1 /*
2  * arch/arm/kernel/kprobes-test.c
3  *
4  * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 
11 /*
12  * This file contains test code for ARM kprobes.
13  *
14  * The top level function run_all_tests() executes tests for all of the
15  * supported instruction sets: ARM, 16-bit Thumb, and 32-bit Thumb. These tests
16  * fall into two categories; run_api_tests() checks basic functionality of the
17  * kprobes API, and run_test_cases() is a comprehensive test for kprobes
18  * instruction decoding and simulation.
19  *
20  * run_test_cases() first checks the kprobes decoding table for self consistency
21  * (using table_test()) then executes a series of test cases for each of the CPU
22  * instruction forms. coverage_start() and coverage_end() are used to verify
23  * that these test cases cover all of the possible combinations of instructions
24  * described by the kprobes decoding tables.
25  *
26  * The individual test cases are in kprobes-test-arm.c and kprobes-test-thumb.c
27  * which use the macros defined in kprobes-test.h. The rest of this
28  * documentation will describe the operation of the framework used by these
29  * test cases.
30  */
31 
32 /*
33  * TESTING METHODOLOGY
34  * -------------------
35  *
36  * The methodology used to test an ARM instruction 'test_insn' is to use
37  * inline assembler like:
38  *
39  * test_before: nop
40  * test_case:	test_insn
41  * test_after:	nop
42  *
43  * When the test case is run a kprobe is placed of each nop. The
44  * post-handler of the test_before probe is used to modify the saved CPU
45  * register context to that which we require for the test case. The
46  * pre-handler of the of the test_after probe saves a copy of the CPU
47  * register context. In this way we can execute test_insn with a specific
48  * register context and see the results afterwards.
49  *
50  * To actually test the kprobes instruction emulation we perform the above
51  * step a second time but with an additional kprobe on the test_case
52  * instruction itself. If the emulation is accurate then the results seen
53  * by the test_after probe will be identical to the first run which didn't
54  * have a probe on test_case.
55  *
56  * Each test case is run several times with a variety of variations in the
57  * flags value of stored in CPSR, and for Thumb code, different ITState.
58  *
59  * For instructions which can modify PC, a second test_after probe is used
60  * like this:
61  *
62  * test_before: nop
63  * test_case:	test_insn
64  * test_after:	nop
65  *		b test_done
66  * test_after2: nop
67  * test_done:
68  *
69  * The test case is constructed such that test_insn branches to
70  * test_after2, or, if testing a conditional instruction, it may just
71  * continue to test_after. The probes inserted at both locations let us
72  * determine which happened. A similar approach is used for testing
73  * backwards branches...
74  *
75  *		b test_before
76  *		b test_done  @ helps to cope with off by 1 branches
77  * test_after2: nop
78  *		b test_done
79  * test_before: nop
80  * test_case:	test_insn
81  * test_after:	nop
82  * test_done:
83  *
84  * The macros used to generate the assembler instructions describe above
85  * are TEST_INSTRUCTION, TEST_BRANCH_F (branch forwards) and TEST_BRANCH_B
86  * (branch backwards). In these, the local variables numbered 1, 50, 2 and
87  * 99 represent: test_before, test_case, test_after2 and test_done.
88  *
89  * FRAMEWORK
90  * ---------
91  *
92  * Each test case is wrapped between the pair of macros TESTCASE_START and
93  * TESTCASE_END. As well as performing the inline assembler boilerplate,
94  * these call out to the kprobes_test_case_start() and
95  * kprobes_test_case_end() functions which drive the execution of the test
96  * case. The specific arguments to use for each test case are stored as
97  * inline data constructed using the various TEST_ARG_* macros. Putting
98  * this all together, a simple test case may look like:
99  *
100  *	TESTCASE_START("Testing mov r0, r7")
101  *	TEST_ARG_REG(7, 0x12345678) // Set r7=0x12345678
102  *	TEST_ARG_END("")
103  *	TEST_INSTRUCTION("mov r0, r7")
104  *	TESTCASE_END
105  *
106  * Note, in practice the single convenience macro TEST_R would be used for this
107  * instead.
108  *
109  * The above would expand to assembler looking something like:
110  *
111  *	@ TESTCASE_START
112  *	bl	__kprobes_test_case_start
113  *	.pushsection .rodata
114  *	"10:
115  *	.ascii "mov r0, r7"	@ text title for test case
116  *	.byte	0
117  *	.popsection
118  *	@ start of inline data...
119  *	.word	10b		@ pointer to title in .rodata section
120  *
121  *	@ TEST_ARG_REG
122  *	.byte	ARG_TYPE_REG
123  *	.byte	7
124  *	.short	0
125  *	.word	0x1234567
126  *
127  *	@ TEST_ARG_END
128  *	.byte	ARG_TYPE_END
129  *	.byte	TEST_ISA	@ flags, including ISA being tested
130  *	.short	50f-0f		@ offset of 'test_before'
131  *	.short	2f-0f		@ offset of 'test_after2' (if relevent)
132  *	.short	99f-0f		@ offset of 'test_done'
133  *	@ start of test case code...
134  *	0:
135  *	.code	TEST_ISA	@ switch to ISA being tested
136  *
137  *	@ TEST_INSTRUCTION
138  *	50:	nop		@ location for 'test_before' probe
139  *	1:	mov r0, r7	@ the test case instruction 'test_insn'
140  *		nop		@ location for 'test_after' probe
141  *
142  *	// TESTCASE_END
143  *	2:
144  *	99:	bl __kprobes_test_case_end_##TEST_ISA
145  *	.code	NONMAL_ISA
146  *
147  * When the above is execute the following happens...
