xref: /openbmc/linux/arch/arm/vfp/vfpmodule.c (revision 1da177e4)
1 /*
2  *  linux/arch/arm/vfp/vfpmodule.c
3  *
4  *  Copyright (C) 2004 ARM Limited.
5  *  Written by Deep Blue Solutions Limited.
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 #include <linux/module.h>
12 #include <linux/config.h>
13 #include <linux/types.h>
14 #include <linux/kernel.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/init.h>
18 #include <asm/vfp.h>
19 
20 #include "vfpinstr.h"
21 #include "vfp.h"
22 
23 /*
24  * Our undef handlers (in entry.S)
25  */
26 void vfp_testing_entry(void);
27 void vfp_support_entry(void);
28 
29 void (*vfp_vector)(void) = vfp_testing_entry;
30 union vfp_state *last_VFP_context;
31 
32 /*
33  * Dual-use variable.
34  * Used in startup: set to non-zero if VFP checks fail
35  * After startup, holds VFP architecture
36  */
37 unsigned int VFP_arch;
38 
39 /*
40  * Per-thread VFP initialisation.
41  */
42 void vfp_flush_thread(union vfp_state *vfp)
43 {
44 	memset(vfp, 0, sizeof(union vfp_state));
45 
46 	vfp->hard.fpexc = FPEXC_ENABLE;
47 	vfp->hard.fpscr = FPSCR_ROUND_NEAREST;
48 
49 	/*
50 	 * Disable VFP to ensure we initialise it first.
51 	 */
52 	fmxr(FPEXC, fmrx(FPEXC) & ~FPEXC_ENABLE);
53 
54 	/*
55 	 * Ensure we don't try to overwrite our newly initialised
56 	 * state information on the first fault.
57 	 */
58 	if (last_VFP_context == vfp)
59 		last_VFP_context = NULL;
60 }
61 
62 /*
63  * Per-thread VFP cleanup.
64  */
65 void vfp_release_thread(union vfp_state *vfp)
66 {
67 	if (last_VFP_context == vfp)
68 		last_VFP_context = NULL;
69 }
70 
71 /*
72  * Raise a SIGFPE for the current process.
73  * sicode describes the signal being raised.
74  */
75 void vfp_raise_sigfpe(unsigned int sicode, struct pt_regs *regs)
76 {
77 	siginfo_t info;
78 
79 	memset(&info, 0, sizeof(info));
80 
81 	info.si_signo = SIGFPE;
82 	info.si_code = sicode;
83 	info.si_addr = (void *)(instruction_pointer(regs) - 4);
84 
85 	/*
86 	 * This is the same as NWFPE, because it's not clear what
87 	 * this is used for
88 	 */
89 	current->thread.error_code = 0;
90 	current->thread.trap_no = 6;
91 
92 	force_sig_info(SIGFPE, &info, current);
93 }
94 
95 static void vfp_panic(char *reason)
96 {
97 	int i;
98 
99 	printk(KERN_ERR "VFP: Error: %s\n", reason);
100 	printk(KERN_ERR "VFP: EXC 0x%08x SCR 0x%08x INST 0x%08x\n",
101 		fmrx(FPEXC), fmrx(FPSCR), fmrx(FPINST));
102 	for (i = 0; i < 32; i += 2)
103 		printk(KERN_ERR "VFP: s%2u: 0x%08x s%2u: 0x%08x\n",
104 		       i, vfp_get_float(i), i+1, vfp_get_float(i+1));
105 }
106 
107 /*
108  * Process bitmask of exception conditions.
109  */
110 static void vfp_raise_exceptions(u32 exceptions, u32 inst, u32 fpscr, struct pt_regs *regs)
111 {
112 	int si_code = 0;
113 
114 	pr_debug("VFP: raising exceptions %08x\n", exceptions);
115 
116 	if (exceptions == (u32)-1) {
117 		vfp_panic("unhandled bounce");
118 		vfp_raise_sigfpe(0, regs);
119 		return;
120 	}
121 
122 	/*
123 	 * If any of the status flags are set, update the FPSCR.
124 	 * Comparison instructions always return at least one of
125 	 * these flags set.
126 	 */
127 	if (exceptions & (FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V))
128 		fpscr &= ~(FPSCR_N|FPSCR_Z|FPSCR_C|FPSCR_V);
129 
130 	fpscr |= exceptions;
131 
132 	fmxr(FPSCR, fpscr);
133 
134 #define RAISE(stat,en,sig)				\
135 	if (exceptions & stat && fpscr & en)		\
136 		si_code = sig;
137 
138 	/*
139 	 * These are arranged in priority order, least to highest.
140 	 */
141 	RAISE(FPSCR_IXC, FPSCR_IXE, FPE_FLTRES);
142 	RAISE(FPSCR_UFC, FPSCR_UFE, FPE_FLTUND);
143 	RAISE(FPSCR_OFC, FPSCR_OFE, FPE_FLTOVF);
144 	RAISE(FPSCR_IOC, FPSCR_IOE, FPE_FLTINV);
145 
146 	if (si_code)
147 		vfp_raise_sigfpe(si_code, regs);
148 }
149 
150 /*
151  * Emulate a VFP instruction.
