1 /* 2 * linux/arch/arm/vfp/vfpmodule.c 3 * 4 * Copyright (C) 2004 ARM Limited. 5 * Written by Deep Blue Solutions Limited. 6 * 7 * This program is free software; you can redistribute it and/or modify 8 * it under the terms of the GNU General Public License version 2 as 9 * published by the Free Software Foundation. 10 */ 11 #include <linux/types.h> 12 #include <linux/cpu.h> 13 #include <linux/cpu_pm.h> 14 #include <linux/hardirq.h> 15 #include <linux/kernel.h> 16 #include <linux/notifier.h> 17 #include <linux/signal.h> 18 #include <linux/sched.h> 19 #include <linux/smp.h> 20 #include <linux/init.h> 21 #include <linux/uaccess.h> 22 #include <linux/user.h> 23 #include <linux/export.h> 24 25 #include <asm/cp15.h> 26 #include <asm/cputype.h> 27 #include <asm/system_info.h> 28 #include <asm/thread_notify.h> 29 #include <asm/vfp.h> 30 31 #include "vfpinstr.h" 32 #include "vfp.h" 33 34 /* 35 * Our undef handlers (in entry.S) 36 */ 37 void vfp_testing_entry(void); 38 void vfp_support_entry(void); 39 void vfp_null_entry(void); 40 41 void (*vfp_vector)(void) = vfp_null_entry; 42 43 /* 44 * Dual-use variable. 45 * Used in startup: set to non-zero if VFP checks fail 46 * After startup, holds VFP architecture 47 */ 48 unsigned int VFP_arch; 49 50 /* 51 * The pointer to the vfpstate structure of the thread which currently 52 * owns the context held in the VFP hardware, or NULL if the hardware 53 * context is invalid. 54 * 55 * For UP, this is sufficient to tell which thread owns the VFP context. 56 * However, for SMP, we also need to check the CPU number stored in the 57 * saved state too to catch migrations. 58 */ 59 union vfp_state *vfp_current_hw_state[NR_CPUS]; 60 61 /* 62 * Is 'thread's most up to date state stored in this CPUs hardware? 63 * Must be called from non-preemptible context. 64 */ 65 static bool vfp_state_in_hw(unsigned int cpu, struct thread_info *thread) 66 { 67 #ifdef CONFIG_SMP 68 if (thread->vfpstate.hard.cpu != cpu) 69 return false; 70 #endif 71 return vfp_current_hw_state[cpu] == &thread->vfpstate; 72 } 73 74 /* 75 * Force a reload of the VFP context from the thread structure. We do 76 * this by ensuring that access to the VFP hardware is disabled, and 77 * clear vfp_current_hw_state. Must be called from non-preemptible context. 78 */ 79 static void vfp_force_reload(unsigned int cpu, struct thread_info *thread) 80 { 81 if (vfp_state_in_hw(cpu, thread)) { 82 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); 83 vfp_current_hw_state[cpu] = NULL; 84 } 85 #ifdef CONFIG_SMP 86 thread->vfpstate.hard.cpu = NR_CPUS; 87 #endif 88 } 89 90 /* 91 * Per-thread VFP initialization. 92 */ 93 static void vfp_thread_flush(struct thread_info *thread) 94 { 95 union vfp_state *vfp = &thread->vfpstate; 96 unsigned int cpu; 97 98 /* 99 * Disable VFP to ensure we initialize it first. We must ensure 100 * that the modification of vfp_current_hw_state[] and hardware 101 * disable are done for the same CPU and without preemption. 102 * 103 * Do this first to ensure that preemption won't overwrite our 104 * state saving should access to the VFP be enabled at this point. 105 */ 106 cpu = get_cpu(); 107 if (vfp_current_hw_state[cpu] == vfp) 108 vfp_current_hw_state[cpu] = NULL; 109 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); 110 put_cpu(); 111 112 memset(vfp, 0, sizeof(union vfp_state)); 113 114 vfp->hard.fpexc = FPEXC_EN; 115 vfp->hard.fpscr = FPSCR_ROUND_NEAREST; 116 #ifdef CONFIG_SMP 117 vfp->hard.cpu = NR_CPUS; 118 #endif 119 } 120 121 static void vfp_thread_exit(struct thread_info *thread) 122 { 123 /* release case: Per-thread VFP cleanup. */ 124 union vfp_state *vfp = &thread->vfpstate; 125 unsigned int cpu = get_cpu(); 126 127 if (vfp_current_hw_state[cpu] == vfp) 128 vfp_current_hw_state[cpu] = NULL; 129 put_cpu(); 130 } 131 132 static void vfp_thread_copy(struct