148  *
149  * __kprobes_test_case_start() is an assembler wrapper which sets up space
150  * for a stack buffer and calls the C function kprobes_test_case_start().
151  * This C function will do some initial processing of the inline data and
152  * setup some global state. It then inserts the test_before and test_after
153  * kprobes and returns a value which causes the assembler wrapper to jump
154  * to the start of the test case code, (local label '0').
155  *
156  * When the test case code executes, the test_before probe will be hit and
157  * test_before_post_handler will call setup_test_context(). This fills the
158  * stack buffer and CPU registers with a test pattern and then processes
159  * the test case arguments. In our example there is one TEST_ARG_REG which
160  * indicates that R7 should be loaded with the value 0x12345678.
161  *
162  * When the test_before probe ends, the test case continues and executes
163  * the "mov r0, r7" instruction. It then hits the test_after probe and the
164  * pre-handler for this (test_after_pre_handler) will save a copy of the
165  * CPU register context. This should now have R0 holding the same value as
166  * R7.
167  *
168  * Finally we get to the call to __kprobes_test_case_end_{32,16}. This is
169  * an assembler wrapper which switches back to the ISA used by the test
170  * code and calls the C function kprobes_test_case_end().
171  *
172  * For each run through the test case, test_case_run_count is incremented
173  * by one. For even runs, kprobes_test_case_end() saves a copy of the
174  * register and stack buffer contents from the test case just run. It then
175  * inserts a kprobe on the test case instruction 'test_insn' and returns a
176  * value to cause the test case code to be re-run.
177  *
178  * For odd numbered runs, kprobes_test_case_end() compares the register and
179  * stack buffer contents to those that were saved on the previous even
180  * numbered run (the one without the kprobe on test_insn). These should be
181  * the same if the kprobe instruction simulation routine is correct.
182  *
183  * The pair of test case runs is repeated with different combinations of
184  * flag values in CPSR and, for Thumb, different ITState. This is
185  * controlled by test_context_cpsr().
186  *
187  * BUILDING TEST CASES
188  * -------------------
189  *
190  *
191  * As an aid to building test cases, the stack buffer is initialised with
192  * some special values:
193  *
194  *   [SP+13*4]	Contains SP+120. This can be used to test instructions
195  *		which load a value into SP.
196  *
197  *   [SP+15*4]	When testing branching instructions using TEST_BRANCH_{F,B},
198  *		this holds the target address of the branch, 'test_after2'.
199  *		This can be used to test instructions which load a PC value
200  *		from memory.
201  */
202 
203 #include <linux/kernel.h>
204 #include <linux/module.h>
205 #include <linux/slab.h>
206 #include <linux/sched/clock.h>
207 #include <linux/kprobes.h>
208 #include <linux/errno.h>
209 #include <linux/stddef.h>
210 #include <linux/bug.h>
211 #include <asm/opcodes.h>
212 
213 #include "core.h"
214 #include "test-core.h"
215 #include "../decode-arm.h"
216 #include "../decode-thumb.h"
217 
218 
219 #define BENCHMARKING	1
220 
221 
222 /*
223  * Test basic API
224  */
225 
226 static bool test_regs_ok;
227 static int test_func_instance;
228 static int pre_handler_called;
229 static int post_handler_called;
230 static int jprobe_func_called;
231 static int kretprobe_handler_called;
232 static int tests_failed;
233 
234 #define FUNC_ARG1 0x12345678
235 #define FUNC_ARG2 0xabcdef
236 
237 
238 #ifndef CONFIG_THUMB2_KERNEL
239 
240 #define RET(reg)	"mov	pc, "#reg
241 
242 long arm_func(long r0, long r1);
243 
244 static void __used __naked __arm_kprobes_test_func(void)
245 {
246 	__asm__ __volatile__ (
247 		".arm					\n\t"
248 		".type arm_func, %%function		\n\t"
249 		"arm_func:				\n\t"
250 		"adds	r0, r0, r1			\n\t"
251 		"mov	pc, lr				\n\t"
252 		".code "NORMAL_ISA	 /* Back to Thumb if necessary */
253 		: : : "r0", "r1", "cc"
254 	);
255 }
256 
257 #else /* CONFIG_THUMB2_KERNEL */
258 
259 #define RET(reg)	"bx	"#reg
260 
261 long thumb16_func(long r0, long r1);
262 long thumb32even_func(long r0, long r1);