152  */
153 static u32 vfp_emulate_instruction(u32 inst, u32 fpscr, struct pt_regs *regs)
154 {
155 	u32 exceptions = (u32)-1;
156 
157 	pr_debug("VFP: emulate: INST=0x%08x SCR=0x%08x\n", inst, fpscr);
158 
159 	if (INST_CPRTDO(inst)) {
160 		if (!INST_CPRT(inst)) {
161 			/*
162 			 * CPDO
163 			 */
164 			if (vfp_single(inst)) {
165 				exceptions = vfp_single_cpdo(inst, fpscr);
166 			} else {
167 				exceptions = vfp_double_cpdo(inst, fpscr);
168 			}
169 		} else {
170 			/*
171 			 * A CPRT instruction can not appear in FPINST2, nor
172 			 * can it cause an exception.  Therefore, we do not
173 			 * have to emulate it.
174 			 */
175 		}
176 	} else {
177 		/*
178 		 * A CPDT instruction can not appear in FPINST2, nor can
179 		 * it cause an exception.  Therefore, we do not have to
180 		 * emulate it.
181 		 */
182 	}
183 	return exceptions;
184 }
185 
186 /*
187  * Package up a bounce condition.
188  */
189 void VFP9_bounce(u32 trigger, u32 fpexc, struct pt_regs *regs)
190 {
191 	u32 fpscr, orig_fpscr, exceptions, inst;
192 
193 	pr_debug("VFP: bounce: trigger %08x fpexc %08x\n", trigger, fpexc);
194 
195 	/*
196 	 * Enable access to the VFP so we can handle the bounce.
197 	 */
198 	fmxr(FPEXC, fpexc & ~(FPEXC_EXCEPTION|FPEXC_INV|FPEXC_UFC|FPEXC_IOC));
199 
200 	orig_fpscr = fpscr = fmrx(FPSCR);
201 
202 	/*
203 	 * If we are running with inexact exceptions enabled, we need to
204 	 * emulate the trigger instruction.  Note that as we're emulating
205 	 * the trigger instruction, we need to increment PC.
206 	 */
207 	if (fpscr & FPSCR_IXE) {
208 		regs->ARM_pc += 4;
209 		goto emulate;
210 	}
211 
212 	barrier();
213 
214 	/*
215 	 * Modify fpscr to indicate the number of iterations remaining
216 	 */
217 	if (fpexc & FPEXC_EXCEPTION) {
218 		u32 len;
219 
220 		len = fpexc + (1 << FPEXC_LENGTH_BIT);
221 
222 		fpscr &= ~FPSCR_LENGTH_MASK;
223 		fpscr |= (len & FPEXC_LENGTH_MASK) << (FPSCR_LENGTH_BIT - FPEXC_LENGTH_BIT);
224 	}
225 
226 	/*
227 	 * Handle the first FP instruction.  We used to take note of the
228 	 * FPEXC bounce reason, but this appears to be unreliable.
229 	 * Emulate the bounced instruction instead.
230 	 */
231 	inst = fmrx(FPINST);
232 	exceptions = vfp_emulate_instruction(inst, fpscr, regs);
233 	if (exceptions)
234 		vfp_raise_exceptions(exceptions, inst, orig_fpscr, regs);
235 
236 	/*
237 	 * If there isn't a second FP instruction, exit now.
238 	 */
239 	if (!(fpexc & FPEXC_FPV2))
240 		return;
241 
242 	/*
243 	 * The barrier() here prevents fpinst2 being read
244 	 * before the condition above.
245 	 */
246 	barrier();
247 	trigger = fmrx(FPINST2);
248 	fpscr = fmrx(FPSCR);
249 
250  emulate:
251 	exceptions = vfp_emulate_instruction(trigger, fpscr, regs);
252 	if (exceptions)
253 		vfp_raise_exceptions(exceptions, trigger, orig_fpscr, regs);
254 }
255 
256 /*
257  * VFP support code initialisation.
258  */
259 static int __init vfp_init(void)
260 {
261 	unsigned int vfpsid;
262 
263 	/*
264 	 * First check that there is a VFP that we can use.
265 	 * The handler is already setup to just log calls, so
266 	 * we just need to read the VFPSID register.
267 	 */
268 	vfpsid = fmrx(FPSID);
269 
270 	printk(KERN_INFO "VFP support v0.3: ");
271 	if (VFP_arch) {
272 		printk("not present\n");
273 	} else if (vfpsid & FPSID_NODOUBLE) {
274 		printk("no double precision support\n");
275 	} else {
276 		VFP_arch = (vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT;  /* Extract the architecture version */
277 		printk("implementor %02x architecture %d part %02x variant %x rev %x\n",
278 			(vfpsid & FPSID_IMPLEMENTER_MASK) >> FPSID_IMPLEMENTER_BIT,
279 			(vfpsid & FPSID_ARCH_MASK) >> FPSID_ARCH_BIT,
280 			(vfpsid & FPSID_PART_MASK) >> FPSID_PART_BIT,
281 			(vfpsid & FPSID_VARIANT_MASK) >> FPSID_VARIANT_BIT,
282 			(vfpsid & FPSID_REV_MASK) >> FPSID_REV_BIT);
283 		vfp_vector = vfp_support_entry;
284 	}
285 	return 0;
286 }
287 
288 late_initcall(vfp_init);
289