thread_info *thread) 133 { 134 struct thread_info *parent = current_thread_info(); 135 136 vfp_sync_hwstate(parent); 137 thread->vfpstate = parent->vfpstate; 138 #ifdef CONFIG_SMP 139 thread->vfpstate.hard.cpu = NR_CPUS; 140 #endif 141 } 142 143 /* 144 * When this function is called with the following 'cmd's, the following 145 * is true while this function is being run: 146 * THREAD_NOFTIFY_SWTICH: 147 * - the previously running thread will not be scheduled onto another CPU. 148 * - the next thread to be run (v) will not be running on another CPU. 149 * - thread->cpu is the local CPU number 150 * - not preemptible as we're called in the middle of a thread switch 151 * THREAD_NOTIFY_FLUSH: 152 * - the thread (v) will be running on the local CPU, so 153 * v === current_thread_info() 154 * - thread->cpu is the local CPU number at the time it is accessed, 155 * but may change at any time. 156 * - we could be preempted if tree preempt rcu is enabled, so 157 * it is unsafe to use thread->cpu. 158 * THREAD_NOTIFY_EXIT 159 * - the thread (v) will be running on the local CPU, so 160 * v === current_thread_info() 161 * - thread->cpu is the local CPU number at the time it is accessed, 162 * but may change at any time. 163 * - we could be preempted if tree preempt rcu is enabled, so 164 * it is unsafe to use thread->cpu. 165 */ 166 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v) 167 { 168 struct thread_info *thread = v; 169 u32 fpexc; 170 #ifdef CONFIG_SMP 171 unsigned int cpu; 172 #endif 173 174 switch (cmd) { 175 case THREAD_NOTIFY_SWITCH: 176 fpexc = fmrx(FPEXC); 177 178 #ifdef CONFIG_SMP 179 cpu = thread->cpu; 180 181 /* 182 * On SMP, if VFP is enabled, save the old state in 183 * case the thread migrates to a different CPU. The 184 * restoring is done lazily. 185 */ 186 if ((fpexc & FPEXC_EN) && vfp_current_hw_state[cpu]) 187 vfp_save_state(vfp_current_hw_state[cpu], fpexc); 188 #endif 189 190 /* 191 * Always disable VFP so we can lazily save/restore the 192 * old state. 193 */ 194 fmxr(FPEXC, fpexc & ~FPEXC_EN); 195 break; 196 197 case THREAD_NOTIFY_FLUSH: 198 vfp_thread_flush(thread); 199 break; 200 201 case THREAD_NOTIFY_EXIT: 202 vfp_thread_exit(thread); 203 break; 204 205 case THREAD_NOTIFY_COPY: 206 vfp_thread_copy(thread); 207 break; 208 } 209 210 return NOTIFY_DONE; 211 } 212 213 static struct notifier_block vfp_notifier_block = { 214 .notifier_call = vfp_notifier, 215 }; 216 217 /* 218 * Raise a SIGFPE for the current process. 219 * sicode describes the signal being raised. 220 */ 221 static void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs) 222 { 223 siginfo_t info; 224 225 memset(&info, 0, sizeof(info)); 226 227 info.si_signo = SIGFPE; 228 info.si_code = sicode; 229 info.si_addr = (void __user *)(instruction_pointer(regs) - 4); 230 231 /* 232 * This is the same as NWFPE, because it's not clear what 233 * this is used for 234 */ 235 current->thread.error_code = 0; 236 current->thread.trap_no = 6; 237 238 send_sig_info(SIGFPE, &info, current); 239 } 240 241 static void vfp_panic(char *reason, u32 inst) 242 { 243 int i; 244 245 pr_err("VFP: Error: %s\n", reason); 246 pr_err("VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n", 247 fmrx(FPEXC), fmrx(FPSCR), inst); 248 for (i = 0; i < 32; i += 2) 249 pr_err("VFP: s%2u: 0x%08x s%2u: 0x%08x\n", 250 i, vfp_get_float(i), i+1, vfp_get_float(i+1)); 251 } 252 253 /* 254 * Process bitmask of exception conditions. 255 */ 256 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs) 257 { 258 int si_code = 0; 259 260 pr_debug("VFP: raising exceptions %08x\n", exceptions); 261 262 if (exceptions == VFP_EXCEPTION_ERROR) { 263 vfp_panic("unhandled bounce", inst); 264 vfp_raise_sigfpe(0, regs); 265 return; 266 } 267 268 /* 269 * If any of the status flags are set, update the FPSCR. 