263 long thumb32odd_func(long r0, long r1);
264 
265 static void __used __naked __thumb_kprobes_test_funcs(void)
266 {
267 	__asm__ __volatile__ (
268 		".type thumb16_func, %%function		\n\t"
269 		"thumb16_func:				\n\t"
270 		"adds.n	r0, r0, r1			\n\t"
271 		"bx	lr				\n\t"
272 
273 		".align					\n\t"
274 		".type thumb32even_func, %%function	\n\t"
275 		"thumb32even_func:			\n\t"
276 		"adds.w	r0, r0, r1			\n\t"
277 		"bx	lr				\n\t"
278 
279 		".align					\n\t"
280 		"nop.n					\n\t"
281 		".type thumb32odd_func, %%function	\n\t"
282 		"thumb32odd_func:			\n\t"
283 		"adds.w	r0, r0, r1			\n\t"
284 		"bx	lr				\n\t"
285 
286 		: : : "r0", "r1", "cc"
287 	);
288 }
289 
290 #endif /* CONFIG_THUMB2_KERNEL */
291 
292 
293 static int call_test_func(long (*func)(long, long), bool check_test_regs)
294 {
295 	long ret;
296 
297 	++test_func_instance;
298 	test_regs_ok = false;
299 
300 	ret = (*func)(FUNC_ARG1, FUNC_ARG2);
301 	if (ret != FUNC_ARG1 + FUNC_ARG2) {
302 		pr_err("FAIL: call_test_func: func returned %lx\n", ret);
303 		return false;
304 	}
305 
306 	if (check_test_regs && !test_regs_ok) {
307 		pr_err("FAIL: test regs not OK\n");
308 		return false;
309 	}
310 
311 	return true;
312 }
313 
314 static int __kprobes pre_handler(struct kprobe *p, struct pt_regs *regs)
315 {
316 	pre_handler_called = test_func_instance;
317 	if (regs->ARM_r0 == FUNC_ARG1 && regs->ARM_r1 == FUNC_ARG2)
318 		test_regs_ok = true;
319 	return 0;
320 }
321 
322 static void __kprobes post_handler(struct kprobe *p, struct pt_regs *regs,
323 				unsigned long flags)
324 {
325 	post_handler_called = test_func_instance;
326 	if (regs->ARM_r0 != FUNC_ARG1 + FUNC_ARG2 || regs->ARM_r1 != FUNC_ARG2)
327 		test_regs_ok = false;
328 }
329 
330 static struct kprobe the_kprobe = {
331 	.addr		= 0,
332 	.pre_handler	= pre_handler,
333 	.post_handler	= post_handler
334 };
335 
336 static int test_kprobe(long (*func)(long, long))
337 {
338 	int ret;
339 
340 	the_kprobe.addr = (kprobe_opcode_t *)func;
341 	ret = register_kprobe(&the_kprobe);
342 	if (ret < 0) {
343 		pr_err("FAIL: register_kprobe failed with %d\n", ret);
344 		return ret;
345 	}
346 
347 	ret = call_test_func(func, true);
348 
349 	unregister_kprobe(&the_kprobe);
350 	the_kprobe.flags = 0; /* Clear disable flag to allow reuse */
351 
352 	if (!ret)
353 		return -EINVAL;
354 	if (pre_handler_called != test_func_instance) {
355 		pr_err("FAIL: kprobe pre_handler not called\n");
356 		return -EINVAL;
357 	}
358 	if (post_handler_called != test_func_instance) {
359 		pr_err("FAIL: kprobe post_handler not called\n");
360 		return -EINVAL;
361 	}
362 	if (!call_test_func(func, false))
363 		return -EINVAL;
364 	if (pre_handler_called == test_func_instance ||
365 				post_handler_called == test_func_instance) {
366 		pr_err("FAIL: probe called after unregistering\n");
367 		return -EINVAL;
368 	}
369 
370 	return 0;
371 }
372 
373 static void __kprobes jprobe_func(long r0, long r1)
374 {
375 	jprobe_func_called = test_func_instance;
376 	if (r0 == FUNC_ARG1 && r1 == FUNC_ARG2)
377 		test_regs_ok = true;
378 	jprobe_return();
379 }
380 
381 static struct jprobe the_jprobe = {
382 	.entry		= jprobe_func,
383 };
384 
385 static int test_jprobe(long (*func)(long, long))
386 {
387 	int ret;
388 
389 	the_jprobe.kp.addr = (kprobe_opcode_t *)func;
390 	ret = register_jprobe(&the_jprobe);
391 	if (ret < 0) {
392 		pr_err("FAIL: register_jprobe failed with %d\n", ret);
393 		return ret;
394 	}
395 
396 	ret = call_test_func(func, true);
397 
398 	unregister_jprobe(&the_jprobe);
399 	the_jprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
400 
401 	if (!ret)
402 		return -EINVAL;
403 	if (jprobe_func_called != test_func_instance) {
404 		pr_err("FAIL: jprobe handler function not called\n");
405 		return -EINVAL;
406 	}
407 	if (!call_test_func(func, false))
408 		return -EINVAL;
409 	if (jprobe_func_called == test_func_instance) {
410 		pr_err("FAIL: probe called after unregistering\n");
411 		return -EINVAL;
412 	}
413 
414 	return 0;
415 }
416 
417 static int __kprobes
418 kretprobe_handler(struct kretprobe_instance *ri, struct pt_regs *regs)
419 {
420 	kretprobe_handler_called = test_func_instance;
421 	if (regs_return_value(regs) == FUNC_ARG1 + FUNC_ARG2)
