xref: /openbmc/linux/arch/arm/vfp/vfpmodule.c (revision 1fa6ac37)
1 /*
2  *  linux/arch/arm/vfp/vfpmodule.c
3  *
4  *  Copyright (C) 2004 ARM Limited.
5  *  Written by Deep Blue Solutions Limited.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/types.h>
13 #include <linux/kernel.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/init.h>
17 
18 #include <asm/thread_notify.h>
19 #include <asm/vfp.h>
20 
21 #include "vfpinstr.h"
22 #include "vfp.h"
23 
24 /*
25  * Our undef handlers (in entry.S)
26  */
27 void vfp_testing_entry(void);
28 void vfp_support_entry(void);
29 void vfp_null_entry(void);
30 
31 void (*vfp_vector)(void) = vfp_null_entry;
32 union vfp_state *last_VFP_context[NR_CPUS];
33 
34 /*
35  * Dual-use variable.
36  * Used in startup: set to non-zero if VFP checks fail
37  * After startup, holds VFP architecture
38  */
39 unsigned int VFP_arch;
40 
41 /*
42  * Per-thread VFP initialization.
43  */
44 static void vfp_thread_flush(struct thread_info *thread)
45 {
46 	union vfp_state *vfp = &thread->vfpstate;
47 	unsigned int cpu;
48 
49 	memset(vfp, 0, sizeof(union vfp_state));
50 
51 	vfp->hard.fpexc = FPEXC_EN;
52 	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
53 
54 	/*
55 	 * Disable VFP to ensure we initialize it first.  We must ensure
56 	 * that the modification of last_VFP_context[] and hardware disable
57 	 * are done for the same CPU and without preemption.
58 	 */
59 	cpu = get_cpu();
60 	if (last_VFP_context[cpu] == vfp)
61 		last_VFP_context[cpu] = NULL;
62 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
63 	put_cpu();
64 }
65 
66 static void vfp_thread_exit(struct thread_info *thread)
67 {
68 	/* release case: Per-thread VFP cleanup. */
69 	union vfp_state *vfp = &thread->vfpstate;
70 	unsigned int cpu = get_cpu();
71 
72 	if (last_VFP_context[cpu] == vfp)
73 		last_VFP_context[cpu] = NULL;
74 	put_cpu();
75 }
76 
77 /*
78  * When this function is called with the following 'cmd's, the following
79  * is true while this function is being run:
80  *  THREAD_NOFTIFY_SWTICH:
81  *   - the previously running thread will not be scheduled onto another CPU.
82  *   - the next thread to be run (v) will not be running on another CPU.
83  *   - thread->cpu is the local CPU number
84  *   - not preemptible as we're called in the middle of a thread switch
85  *  THREAD_NOTIFY_FLUSH:
86  *   - the thread (v) will be running on the local CPU, so
87  *	v === current_thread_info()
88  *   - thread->cpu is the local CPU number at the time it is accessed,
89  *	but may change at any time.
90  *   - we could be preempted if tree preempt rcu is enabled, so
91  *	it is unsafe to use thread->cpu.
92  *  THREAD_NOTIFY_EXIT
93  *   - the thread (v) will be running on the local CPU, so
94  *	v === current_thread_info()
95  *   - thread->cpu is the local CPU number at the time it is accessed,
96  *	but may change at any time.
97  *   - we could be preempted if tree preempt rcu is enabled, so
98  *	it is unsafe to use thread->cpu.
99  */
100 static int vfp_notifier(struct notifier_block *self, unsigned long cmd, void *v)
101 {
102 	struct thread_info *thread = v;
103 
104 	if (likely(cmd == THREAD_NOTIFY_SWITCH)) {
105 		u32 fpexc = fmrx(FPEXC);
106 
107 #ifdef CONFIG_SMP
108 		unsigned int cpu = thread->cpu;
109 
110 		/*
111 		 * On SMP, if VFP is enabled, save the old state in
112 		 * case the thread migrates to a different CPU. The
113 		 * restoring is done lazily.
114 		 */
115 		if ((fpexc & FPEXC_EN) && last_VFP_context[cpu]) {
116 			vfp_save_state(last_VFP_context[cpu], fpexc);
117 			last_VFP_context[cpu]->hard.cpu = cpu;
118 		}
119 		/*
120 		 * Thread migration, just force the reloading of the
121 		 * state on the new CPU in case the VFP registers
122 		 * contain stale data.
123 		 */
124 		if (thread->vfpstate.hard.cpu != cpu)
125 			last_VFP_context[cpu] = NULL;
126 #endif
127 
128 		/*
129 		 * Always disable VFP so we can lazily save/restore the
130 		 * old state.