270 * Comparison instructions always return at least one of 271 * these flags set. 272 */ 273 if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V)) 274 fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V); 275 276 fpscr |= exceptions; 277 278 fmxr(FPSCR, fpscr); 279 280 #define RAISE(stat,en,sig) \ 281 if (exceptions & stat && fpscr & en) \ 282 si_code = sig; 283 284 /* 285 * These are arranged in priority order, least to highest. 286 */ 287 RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV); 288 RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES); 289 RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND); 290 RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF); 291 RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV); 292 293 if (si_code) 294 vfp_raise_sigfpe(si_code, regs); 295 } 296 297 /* 298 * Emulate a VFP instruction. 299 */ 300 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs) 301 { 302 u32 exceptions = VFP_EXCEPTION_ERROR; 303 304 pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr); 305 306 if (INST_CPRTDO(inst)) { 307 if (!INST_CPRT(inst)) { 308 /* 309 * CPDO 310 */ 311 if (vfp_single(inst)) { 312 exceptions = vfp_single_cpdo(inst, fpscr); 313 } else { 314 exceptions = vfp_double_cpdo(inst, fpscr); 315 } 316 } else { 317 /* 318 * A CPRT instruction can not appear in FPINST2, nor 319 * can it cause an exception. Therefore, we do not 320 * have to emulate it. 321 */ 322 } 323 } else { 324 /* 325 * A CPDT instruction can not appear in FPINST2, nor can 326 * it cause an exception. Therefore, we do not have to 327 * emulate it. 328 */ 329 } 330 return exceptions & ~VFP_NAN_FLAG; 331 } 332 333 /* 334 * Package up a bounce condition. 335 */ 336 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs) 337 { 338 u32 fpscr, orig_fpscr, fpsid, exceptions; 339 340 pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc); 341 342 /* 343 * At this point, FPEXC can have the following configuration: 344 * 345 * EX DEX IXE 346 * 0 1 x - synchronous exception 347 * 1 x 0 - asynchronous exception 348 * 1 x 1 - sychronous on VFP subarch 1 and asynchronous on later 349 * 0 0 1 - synchronous on VFP9 (non-standard subarch 1 350 * implementation), undefined otherwise 351 * 352 * Clear various bits and enable access to the VFP so we can 353 * handle the bounce. 354 */ 355 fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK)); 356 357 fpsid = fmrx(FPSID); 358 orig_fpscr = fpscr = fmrx(FPSCR); 359 360 /* 361 * Check for the special VFP subarch 1 and FPSCR.IXE bit case 362 */ 363 if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT) 364 && (fpscr & FPSCR_IXE)) { 365 /* 366 * Synchronous exception, emulate the trigger instruction 367 */ 368 goto emulate; 369 } 370 371 if (fpexc & FPEXC_EX) { 372 #ifndef CONFIG_CPU_FEROCEON 373 /* 374 * Asynchronous exception. The instruction is read from FPINST 375 * and the interrupted instruction has to be restarted. 376 */ 377 trigger = fmrx(FPINST); 378 regs->ARM_pc -= 4; 379 #endif 380 } else if (!(fpexc & FPEXC_DEX)) { 381 /* 382 * Illegal combination of bits. It can be caused by an 383 * unallocated VFP instruction but with FPSCR.IXE set and not 384 * on VFP subarch 1. 385 */ 386 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs); 387 goto exit; 388 } 389 390 /* 391 * Modify fpscr to indicate the number of iterations remaining. 392 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates 393 * whether FPEXC.VECITR or FPSCR.LEN is used. 394 */ 395 if (fpexc & (FPEXC_EX | FPEXC_VV)) { 396 u32 len; 397 398 len = fpexc + (1 << FPEXC_LENGTH_BIT); 399 400 fpscr &= ~FPSCR_LENGTH_MASK; 401 fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT); 402 } 403 404 /* 405 * Handle the first FP instruction. We used to take note of the 406 * FPEXC bounce reason, but this appears to be unreliable. 