422 		test_regs_ok = true;
423 	return 0;
424 }
425 
426 static struct kretprobe the_kretprobe = {
427 	.handler	= kretprobe_handler,
428 };
429 
430 static int test_kretprobe(long (*func)(long, long))
431 {
432 	int ret;
433 
434 	the_kretprobe.kp.addr = (kprobe_opcode_t *)func;
435 	ret = register_kretprobe(&the_kretprobe);
436 	if (ret < 0) {
437 		pr_err("FAIL: register_kretprobe failed with %d\n", ret);
438 		return ret;
439 	}
440 
441 	ret = call_test_func(func, true);
442 
443 	unregister_kretprobe(&the_kretprobe);
444 	the_kretprobe.kp.flags = 0; /* Clear disable flag to allow reuse */
445 
446 	if (!ret)
447 		return -EINVAL;
448 	if (kretprobe_handler_called != test_func_instance) {
449 		pr_err("FAIL: kretprobe handler not called\n");
450 		return -EINVAL;
451 	}
452 	if (!call_test_func(func, false))
453 		return -EINVAL;
454 	if (jprobe_func_called == test_func_instance) {
455 		pr_err("FAIL: kretprobe called after unregistering\n");
456 		return -EINVAL;
457 	}
458 
459 	return 0;
460 }
461 
462 static int run_api_tests(long (*func)(long, long))
463 {
464 	int ret;
465 
466 	pr_info("    kprobe\n");
467 	ret = test_kprobe(func);
468 	if (ret < 0)
469 		return ret;
470 
471 	pr_info("    jprobe\n");
472 	ret = test_jprobe(func);
473 #if defined(CONFIG_THUMB2_KERNEL) && !defined(MODULE)
474 	if (ret == -EINVAL) {
475 		pr_err("FAIL: Known longtime bug with jprobe on Thumb kernels\n");
476 		tests_failed = ret;
477 		ret = 0;
478 	}
479 #endif
480 	if (ret < 0)
481 		return ret;
482 
483 	pr_info("    kretprobe\n");
484 	ret = test_kretprobe(func);
485 	if (ret < 0)
486 		return ret;
487 
488 	return 0;
489 }
490 
491 
492 /*
493  * Benchmarking
494  */
495 
496 #if BENCHMARKING
497 
498 static void __naked benchmark_nop(void)
499 {
500 	__asm__ __volatile__ (
501 		"nop		\n\t"
502 		RET(lr)"	\n\t"
503 	);
504 }
505 
506 #ifdef CONFIG_THUMB2_KERNEL
507 #define wide ".w"
508 #else
509 #define wide
510 #endif
511 
512 static void __naked benchmark_pushpop1(void)
513 {
514 	__asm__ __volatile__ (
515 		"stmdb"wide"	sp!, {r3-r11,lr}  \n\t"
516 		"ldmia"wide"	sp!, {r3-r11,pc}"
517 	);
518 }
519 
520 static void __naked benchmark_pushpop2(void)
521 {
522 	__asm__ __volatile__ (
523 		"stmdb"wide"	sp!, {r0-r8,lr}  \n\t"
524 		"ldmia"wide"	sp!, {r0-r8,pc}"
525 	);
526 }
527 
528 static void __naked benchmark_pushpop3(void)
529 {
530 	__asm__ __volatile__ (
531 		"stmdb"wide"	sp!, {r4,lr}  \n\t"
532 		"ldmia"wide"	sp!, {r4,pc}"
533 	);
534 }
535 
536 static void __naked benchmark_pushpop4(void)
537 {
538 	__asm__ __volatile__ (
539 		"stmdb"wide"	sp!, {r0,lr}  \n\t"
540 		"ldmia"wide"	sp!, {r0,pc}"
541 	);
542 }
543 
544 
545 #ifdef CONFIG_THUMB2_KERNEL
546 
547 static void __naked benchmark_pushpop_thumb(void)
548 {
549 	__asm__ __volatile__ (
550 		"push.n	{r0-r7,lr}  \n\t"
551 		"pop.n	{r0-r7,pc}"
552 	);
553 }
554 
555 #endif
556 
557 static int __kprobes
558 benchmark_pre_handler(struct kprobe *p, struct pt_regs *regs)
559 {
560 	return 0;
561 }
562 
563 static int benchmark(void(*fn)(void))
564 {
565 	unsigned n, i, t, t0;
566 
567 	for (n = 1000; ; n *= 2) {
568 		t0 = sched_clock();
569 		for (i = n; i > 0; --i)
570 			fn();
571 		t = sched_clock() - t0;
572 		if (t >= 250000000)
573 			break; /* Stop once we took more than 0.25 seconds */
574 	}
575 	return t / n; /* Time for one iteration in nanoseconds */
576 };
577 
578 static int kprobe_benchmark(void(*fn)(void), unsigned offset)
579 {
580 	struct kprobe k = {
581 		.addr		= (kprobe_opcode_t *)((uintptr_t)fn + offset),
582 		.pre_handler	= benchmark_pre_handler,
583 	};
584 
585 	int ret = register_kprobe(&k);
586 	if (ret < 0) {
587 		pr_err("FAIL: register_kprobe failed with %d\n", ret);
588 		return ret;
589 	}
590 
591 	ret = benchmark(fn);
592 
593 	unregister_kprobe(&k);
594 	return ret;
595 };
596 
597 struct benchmarks {
598 	void		(*fn)(void);
599 	unsigned	offset;
600 	const char	*title;
601 };
602 
603 static int run_benchmarks(void)
604 {
605 	int ret;
606 	struct benchmarks list[] = {
607 		{&benchmark_nop, 0, "nop"},
608 		/*
609 		 * benchmark_pushpop{1,3} will have the optimised
610 		 * instruction emulation, whilst benchmark_pushpop{2,4} will
611 		 * be the equivalent unoptimised instructions.