131 		 */
132 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
133 		return NOTIFY_DONE;
134 	}
135 
136 	if (cmd == THREAD_NOTIFY_FLUSH)
137 		vfp_thread_flush(thread);
138 	else
139 		vfp_thread_exit(thread);
140 
141 	return NOTIFY_DONE;
142 }
143 
144 static struct notifier_block vfp_notifier_block = {
145 	.notifier_call	= vfp_notifier,
146 };
147 
148 /*
149  * Raise a SIGFPE for the current process.
150  * sicode describes the signal being raised.
151  */
152 void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
153 {
154 	siginfo_t info;
155 
156 	memset(&info, 0, sizeof(info));
157 
158 	info.si_signo = SIGFPE;
159 	info.si_code = sicode;
160 	info.si_addr = (void __user *)(instruction_pointer(regs) - 4);
161 
162 	/*
163 	 * This is the same as NWFPE, because it's not clear what
164 	 * this is used for
165 	 */
166 	current->thread.error_code = 0;
167 	current->thread.trap_no = 6;
168 
169 	send_sig_info(SIGFPE, &info, current);
170 }
171 
172 static void vfp_panic(char *reason, u32 inst)
173 {
174 	int i;
175 
176 	printk(KERN_ERR "VFP: Error: %s\n", reason);
177 	printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
178 		fmrx(FPEXC), fmrx(FPSCR), inst);
179 	for (i = 0; i < 32; i += 2)
180 		printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
181 		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
182 }
183 
184 /*
185  * Process bitmask of exception conditions.
186  */
187 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
188 {
189 	int si_code = 0;
190 
191 	pr_debug("VFP: raising exceptions %08x\n", exceptions);
192 
193 	if (exceptions == VFP_EXCEPTION_ERROR) {
194 		vfp_panic("unhandled bounce", inst);
195 		vfp_raise_sigfpe(0, regs);
196 		return;
197 	}
198 
199 	/*
200 	 * If any of the status flags are set, update the FPSCR.
201 	 * Comparison instructions always return at least one of
202 	 * these flags set.
203 	 */
204 	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
205 		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
206 
207 	fpscr |= exceptions;
208 
209 	fmxr(FPSCR, fpscr);
210 
211 #define RAISE(stat,en,sig)				\
212 	if (exceptions & stat && fpscr & en)		\
213 		si_code = sig;
214 
215 	/*
216 	 * These are arranged in priority order, least to highest.
217 	 */
218 	RAISE(FPSCR_DZC, FPSCR_DZE, FPE_FLTDIV);
219 	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
220 	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
221 	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
222 	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
223 
224 	if (si_code)
225 		vfp_raise_sigfpe(si_code, regs);
226 }
227 
228 /*
229  * Emulate a VFP instruction.
230  */
231 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
232 {
233 	u32 exceptions = VFP_EXCEPTION_ERROR;
234 
235 	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
236 
237 	if (INST_CPRTDO(inst)) {
238 		if (!INST_CPRT(inst)) {
239 			/*
240 			 * CPDO
241 			 */
242 			if (vfp_single(inst)) {
243 				exceptions = vfp_single_cpdo(inst, fpscr);
244 			} else {
245 				exceptions = vfp_double_cpdo(inst, fpscr);
246 			}
247 		} else {
248 			/*
249 			 * A CPRT instruction can not appear in FPINST2, nor
250 			 * can it cause an exception.  Therefore, we do not
251 			 * have to emulate it.
252 			 */
253 		}
254 	} else {
255 		/*
256 		 * A CPDT instruction can not appear in FPINST2, nor can
257 		 * it cause an exception.  Therefore, we do not have to
258 		 * emulate it.
259 		 */
260 	}
261 	return exceptions & ~VFP_NAN_FLAG;
262 }
263 
264 /*
265  * Package up a bounce condition.
266  */
267 void VFP_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
268 {
269 	u32 fpscr, orig_fpscr, fpsid, exceptions;
270 
271 	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
272 
273 	/*
274 	 * At this point, FPEXC can have the following configuration:
275 	 *
276 	 *  EX DEX IXE
277 	 *  0   1   x   - synchronous exception
278 	 *  1   x   0   - asynchronous exception
279 	 *  1   x   1   - sychronous on VFP subarch 1 and asynchronous on later
280 	 *  0   0   1   - synchronous on VFP9 (non-standard subarch 1
281 	 *                implementation), undefined otherwise
282 	 *
283 	 * Clear various bits and enable access to the VFP so we can
284 	 * handle the bounce.
