vfp_notifier,
170 };
171 
172 /*
173  * Raise a SIGFPE for the current process.
174  * sicode describes the signal being raised.
175  */
176 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
177 {
178 	siginfo_t info;
179 
180 	memset(&info, 0, sizeof(info));
181 
182 	info.si_signo = SIGFPE;
183 	info.si_code = sicode;
184 	info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
185 
186 	/*
187 	 * This is the same as NWFPE, because it's not clear what
188 	 * this is used for
189 	 */
190 	current->thread.error_code = 0;
191 	current->thread.trap_no = 6;
192 
193 	send_sig_info(SIGFPE, &info, current);
194 }
195 
196 static void vfp_panic(char *reason, u32 inst)
197 {
198 	int i;
199 
200 	printk(KERN_ERR "VFP: Error: %s\n", reason);
201 	printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
202 		fmrx(FPEXC), fmrx(FPSCR), inst);
203 	for (i = 0; i < 32; i += 2)
204 		printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
205 		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
206 }
207 
208 /*
209  * Process bitmask of exception conditions.
210  */
211 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
212 {
213 	int si_code = 0;
214 
215 	pr_debug("VFP: raising exceptions %08x\n", exceptions);
216 
217 	if (exceptions == VFP_EXCEPTION_ERROR) {
218 		vfp_panic("unhandled bounce", inst);
219 		vfp_raise_sigfpe(0, regs);
220 		return;
221 	}
222 
223 	/*
224 	 * If any of the status flags are set, update the FPSCR.
225 	 * Comparison instructions always return at least one of
226 	 * these flags set.
227 	 */
228 	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
229 		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
230 
231 	fpscr |= exceptions;
232 
233 	fmxr(FPSCR, fpscr);
234 
235 #define RAISE(stat,en,sig)				\
236 	if (exceptions & stat && fpscr & en)		\
237 		si_code = sig;
238 
239 	/*
240 	 * These are arranged in priority order, least to highest.
241 	 */
242 	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
243 	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
244 	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
245 	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
246 	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
247 
248 	if (si_code)
249 		vfp_raise_sigfpe(si_code, regs);
250 }
251 
252 /*
253  * Emulate a VFP instruction.
254  */
255 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
256 {
257 	u32 exceptions = VFP_EXCEPTION_ERROR;
258 
259 	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
260 
261 	if (INST_CPRTDO(inst)) {
262 		if (!INST_CPRT(inst)) {
263 			/*
264 			 * CPDO
265 			 */
266 			if (vfp_single(inst)) {
267 				exceptions = vfp_single_cpdo(inst, fpscr);
268 			} else {
269 				exceptions = vfp_double_cpdo(inst, fpscr);
270 			}
271 		} else {
272 			/*
273 			 * A CPRT instruction can not appear in FPINST2, nor
274 			 * can it cause an exception.  Therefore, we do not
275 			 * have to emulate it.
276 			 */
277 		}
278 	} else {
279 		/*
280 		 * A CPDT instruction can not appear in FPINST2, nor can
281 		 * it cause an exception.  Therefore, we do not have to
282 		 * emulate it.
283 		 */
284 	}
285 	return exceptions & ~VFP_NAN_FLAG;
286 }
287 
288 /*
289  * Package up a bounce condition.
290  */
291 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
292 {
293 	u32 fpscr, orig_fpscr, fpsid, exceptions;
294 
295 	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
296 
297 	/*
298 	 * At this point, FPEXC can have the following configuration:
299 	 *
300 	 *  EX DEX IXE
301 	 *  0   1   x   - synchronous exception
302 	 *  1   x   0   - asynchronous exception
303 	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
304 	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
305 	 *                implementation), undefined otherwise
306 	 *
307 	 * Clear various bits and enable access to the VFP so we can
308 	 * handle the bounce.
309 	 */
310 	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
311 
312 	fpsid = fmrx(FPSID);
313 	orig_fpscr = fpscr = fmrx(FPSCR);
314 
315 	/*
316 	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
317 	 */
318 	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
319 	    && (fpscr & FPSCR_IXE)) {
320 		/*
321 		 * Synchronous exception, emulate the trigger instruction
322 		 */
323 		goto emulate;
324 	}
325 
326 	if (fpexc & FPEXC_EX) {
327 #ifndef CONFIG_CPU_FEROCEON
328 		/*
329 		 * Asynchronous exception. The instruction is read from FPINST
330 		 * and the interrupted instruction has to be restarted.