612 		 */
613 		{&benchmark_pushpop1, 0, "stmdb	sp!, {r3-r11,lr}"},
614 		{&benchmark_pushpop1, 4, "ldmia	sp!, {r3-r11,pc}"},
615 		{&benchmark_pushpop2, 0, "stmdb	sp!, {r0-r8,lr}"},
616 		{&benchmark_pushpop2, 4, "ldmia	sp!, {r0-r8,pc}"},
617 		{&benchmark_pushpop3, 0, "stmdb	sp!, {r4,lr}"},
618 		{&benchmark_pushpop3, 4, "ldmia	sp!, {r4,pc}"},
619 		{&benchmark_pushpop4, 0, "stmdb	sp!, {r0,lr}"},
620 		{&benchmark_pushpop4, 4, "ldmia	sp!, {r0,pc}"},
621 #ifdef CONFIG_THUMB2_KERNEL
622 		{&benchmark_pushpop_thumb, 0, "push.n	{r0-r7,lr}"},
623 		{&benchmark_pushpop_thumb, 2, "pop.n	{r0-r7,pc}"},
624 #endif
625 		{0}
626 	};
627 
628 	struct benchmarks *b;
629 	for (b = list; b->fn; ++b) {
630 		ret = kprobe_benchmark(b->fn, b->offset);
631 		if (ret < 0)
632 			return ret;
633 		pr_info("    %dns for kprobe %s\n", ret, b->title);
634 	}
635 
636 	pr_info("\n");
637 	return 0;
638 }
639 
640 #endif /* BENCHMARKING */
641 
642 
643 /*
644  * Decoding table self-consistency tests
645  */
646 
647 static const int decode_struct_sizes[NUM_DECODE_TYPES] = {
648 	[DECODE_TYPE_TABLE]	= sizeof(struct decode_table),
649 	[DECODE_TYPE_CUSTOM]	= sizeof(struct decode_custom),
650 	[DECODE_TYPE_SIMULATE]	= sizeof(struct decode_simulate),
651 	[DECODE_TYPE_EMULATE]	= sizeof(struct decode_emulate),
652 	[DECODE_TYPE_OR]	= sizeof(struct decode_or),
653 	[DECODE_TYPE_REJECT]	= sizeof(struct decode_reject)
654 };
655 
656 static int table_iter(const union decode_item *table,
657 			int (*fn)(const struct decode_header *, void *),
658 			void *args)
659 {
660 	const struct decode_header *h = (struct decode_header *)table;
661 	int result;
662 
663 	for (;;) {
664 		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
665 
666 		if (type == DECODE_TYPE_END)
667 			return 0;
668 
669 		result = fn(h, args);
670 		if (result)
671 			return result;
672 
673 		h = (struct decode_header *)
674 			((uintptr_t)h + decode_struct_sizes[type]);
675 
676 	}
677 }
678 
679 static int table_test_fail(const struct decode_header *h, const char* message)
680 {
681 
682 	pr_err("FAIL: kprobes test failure \"%s\" (mask %08x, value %08x)\n",
683 					message, h->mask.bits, h->value.bits);
684 	return -EINVAL;
685 }
686 
687 struct table_test_args {
688 	const union decode_item *root_table;
689 	u32			parent_mask;
690 	u32			parent_value;
691 };
692 
693 static int table_test_fn(const struct decode_header *h, void *args)
694 {
695 	struct table_test_args *a = (struct table_test_args *)args;
696 	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
697 
698 	if (h->value.bits & ~h->mask.bits)
699 		return table_test_fail(h, "Match value has bits not in mask");
700 
701 	if ((h->mask.bits & a->parent_mask) != a->parent_mask)
702 		return table_test_fail(h, "Mask has bits not in parent mask");
703 
704 	if ((h->value.bits ^ a->parent_value) & a->parent_mask)
705 		return table_test_fail(h, "Value is inconsistent with parent");
706 
707 	if (type == DECODE_TYPE_TABLE) {
708 		struct decode_table *d = (struct decode_table *)h;
709 		struct table_test_args args2 = *a;
710 		args2.parent_mask = h->mask.bits;
711 		args2.parent_value = h->value.bits;
712 		return table_iter(d->table.table, table_test_fn, &args2);
713 	}
714 
715 	return 0;
716 }
717 
718 static int table_test(const union decode_item *table)
719 {
720 	struct table_test_args args = {
721 		.root_table	= table,
722 		.parent_mask	= 0,
723 		.parent_value	= 0
724 	};
725 	return table_iter(args.root_table, table_test_fn, &args);
726 }
727 
728 
729 /*
730  * Decoding table test coverage analysis
731  *
732  * coverage_start() builds a coverage_table which contains a list of
733  * coverage_entry's to match each entry in the specified kprobes instruction
734  * decoding table.
735  *
736  * When test cases are run, coverage_add() is called to process each case.
737  * This looks up the corresponding entry in the coverage_table and sets it as
738  * being matched, as well as clearing the regs flag appropriate for the test.
739  *
740  * After all test cases have been run, coverage_end() is called to check that
741  * all entries in coverage_table have been matched and that all regs flags are
742  * cleared. I.e. that all possible combinations of instructions described by
743  * the kprobes decoding tables have had a test case executed for them.