407 * Emulate the bounced instruction instead. 408 */ 409 exceptions = vfp_emulate_instruction(trigger, fpscr, regs); 410 if (exceptions) 411 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); 412 413 /* 414 * If there isn't a second FP instruction, exit now. Note that 415 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1. 416 */ 417 if ((fpexc & (FPEXC_EX | FPEXC_FP2V)) != (FPEXC_EX | FPEXC_FP2V)) 418 goto exit; 419 420 /* 421 * The barrier() here prevents fpinst2 being read 422 * before the condition above. 423 */ 424 barrier(); 425 trigger = fmrx(FPINST2); 426 427 emulate: 428 exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs); 429 if (exceptions) 430 vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs); 431 exit: 432 preempt_enable(); 433 } 434 435 static void vfp_enable(void *unused) 436 { 437 u32 access; 438 439 BUG_ON(preemptible()); 440 access = get_copro_access(); 441 442 /* 443 * Enable full access to VFP (cp10 and cp11) 444 */ 445 set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11)); 446 } 447 448 #ifdef CONFIG_CPU_PM 449 static int vfp_pm_suspend(void) 450 { 451 struct thread_info *ti = current_thread_info(); 452 u32 fpexc = fmrx(FPEXC); 453 454 /* if vfp is on, then save state for resumption */ 455 if (fpexc & FPEXC_EN) { 456 pr_debug("%s: saving vfp state\n", __func__); 457 vfp_save_state(&ti->vfpstate, fpexc); 458 459 /* disable, just in case */ 460 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); 461 } else if (vfp_current_hw_state[ti->cpu]) { 462 #ifndef CONFIG_SMP 463 fmxr(FPEXC, fpexc | FPEXC_EN); 464 vfp_save_state(vfp_current_hw_state[ti->cpu], fpexc); 465 fmxr(FPEXC, fpexc); 466 #endif 467 } 468 469 /* clear any information we had about last context state */ 470 vfp_current_hw_state[ti->cpu] = NULL; 471 472 return 0; 473 } 474 475 static void vfp_pm_resume(void) 476 { 477 /* ensure we have access to the vfp */ 478 vfp_enable(NULL); 479 480 /* and disable it to ensure the next usage restores the state */ 481 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); 482 } 483 484 static int vfp_cpu_pm_notifier(struct notifier_block *self, unsigned long cmd, 485 void *v) 486 { 487 switch (cmd) { 488 case CPU_PM_ENTER: 489 vfp_pm_suspend(); 490 break; 491 case CPU_PM_ENTER_FAILED: 492 case CPU_PM_EXIT: 493 vfp_pm_resume(); 494 break; 495 } 496 return NOTIFY_OK; 497 } 498 499 static struct notifier_block vfp_cpu_pm_notifier_block = { 500 .notifier_call = vfp_cpu_pm_notifier, 501 }; 502 503 static void vfp_pm_init(void) 504 { 505 cpu_pm_register_notifier(&vfp_cpu_pm_notifier_block); 506 } 507 508 #else 509 static inline void vfp_pm_init(void) { } 510 #endif /* CONFIG_CPU_PM */ 511 512 /* 513 * Ensure that the VFP state stored in 'thread->vfpstate' is up to date 514 * with the hardware state. 515 */ 516 void vfp_sync_hwstate(struct thread_info *thread) 517 { 518 unsigned int cpu = get_cpu(); 519 520 if (vfp_state_in_hw(cpu, thread)) { 521 u32 fpexc = fmrx(FPEXC); 522 523 /* 524 * Save the last VFP state on this CPU. 525 */ 526 fmxr(FPEXC, fpexc | FPEXC_EN); 527 vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN); 528 fmxr(FPEXC, fpexc); 529 } 530 531 put_cpu(); 532 } 533 534 /* Ensure that the thread reloads the hardware VFP state on the next use. */ 535 void vfp_flush_hwstate(struct thread_info *thread) 536 { 537 unsigned int cpu = get_cpu(); 538 539 vfp_force_reload(cpu, thread); 540 541 put_cpu(); 542 } 543 544 /* 545 * Save the current VFP state into the provided structures and prepare 546 * for entry into a new function (signal handler). 547 */ 548 int vfp_preserve_user_clear_hwstate(struct user_vfp __user *ufp, 549 struct user_vfp_exc __user *ufp_exc) 550 { 551 struct thread_info *thread = current_thread_info(); 552 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard; 553 int err = 0; 554 555 /* Ensure that the saved hwstate is up-to-date. */ 556 vfp_sync_hwstate(thread); 557 558 /* 559 * Copy the floating point registers. There can be unused 560 * registers see asm/hwcap.h for details. 