285 	 */
286 	fmxr(FPEXC, fpexc & ~(FPEXC_EX|FPEXC_DEX|FPEXC_FP2V|FPEXC_VV|FPEXC_TRAP_MASK));
287 
288 	fpsid = fmrx(FPSID);
289 	orig_fpscr = fpscr = fmrx(FPSCR);
290 
291 	/*
292 	 * Check for the special VFP subarch 1 and FPSCR.IXE bit case
293 	 */
294 	if ((fpsid & FPSID_ARCH_MASK) == (1 << FPSID_ARCH_BIT)
295 	    && (fpscr & FPSCR_IXE)) {
296 		/*
297 		 * Synchronous exception, emulate the trigger instruction
298 		 */
299 		goto emulate;
300 	}
301 
302 	if (fpexc & FPEXC_EX) {
303 #ifndef CONFIG_CPU_FEROCEON
304 		/*
305 		 * Asynchronous exception. The instruction is read from FPINST
306 		 * and the interrupted instruction has to be restarted.
307 		 */
308 		trigger = fmrx(FPINST);
309 		regs->ARM_pc -= 4;
310 #endif
311 	} else if (!(fpexc & FPEXC_DEX)) {
312 		/*
313 		 * Illegal combination of bits. It can be caused by an
314 		 * unallocated VFP instruction but with FPSCR.IXE set and not
315 		 * on VFP subarch 1.
316 		 */
317 		 vfp_raise_exceptions(VFP_EXCEPTION_ERROR, trigger, fpscr, regs);
318 		goto exit;
319 	}
320 
321 	/*
322 	 * Modify fpscr to indicate the number of iterations remaining.
323 	 * If FPEXC.EX is 0, FPEXC.DEX is 1 and the FPEXC.VV bit indicates
324 	 * whether FPEXC.VECITR or FPSCR.LEN is used.
325 	 */
326 	if (fpexc & (FPEXC_EX | FPEXC_VV)) {
327 		u32 len;
328 
329 		len = fpexc + (1 << FPEXC_LENGTH_BIT);
330 
331 		fpscr &= ~FPSCR_LENGTH_MASK;
332 		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
333 	}
334 
335 	/*
336 	 * Handle the first FP instruction.  We used to take note of the
337 	 * FPEXC bounce reason, but this appears to be unreliable.
338 	 * Emulate the bounced instruction instead.
339 	 */
340 	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
341 	if (exceptions)
342 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
343 
344 	/*
345 	 * If there isn't a second FP instruction, exit now. Note that
346 	 * the FPEXC.FP2V bit is valid only if FPEXC.EX is 1.
347 	 */
348 	if (fpexc ^ (FPEXC_EX | FPEXC_FP2V))
349 		goto exit;
350 
351 	/*
352 	 * The barrier() here prevents fpinst2 being read
353 	 * before the condition above.
354 	 */
355 	barrier();
356 	trigger = fmrx(FPINST2);
357 
358  emulate:
359 	exceptions = vfp_emulate_instruction(trigger, orig_fpscr, regs);
360 	if (exceptions)
361 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
362  exit:
363 	preempt_enable();
364 }
365 
366 static void vfp_enable(void *unused)
367 {
368 	u32 access = get_copro_access();
369 
370 	/*
371 	 * Enable full access to VFP (cp10 and cp11)
372 	 */
373 	set_copro_access(access | CPACC_FULL(10) | CPACC_FULL(11));
374 }
375 
376 #ifdef CONFIG_PM
377 #include <linux/sysdev.h>
378 
379 static int vfp_pm_suspend(struct sys_device *dev, pm_message_t state)
380 {
381 	struct thread_info *ti = current_thread_info();
382 	u32 fpexc = fmrx(FPEXC);
383 
384 	/* if vfp is on, then save state for resumption */
385 	if (fpexc & FPEXC_EN) {
386 		printk(KERN_DEBUG "%s: saving vfp state\n", __func__);
387 		vfp_save_state(&ti->vfpstate, fpexc);
388 
389 		/* disable, just in case */
390 		fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
391 	}
392 
393 	/* clear any information we had about last context state */
394 	memset(last_VFP_context, 0, sizeof(last_VFP_context));
395 
396 	return 0;
397 }
398 
399 static int vfp_pm_resume(struct sys_device *dev)
400 {
401 	/* ensure we have access to the vfp */
402 	vfp_enable(NULL);
403 
404 	/* and disable it to ensure the next usage restores the state */
405 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_EN);
406 
407 	return 0;
408 }
409 
410 static struct sysdev_class vfp_pm_sysclass = {
411 	.name		= "vfp",
412 	.suspend	= vfp_pm_suspend,
413 	.resume		= vfp_pm_resume,
414 };
415 
416 static struct sys_device vfp_pm_sysdev = {
417 	.cls	= &vfp_pm_sysclass,
418 };
419 
420 static void vfp_pm_init(void)
421 {
422 	sysdev_class_register(&vfp_pm_sysclass);
423 	sysdev_register(&vfp_pm_sysdev);
424 }
425 
426 
427 #else
428 static inline void vfp_pm_init(void) { }
429 #endif /* CONFIG_PM */
430 
431 void vfp_sync_hwstate(struct thread_info *thread)
432 {
433 	unsigned int cpu = get_cpu();
434 
435 	/*
436 	 * If the thread we're interested in is the current owner of the
437 	 * hardware VFP state, then we need to save its state.