331 		 */
332 		trigger = fmrx(FPINST);
333 		regs->ARM_pc -= 4;
334 #endif
335 	} else if (!(fpexc & FPEXC_DEX)) {
336 		/*
337 		 * Illegal combination of bits. It can be caused by an
338 		 * unallocated VFP instruction but with FPSCR.IXE set and not
339 		 * on VFP subarch 1.
340 		 */
341 		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
342 		goto exit;
343 	}
344 
345 	/*
346 	 * Modify fpscr to indicate the number of iterations remaining.
347 	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
348 	 * whether FPEXC.VECITR or FPSCR.LEN is used.
349 	 */
350 	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
351 		u32 len;
352 
353 		len = fpexc + (1 << FPEXC_LENGTH_BIT);
354 
355 		fpscr &= ~FPSCR_LENGTH_MASK;
356 		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
357 	}
358 
359 	/*
360 	 * Handle the first FP instruction.  We used to take note of the
361 	 * FPEXC bounce reason, but this appears to be unreliable.
362 	 * Emulate the bounced instruction instead.
363 	 */
364 	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
365 	if (exceptions)
366 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
367 
368 	/*
369 	 * If there isn't a second FP instruction, exit now. Note that
370 	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
371 	 */
372 	if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
373 		goto exit;
374 
375 	/*
376 	 * The barrier() here prevents fpinst2 being read
377 	 * before the condition above.
378 	 */
379 	barrier();
380 	trigger = fmrx(FPINST2);
381 
382  emulate:
383 	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
384 	if (exceptions)
385 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
386  exit:
387 	preempt_enable();
388 }
389 
390 static void vfp_enable(void *unused)
391 {
392 	u32 access = get_copro_access();
393 
394 	/*
395 	 * Enable full access to VFP (cp10 and cp11)
396 	 */
397 	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
398 }
399 
400 #ifdef CONFIG_PM
401 #include <linux/syscore_ops.h>
402 
403 static int vfp_pm_suspend(void)
404 {
405 	struct thread_info *ti = current_thread_info();
406 	u32 fpexc = fmrx(FPEXC);
407 
408 	/* if vfp is on, then save state for resumption */
409 	if (fpexc & FPEXC_EN) {
410 		printk(KERN_DEBUG "%s: saving vfp state\n", __func__);
411 		vfp_save_state(&ti->vfpstate, fpexc);
412 
413 		/* disable, just in case */
414 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
415 	}
416 
417 	/* clear any information we had about last context state */
418 	memset(last_VFP_context, 0, sizeof(last_VFP_context));
419 
420 	return 0;
421 }
422 
423 static void vfp_pm_resume(void)
424 {
425 	/* ensure we have access to the vfp */
426 	vfp_enable(NULL);
427 
428 	/* and disable it to ensure the next usage restores the state */
429 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
430 }
431 
432 static struct syscore_ops vfp_pm_syscore_ops = {
433 	.suspend	= vfp_pm_suspend,
434 	.resume		= vfp_pm_resume,
435 };
436 
437 static void vfp_pm_init(void)
438 {
439 	register_syscore_ops(&vfp_pm_syscore_ops);
440 }
441 
442 #else
443 static inline void vfp_pm_init(void) { }
444 #endif /* CONFIG_PM */
445 
446 void vfp_sync_hwstate(struct thread_info *thread)
447 {
448 	unsigned int cpu = get_cpu();
449 
450 	/*
451 	 * If the thread we're interested in is the current owner of the
452 	 * hardware VFP state, then we need to save its state.
453 	 */
454 	if (last_VFP_context[cpu] == &thread->vfpstate) {
455 		u32 fpexc = fmrx(FPEXC);
456 
457 		/*
458 		 * Save the last VFP state on this CPU.
459 		 */
460 		fmxr(FPEXC, fpexc | FPEXC_EN);
461 		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
462 		fmxr(FPEXC, fpexc);
463 	}
464 
465 	put_cpu();
466 }
467 
468 void vfp_flush_hwstate(struct thread_info *thread)
469 {
470 	unsigned int cpu = get_cpu();
471 
472 	/*
473 	 * If the thread we're interested in is the current owner of the
474 	 * hardware VFP state, then we need to save its state.