561 */ 562 err |= __copy_to_user(&ufp->fpregs, &hwstate->fpregs, 563 sizeof(hwstate->fpregs)); 564 /* 565 * Copy the status and control register. 566 */ 567 __put_user_error(hwstate->fpscr, &ufp->fpscr, err); 568 569 /* 570 * Copy the exception registers. 571 */ 572 __put_user_error(hwstate->fpexc, &ufp_exc->fpexc, err); 573 __put_user_error(hwstate->fpinst, &ufp_exc->fpinst, err); 574 __put_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err); 575 576 if (err) 577 return -EFAULT; 578 579 /* Ensure that VFP is disabled. */ 580 vfp_flush_hwstate(thread); 581 582 /* 583 * As per the PCS, clear the length and stride bits for function 584 * entry. 585 */ 586 hwstate->fpscr &= ~(FPSCR_LENGTH_MASK | FPSCR_STRIDE_MASK); 587 return 0; 588 } 589 590 /* Sanitise and restore the current VFP state from the provided structures. */ 591 int vfp_restore_user_hwstate(struct user_vfp __user *ufp, 592 struct user_vfp_exc __user *ufp_exc) 593 { 594 struct thread_info *thread = current_thread_info(); 595 struct vfp_hard_struct *hwstate = &thread->vfpstate.hard; 596 unsigned long fpexc; 597 int err = 0; 598 599 /* Disable VFP to avoid corrupting the new thread state. */ 600 vfp_flush_hwstate(thread); 601 602 /* 603 * Copy the floating point registers. There can be unused 604 * registers see asm/hwcap.h for details. 605 */ 606 err |= __copy_from_user(&hwstate->fpregs, &ufp->fpregs, 607 sizeof(hwstate->fpregs)); 608 /* 609 * Copy the status and control register. 610 */ 611 __get_user_error(hwstate->fpscr, &ufp->fpscr, err); 612 613 /* 614 * Sanitise and restore the exception registers. 615 */ 616 __get_user_error(fpexc, &ufp_exc->fpexc, err); 617 618 /* Ensure the VFP is enabled. */ 619 fpexc |= FPEXC_EN; 620 621 /* Ensure FPINST2 is invalid and the exception flag is cleared. */ 622 fpexc &= ~(FPEXC_EX | FPEXC_FP2V); 623 hwstate->fpexc = fpexc; 624 625 __get_user_error(hwstate->fpinst, &ufp_exc->fpinst, err); 626 __get_user_error(hwstate->fpinst2, &ufp_exc->fpinst2, err); 627 628 return err ? -EFAULT : 0; 629 } 630 631 /* 632 * VFP hardware can lose all context when a CPU goes offline. 633 * As we will be running in SMP mode with CPU hotplug, we will save the 634 * hardware state at every thread switch. We clear our held state when 635 * a CPU has been killed, indicating that the VFP hardware doesn't contain 636 * a threads VFP state. When a CPU starts up, we re-enable access to the 637 * VFP hardware. 638 * 639 * Both CPU_DYING and CPU_STARTING are called on the CPU which 640 * is being offlined/onlined. 641 */ 642 static int vfp_hotplug(struct notifier_block *b, unsigned long action, 643 void *hcpu) 644 { 645 if (action == CPU_DYING || action == CPU_DYING_FROZEN) 646 vfp_current_hw_state[(long)hcpu] = NULL; 647 else if (action == CPU_STARTING || action == CPU_STARTING_FROZEN) 648 vfp_enable(NULL); 649 return NOTIFY_OK; 650 } 651 652 void vfp_kmode_exception(void) 653 { 654 /* 655 * If we reach this point, a floating point exception has been raised 656 * while running in kernel mode. If the NEON/VFP unit was enabled at the 657 * time, it means a VFP instruction has been issued that requires 658 * software assistance to complete, something which is not currently 659 * supported in kernel mode. 660 * If the NEON/VFP unit was disabled, and the location pointed to below 661 * is properly preceded by a call to kernel_neon_begin(), something has 662 * caused the task to be scheduled out and back in again. In this case, 663 * rebuilding and running with CONFIG_DEBUG_ATOMIC_SLEEP enabled should 664 * be helpful in localizing the problem. 