744  */
745 
746 bool coverage_fail;
747 
748 #define MAX_COVERAGE_ENTRIES 256
749 
750 struct coverage_entry {
751 	const struct decode_header	*header;
752 	unsigned			regs;
753 	unsigned			nesting;
754 	char				matched;
755 };
756 
757 struct coverage_table {
758 	struct coverage_entry	*base;
759 	unsigned		num_entries;
760 	unsigned		nesting;
761 };
762 
763 struct coverage_table coverage;
764 
765 #define COVERAGE_ANY_REG	(1<<0)
766 #define COVERAGE_SP		(1<<1)
767 #define COVERAGE_PC		(1<<2)
768 #define COVERAGE_PCWB		(1<<3)
769 
770 static const char coverage_register_lookup[16] = {
771 	[REG_TYPE_ANY]		= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
772 	[REG_TYPE_SAMEAS16]	= COVERAGE_ANY_REG,
773 	[REG_TYPE_SP]		= COVERAGE_SP,
774 	[REG_TYPE_PC]		= COVERAGE_PC,
775 	[REG_TYPE_NOSP]		= COVERAGE_ANY_REG | COVERAGE_SP,
776 	[REG_TYPE_NOSPPC]	= COVERAGE_ANY_REG | COVERAGE_SP | COVERAGE_PC,
777 	[REG_TYPE_NOPC]		= COVERAGE_ANY_REG | COVERAGE_PC,
778 	[REG_TYPE_NOPCWB]	= COVERAGE_ANY_REG | COVERAGE_PC | COVERAGE_PCWB,
779 	[REG_TYPE_NOPCX]	= COVERAGE_ANY_REG,
780 	[REG_TYPE_NOSPPCX]	= COVERAGE_ANY_REG | COVERAGE_SP,
781 };
782 
783 unsigned coverage_start_registers(const struct decode_header *h)
784 {
785 	unsigned regs = 0;
786 	int i;
787 	for (i = 0; i < 20; i += 4) {
788 		int r = (h->type_regs.bits >> (DECODE_TYPE_BITS + i)) & 0xf;
789 		regs |= coverage_register_lookup[r] << i;
790 	}
791 	return regs;
792 }
793 
794 static int coverage_start_fn(const struct decode_header *h, void *args)
795 {
796 	struct coverage_table *coverage = (struct coverage_table *)args;
797 	enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
798 	struct coverage_entry *entry = coverage->base + coverage->num_entries;
799 
800 	if (coverage->num_entries == MAX_COVERAGE_ENTRIES - 1) {
801 		pr_err("FAIL: Out of space for test coverage data");
802 		return -ENOMEM;
803 	}
804 
805 	++coverage->num_entries;
806 
807 	entry->header = h;
808 	entry->regs = coverage_start_registers(h);
809 	entry->nesting = coverage->nesting;
810 	entry->matched = false;
811 
812 	if (type == DECODE_TYPE_TABLE) {
813 		struct decode_table *d = (struct decode_table *)h;
814 		int ret;
815 		++coverage->nesting;
816 		ret = table_iter(d->table.table, coverage_start_fn, coverage);
817 		--coverage->nesting;
818 		return ret;
819 	}
820 
821 	return 0;
822 }
823 
824 static int coverage_start(const union decode_item *table)
825 {
826 	coverage.base = kmalloc(MAX_COVERAGE_ENTRIES *
827 				sizeof(struct coverage_entry), GFP_KERNEL);
828 	coverage.num_entries = 0;
829 	coverage.nesting = 0;
830 	return table_iter(table, coverage_start_fn, &coverage);
831 }
832 
833 static void
834 coverage_add_registers(struct coverage_entry *entry, kprobe_opcode_t insn)
835 {
836 	int regs = entry->header->type_regs.bits >> DECODE_TYPE_BITS;
837 	int i;
838 	for (i = 0; i < 20; i += 4) {
839 		enum decode_reg_type reg_type = (regs >> i) & 0xf;
840 		int reg = (insn >> i) & 0xf;
841 		int flag;
842 
843 		if (!reg_type)
844 			continue;
845 
846 		if (reg == 13)
847 			flag = COVERAGE_SP;
848 		else if (reg == 15)
849 			flag = COVERAGE_PC;
850 		else
851 			flag = COVERAGE_ANY_REG;
852 		entry->regs &= ~(flag << i);
853 
854 		switch (reg_type) {
855 
856 		case REG_TYPE_NONE:
857 		case REG_TYPE_ANY:
858 		case REG_TYPE_SAMEAS16:
859 			break;
860 
861 		case REG_TYPE_SP:
862 			if (reg != 13)
863 				return;
864 			break;
865 
866 		case REG_TYPE_PC:
867 			if (reg != 15)
868 				return;
869 			break;
870 
871 		case REG_TYPE_NOSP:
872 			if (reg == 13)
873 				return;
874 			break;
875 
876 		case REG_TYPE_NOSPPC:
877 		case REG_TYPE_NOSPPCX:
878 			if (reg == 13 || reg == 15)
879 				return;
880 			break;
881 
882 		case REG_TYPE_NOPCWB:
883 			if (!is_writeback(insn))
884 				break;
885 			if (reg == 15) {
886 				entry->regs &= ~(COVERAGE_PCWB << i);
887 				return;
888 			}
889 			break;
890 
891 		case REG_TYPE_NOPC:
892 		case REG_TYPE_NOPCX:
893 			if (reg == 15)
894 				return;
895 			break;
896 		}
897 
898 	}
899 }
900 
901 static void coverage_add(kprobe_opcode_t insn)
902 {
903 	struct coverage_entry *entry = coverage.base;
904 	struct coverage_entry *end = coverage.base + coverage.num_entries;
905 	bool matched = false;
906 	unsigned nesting = 0;
907 
908 	for (; entry < end; ++entry) {
909 		const struct decode_header *h = entry->header;
910 		enum decode_type type = h->type_regs.bits & DECODE_TYPE_MASK;
911 
912 		if (entry->nesting > nesting)
913 			continue; /* Skip sub-table we didn't match */