438 	 */
439 	if (last_VFP_context[cpu] == &thread->vfpstate) {
440 		u32 fpexc = fmrx(FPEXC);
441 
442 		/*
443 		 * Save the last VFP state on this CPU.
444 		 */
445 		fmxr(FPEXC, fpexc | FPEXC_EN);
446 		vfp_save_state(&thread->vfpstate, fpexc | FPEXC_EN);
447 		fmxr(FPEXC, fpexc);
448 	}
449 
450 	put_cpu();
451 }
452 
453 void vfp_flush_hwstate(struct thread_info *thread)
454 {
455 	unsigned int cpu = get_cpu();
456 
457 	/*
458 	 * If the thread we're interested in is the current owner of the
459 	 * hardware VFP state, then we need to save its state.
460 	 */
461 	if (last_VFP_context[cpu] == &thread->vfpstate) {
462 		u32 fpexc = fmrx(FPEXC);
463 
464 		fmxr(FPEXC, fpexc & ~FPEXC_EN);
465 
466 		/*
467 		 * Set the context to NULL to force a reload the next time
468 		 * the thread uses the VFP.
469 		 */
470 		last_VFP_context[cpu] = NULL;
471 	}
472 
473 #ifdef CONFIG_SMP
474 	/*
475 	 * For SMP we still have to take care of the case where the thread
476 	 * migrates to another CPU and then back to the original CPU on which
477 	 * the last VFP user is still the same thread. Mark the thread VFP
478 	 * state as belonging to a non-existent CPU so that the saved one will
479 	 * be reloaded in the above case.
480 	 */
481 	thread->vfpstate.hard.cpu = NR_CPUS;
482 #endif
483 	put_cpu();
484 }
485 
486 #include <linux/smp.h>
487 
488 /*
489  * VFP support code initialisation.
490  */
491 static int __init vfp_init(void)
492 {
493 	unsigned int vfpsid;
494 	unsigned int cpu_arch = cpu_architecture();
495 
496 	if (cpu_arch >= CPU_ARCH_ARMv6)
497 		vfp_enable(NULL);
498 
499 	/*
500 	 * First check that there is a VFP that we can use.
501 	 * The handler is already setup to just log calls, so
502 	 * we just need to read the VFPSID register.
503 	 */
504 	vfp_vector = vfp_testing_entry;
505 	barrier();
506 	vfpsid = fmrx(FPSID);
507 	barrier();
508 	vfp_vector = vfp_null_entry;
509 
510 	printk(KERN_INFO "VFP support v0.3: ");
511 	if (VFP_arch)
512 		printk("not present\n");
513 	else if (vfpsid & FPSID_NODOUBLE) {
514 		printk("no double precision support\n");
515 	} else {
516 		smp_call_function(vfp_enable, NULL, 1);
517 
518 		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;  /* Extract the architecture version */
519 		printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
520 			(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
521 			(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
522 			(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
523 			(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
524 			(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
525 
526 		vfp_vector = vfp_support_entry;
527 
528 		thread_register_notifier(&vfp_notifier_block);
529 		vfp_pm_init();
530 
531 		/*
532 		 * We detected VFP, and the support code is
533 		 * in place; report VFP support to userspace.
534 		 */
535 		elf_hwcap |= HWCAP_VFP;
536 #ifdef CONFIG_VFPv3
537 		if (VFP_arch >= 2) {
538 			elf_hwcap |= HWCAP_VFPv3;
539 
540 			/*
541 			 * Check for VFPv3 D16. CPUs in this configuration
542 			 * only have 16 x 64bit registers.
543 			 */
544 			if (((fmrx(MVFR0) & MVFR0_A_SIMD_MASK)) == 1)
545 				elf_hwcap |= HWCAP_VFPv3D16;
546 		}
547 #endif
548 #ifdef CONFIG_NEON
549 		/*
550 		 * Check for the presence of the Advanced SIMD
551 		 * load/store instructions, integer and single
552 		 * precision floating point operations.
553 		 */
554 		if ((fmrx(MVFR1) & 0x000fff00) == 0x00011100)
555 			elf_hwcap |= HWCAP_NEON;
556 #endif
557 	}
558 	return 0;
559 }
560 
561 late_initcall(vfp_init);
562