665 */ 666 if (fmrx(FPEXC) & FPEXC_EN) 667 pr_crit("BUG: unsupported FP instruction in kernel mode\n"); 668 else 669 pr_crit("BUG: FP instruction issued in kernel mode with FP unit disabled\n"); 670 } 671 672 #ifdef CONFIG_KERNEL_MODE_NEON 673 674 /* 675 * Kernel-side NEON support functions 676 */ 677 void kernel_neon_begin(void) 678 { 679 struct thread_info *thread = current_thread_info(); 680 unsigned int cpu; 681 u32 fpexc; 682 683 /* 684 * Kernel mode NEON is only allowed outside of interrupt context 685 * with preemption disabled. This will make sure that the kernel 686 * mode NEON register contents never need to be preserved. 687 */ 688 BUG_ON(in_interrupt()); 689 cpu = get_cpu(); 690 691 fpexc = fmrx(FPEXC) | FPEXC_EN; 692 fmxr(FPEXC, fpexc); 693 694 /* 695 * Save the userland NEON/VFP state. Under UP, 696 * the owner could be a task other than 'current' 697 */ 698 if (vfp_state_in_hw(cpu, thread)) 699 vfp_save_state(&thread->vfpstate, fpexc); 700 #ifndef CONFIG_SMP 701 else if (vfp_current_hw_state[cpu] != NULL) 702 vfp_save_state(vfp_current_hw_state[cpu], fpexc); 703 #endif 704 vfp_current_hw_state[cpu] = NULL; 705 } 706 EXPORT_SYMBOL(kernel_neon_begin); 707 708 void kernel_neon_end(void) 709 { 710 /* Disable the NEON/VFP unit. */ 711 fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN); 712 put_cpu(); 713 } 714 EXPORT_SYMBOL(kernel_neon_end); 715 716 #endif /* CONFIG_KERNEL_MODE_NEON */ 717 718 /* 719 * VFP support code initialisation. 720 */ 721 static int __init vfp_init(void) 722 { 723 unsigned int vfpsid; 724 unsigned int cpu_arch = cpu_architecture(); 725 726 if (cpu_arch >= CPU_ARCH_ARMv6) 727 on_each_cpu(vfp_enable, NULL, 1); 728 729 /* 730 * First check that there is a VFP that we can use. 731 * The handler is already setup to just log calls, so 732 * we just need to read the VFPSID register. 733 */ 734 vfp_vector = vfp_testing_entry; 735 barrier(); 736 vfpsid = fmrx(FPSID); 737 barrier(); 738 vfp_vector = vfp_null_entry; 739 740 pr_info("VFP support v0.3: "); 741 if (VFP_arch) 742 pr_cont("not present\n"); 743 else if (vfpsid & FPSID_NODOUBLE) { 744 pr_cont("no double precision support\n"); 745 } else { 746 hotcpu_notifier(vfp_hotplug, 0); 747 748 VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT; /* Extract the architecture version */ 749 pr_cont("implementor %02x architecture %d part %02x variant %x rev %x\n", 750 (vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT, 751 (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT, 752 (vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT, 753 (vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT, 754 (vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT); 755 756 vfp_vector = vfp_support_entry; 757 758 thread_register_notifier(&vfp_notifier_block); 759 vfp_pm_init(); 760 761 /* 762 * We detected VFP, and the support code is 763 * in place; report VFP support to userspace. 764 */ 765 elf_hwcap |= HWCAP_VFP; 766 #ifdef CONFIG_VFPv3 767 if (VFP_arch >= 2) { 768 elf_hwcap |= HWCAP_VFPv3; 769 770 /* 771 * Check for VFPv3 D16 and VFPv4 D16. CPUs in 772 * this configuration only have 16 x 64bit 773 * registers. 774 */ 775 if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1) 776 elf_hwcap |= HWCAP_VFPv3D16; /* also v4-D16 */ 777 else 778 elf_hwcap |= HWCAP_VFPD32; 779 } 780 #endif 781 /* 782 * Check for the presence of the Advanced SIMD 783 * load/store instructions, integer and single 784 * precision floating point operations. Only check 785 * for NEON if the hardware has the MVFR registers. 786 */ 787 if ((read_cpuid_id() & 0x000f0000) == 0x000f0000) { 788 #ifdef CONFIG_NEON 789 if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100) 790 elf_hwcap |= HWCAP_NEON; 791 #endif 792 #ifdef CONFIG_VFPv3 793 if ((fmrx(MVFR1) & 0xf0000000) == 0x10000000) 794 elf_hwcap |= HWCAP_VFPv4; 795 #endif 796 } 797 } 798 return 0; 799 } 800 801 core_initcall(vfp_init); 802