914 
915 		if (entry->nesting < nesting)
916 			break; /* End of sub-table we were scanning */
917 
918 		if (!matched) {
919 			if ((insn & h->mask.bits) != h->value.bits)
920 				continue;
921 			entry->matched = true;
922 		}
923 
924 		switch (type) {
925 
926 		case DECODE_TYPE_TABLE:
927 			++nesting;
928 			break;
929 
930 		case DECODE_TYPE_CUSTOM:
931 		case DECODE_TYPE_SIMULATE:
932 		case DECODE_TYPE_EMULATE:
933 			coverage_add_registers(entry, insn);
934 			return;
935 
936 		case DECODE_TYPE_OR:
937 			matched = true;
938 			break;
939 
940 		case DECODE_TYPE_REJECT:
941 		default:
942 			return;
943 		}
944 
945 	}
946 }
947 
948 static void coverage_end(void)
949 {
950 	struct coverage_entry *entry = coverage.base;
951 	struct coverage_entry *end = coverage.base + coverage.num_entries;
952 
953 	for (; entry < end; ++entry) {
954 		u32 mask = entry->header->mask.bits;
955 		u32 value = entry->header->value.bits;
956 
957 		if (entry->regs) {
958 			pr_err("FAIL: Register test coverage missing for %08x %08x (%05x)\n",
959 				mask, value, entry->regs);
960 			coverage_fail = true;
961 		}
962 		if (!entry->matched) {
963 			pr_err("FAIL: Test coverage entry missing for %08x %08x\n",
964 				mask, value);
965 			coverage_fail = true;
966 		}
967 	}
968 
969 	kfree(coverage.base);
970 }
971 
972 
973 /*
974  * Framework for instruction set test cases
975  */
976 
977 void __naked __kprobes_test_case_start(void)
978 {
979 	__asm__ __volatile__ (
980 		"mov	r2, sp					\n\t"
981 		"bic	r3, r2, #7				\n\t"
982 		"mov	sp, r3					\n\t"
983 		"stmdb	sp!, {r2-r11}				\n\t"
984 		"sub	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
985 		"bic	r0, lr, #1  @ r0 = inline data		\n\t"
986 		"mov	r1, sp					\n\t"
987 		"bl	kprobes_test_case_start			\n\t"
988 		RET(r0)"					\n\t"
989 	);
990 }
991 
992 #ifndef CONFIG_THUMB2_KERNEL
993 
994 void __naked __kprobes_test_case_end_32(void)
995 {
996 	__asm__ __volatile__ (
997 		"mov	r4, lr					\n\t"
998 		"bl	kprobes_test_case_end			\n\t"
999 		"cmp	r0, #0					\n\t"
1000 		"movne	pc, r0					\n\t"
1001 		"mov	r0, r4					\n\t"
1002 		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
1003 		"ldmia	sp!, {r2-r11}				\n\t"
1004 		"mov	sp, r2					\n\t"
1005 		"mov	pc, r0					\n\t"
1006 	);
1007 }
1008 
1009 #else /* CONFIG_THUMB2_KERNEL */
1010 
1011 void __naked __kprobes_test_case_end_16(void)
1012 {
1013 	__asm__ __volatile__ (
1014 		"mov	r4, lr					\n\t"
1015 		"bl	kprobes_test_case_end			\n\t"
1016 		"cmp	r0, #0					\n\t"
1017 		"bxne	r0					\n\t"
1018 		"mov	r0, r4					\n\t"
1019 		"add	sp, sp, #"__stringify(TEST_MEMORY_SIZE)"\n\t"
1020 		"ldmia	sp!, {r2-r11}				\n\t"
1021 		"mov	sp, r2					\n\t"
1022 		"bx	r0					\n\t"
1023 	);
1024 }
1025 
1026 void __naked __kprobes_test_case_end_32(void)
1027 {
1028 	__asm__ __volatile__ (
1029 		".arm						\n\t"
1030 		"orr	lr, lr, #1  @ will return to Thumb code	\n\t"
1031 		"ldr	pc, 1f					\n\t"
1032 		"1:						\n\t"
1033 		".word	__kprobes_test_case_end_16		\n\t"
1034 	);
1035 }
1036 
1037 #endif
1038 
1039 
1040 int kprobe_test_flags;
1041 int kprobe_test_cc_position;
1042 
1043 static int test_try_count;
1044 static int test_pass_count;
1045 static int test_fail_count;
1046 
1047 static struct pt_regs initial_regs;
1048 static struct pt_regs expected_regs;
1049 static struct pt_regs result_regs;
1050 
1051 static u32 expected_memory[TEST_MEMORY_SIZE/sizeof(u32)];
1052 
1053 static const char *current_title;
1054 static struct test_arg *current_args;
1055 static u32 *current_stack;
1056 static uintptr_t current_branch_target;
1057 
1058 static uintptr_t current_code_start;
1059 static kprobe_opcode_t current_instruction;
1060 
1061 
1062 #define TEST_CASE_PASSED -1
1063 #define TEST_CASE_FAILED -2
1064 
1065 static int test_case_run_count;
1066 static bool test_case_is_thumb;
1067 static int test_instance;
1068 
1069 static unsigned long test_check_cc(int cc, unsigned long cpsr)
1070 {
1071 	int ret = arm_check_condition(cc << 28, cpsr);
1072 
1073 	return (ret != ARM_OPCODE_CONDTEST_FAIL);
1074 }
1075 
1076 static int is_last_scenario;
1077 static int probe_should_run; /* 0 = no, 1 = yes, -1 = unknown */
1078 static int memory_needs_checking;
1079 
1080 static unsigned long test_context_cpsr(int scenario)
1081 {
1082 	unsigned long cpsr;
1083 
1084 	probe_should_run = 1;
1085 
1086 	/* Default case is that we cycle through 16 combinations of flags */
1087 	cpsr  = (scenario & 0xf) << 28; /* N,Z,C,V flags */
1088 	cpsr |= (scenario & 0xf) << 16; /* GE flags */