475 	 */
476 	if (last_VFP_context[cpu] == &thread->vfpstate) {
477 		u32 fpexc = fmrx(FPEXC);
478 
479 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
480 
481 		/*
482 		 * Set the context to NULL to force a reload the next time
483 		 * the thread uses the VFP.
484 		 */
485 		last_VFP_context[cpu] = NULL;
486 	}
487 
488 #ifdef CONFIG_SMP
489 	/*
490 	 * For SMP we still have to take care of the case where the thread
491 	 * migrates to another CPU and then back to the original CPU on which
492 	 * the last VFP user is still the same thread. Mark the thread VFP
493 	 * state as belonging to a non-existent CPU so that the saved one will
494 	 * be reloaded in the above case.
495 	 */
496 	thread->vfpstate.hard.cpu = NR_CPUS;
497 #endif
498 	put_cpu();
499 }
500 
501 /*
502  * VFP hardware can lose all context when a CPU goes offline.
503  * As we will be running in SMP mode with CPU hotplug, we will save the
504  * hardware state at every thread switch.  We clear our held state when
505  * a CPU has been killed, indicating that the VFP hardware doesn't contain
506  * a threads VFP state.  When a CPU starts up, we re-enable access to the
507  * VFP hardware.
508  *
509  * Both CPU_DYING and CPU_STARTING are called on the CPU which
510  * is being offlined/onlined.
511  */
512 static int vfp_hotplug(struct notifier_block *b, unsigned long action,
513 	void *hcpu)
514 {
515 	if (action == CPU_DYING || action == CPU_DYING_FROZEN) {
516 		unsigned int cpu = (long)hcpu;
517 		last_VFP_context[cpu] = NULL;
518 	} else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN)
519 		vfp_enable(NULL);
520 	return NOTIFY_OK;
521 }
522 
523 /*
524  * VFP support code initialisation.
525  */
526 static int __init vfp_init(void)
527 {
528 	unsigned int vfpsid;
529 	unsigned int cpu_arch = cpu_architecture();
530 
531 	if (cpu_arch >= CPU_ARCH_ARMv6)
532 		vfp_enable(NULL);
533 
534 	/*
535 	 * First check that there is a VFP that we can use.
536 	 * The handler is already setup to just log calls, so
537 	 * we just need to read the VFPSID register.
538 	 */
539 	vfp_vector = vfp_testing_entry;
540 	barrier();
541 	vfpsid = fmrx(FPSID);
542 	barrier();
543 	vfp_vector = vfp_null_entry;
544 
545 	printk(KERN_INFO "VFP support v0.3: ");
546 	if (VFP_arch)
547 		printk("not present\n");
548 	else if (vfpsid & FPSID_NODOUBLE) {
549 		printk("no double precision support\n");
550 	} else {
551 		hotcpu_notifier(vfp_hotplug, 0);
552 
553 		smp_call_function(vfp_enable, NULL, 1);
554 
555 		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;  /* Extract the architecture version */
556 		printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
557 			(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
558 			(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
559 			(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
560 			(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
561 			(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
562 
563 		vfp_vector = vfp_support_entry;
564 
565 		thread_register_notifier(&vfp_notifier_block);
566 		vfp_pm_init();
567 
568 		/*
569 		 * We detected VFP, and the support code is
570 		 * in place; report VFP support to userspace.
571 		 */
572 		elf_hwcap |= HWCAP_VFP;
573 #ifdef CONFIG_VFPv3
574 		if (VFP_arch >= 2) {
575 			elf_hwcap |= HWCAP_VFPv3;
576 
577 			/*
578 			 * Check for VFPv3 D16. CPUs in this configuration
579 			 * only have 16 x 64bit registers.
580 			 */
581 			if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
582 				elf_hwcap |= HWCAP_VFPv3D16;
583 		}
584 #endif
585 #ifdef CONFIG_NEON
586 		/*
587 		 * Check for the presence of the Advanced SIMD
588 		 * load/store instructions, integer and single
589 		 * precision floating point operations. Only check
590 		 * for NEON if the hardware has the MVFR registers.
591 		 */
592 		if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) {
593 			if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
594 				elf_hwcap |= HWCAP_NEON;
595 		}
596 #endif
597 	}
598 	return 0;
599 }
600 
601 late_initcall(vfp_init);
602