1089 	cpsr |= (scenario & 0x1) << 27; /* Toggle Q flag */
1090 
1091 	if (!test_case_is_thumb) {
1092 		/* Testing ARM code */
1093 		int cc = current_instruction >> 28;
1094 
1095 		probe_should_run = test_check_cc(cc, cpsr) != 0;
1096 		if (scenario == 15)
1097 			is_last_scenario = true;
1098 
1099 	} else if (kprobe_test_flags & TEST_FLAG_NO_ITBLOCK) {
1100 		/* Testing Thumb code without setting ITSTATE */
1101 		if (kprobe_test_cc_position) {
1102 			int cc = (current_instruction >> kprobe_test_cc_position) & 0xf;
1103 			probe_should_run = test_check_cc(cc, cpsr) != 0;
1104 		}
1105 
1106 		if (scenario == 15)
1107 			is_last_scenario = true;
1108 
1109 	} else if (kprobe_test_flags & TEST_FLAG_FULL_ITBLOCK) {
1110 		/* Testing Thumb code with all combinations of ITSTATE */
1111 		unsigned x = (scenario >> 4);
1112 		unsigned cond_base = x % 7; /* ITSTATE<7:5> */
1113 		unsigned mask = x / 7 + 2;  /* ITSTATE<4:0>, bits reversed */
1114 
1115 		if (mask > 0x1f) {
1116 			/* Finish by testing state from instruction 'itt al' */
1117 			cond_base = 7;
1118 			mask = 0x4;
1119 			if ((scenario & 0xf) == 0xf)
1120 				is_last_scenario = true;
1121 		}
1122 
1123 		cpsr |= cond_base << 13;	/* ITSTATE<7:5> */
1124 		cpsr |= (mask & 0x1) << 12;	/* ITSTATE<4> */
1125 		cpsr |= (mask & 0x2) << 10;	/* ITSTATE<3> */
1126 		cpsr |= (mask & 0x4) << 8;	/* ITSTATE<2> */
1127 		cpsr |= (mask & 0x8) << 23;	/* ITSTATE<1> */
1128 		cpsr |= (mask & 0x10) << 21;	/* ITSTATE<0> */
1129 
1130 		probe_should_run = test_check_cc((cpsr >> 12) & 0xf, cpsr) != 0;
1131 
1132 	} else {
1133 		/* Testing Thumb code with several combinations of ITSTATE */
1134 		switch (scenario) {
1135 		case 16: /* Clear NZCV flags and 'it eq' state (false as Z=0) */
1136 			cpsr = 0x00000800;
1137 			probe_should_run = 0;
1138 			break;
1139 		case 17: /* Set NZCV flags and 'it vc' state (false as V=1) */
1140 			cpsr = 0xf0007800;
1141 			probe_should_run = 0;
1142 			break;
1143 		case 18: /* Clear NZCV flags and 'it ls' state (true as C=0) */
1144 			cpsr = 0x00009800;
1145 			break;
1146 		case 19: /* Set NZCV flags and 'it cs' state (true as C=1) */
1147 			cpsr = 0xf0002800;
1148 			is_last_scenario = true;
1149 			break;
1150 		}
1151 	}
1152 
1153 	return cpsr;
1154 }
1155 
1156 static void setup_test_context(struct pt_regs *regs)
1157 {
1158 	int scenario = test_case_run_count>>1;
1159 	unsigned long val;
1160 	struct test_arg *args;
1161 	int i;
1162 
1163 	is_last_scenario = false;
1164 	memory_needs_checking = false;
1165 
1166 	/* Initialise test memory on stack */
1167 	val = (scenario & 1) ? VALM : ~VALM;
1168 	for (i = 0; i < TEST_MEMORY_SIZE / sizeof(current_stack[0]); ++i)
1169 		current_stack[i] = val + (i << 8);
1170 	/* Put target of branch on stack for tests which load PC from memory */
1171 	if (current_branch_target)
1172 		current_stack[15] = current_branch_target;
1173 	/* Put a value for SP on stack for tests which load SP from memory */
1174 	current_stack[13] = (u32)current_stack + 120;
1175 
1176 	/* Initialise register values to their default state */
1177 	val = (scenario & 2) ? VALR : ~VALR;
1178 	for (i = 0; i < 13; ++i)
1179 		regs->uregs[i] = val ^ (i << 8);
1180 	regs->ARM_lr = val ^ (14 << 8);
1181 	regs->ARM_cpsr &= ~(APSR_MASK | PSR_IT_MASK);
1182 	regs->ARM_cpsr |= test_context_cpsr(scenario);
1183 
1184 	/* Perform testcase specific register setup  */
1185 	args = current_args;
1186 	for (; args[0].type != ARG_TYPE_END; ++args)
1187 		switch (args[0].type) {
1188 		case ARG_TYPE_REG: {
1189 			struct test_arg_regptr *arg =
1190 				(struct test_arg_regptr *)args;
1191 			regs->uregs[arg->reg] = arg->val;
1192 			break;
1193 		}
1194 		case ARG_TYPE_PTR: {
1195 			struct test_arg_regptr *arg =
1196 				(struct test_arg_regptr *)args;
1197 			regs->uregs[arg->reg] =
1198 				(unsigned long)current_stack + arg->val;
1199 			memory_needs_checking = true;
1200 			/*
1201 			 * Test memory at an address below SP is in danger of
1202 			 * being altered by an interrupt occurring and pushing
1203 			 * data onto the stack. Disable interrupts to stop this.
1204 			 */
1205 			if (arg->reg == 13)
1206 				regs->ARM_cpsr |= PSR_I_BIT;
1207 			break;
1208 		}
1209 		case ARG_TYPE_MEM: {
1210 			struct test_arg_mem *arg = (struct test_arg_mem *)args;
1211 			current_stack[arg->index] = arg->val;
1212 			break;
1213 		}
1214 		default:
1215 			break;
1216 		}
1217 }
1218 
1219 struct test_probe {
1220 	struct kprobe	kprobe;
1221 	bool		registered;
1222 	int		hit;
1223 };
1224 
1225 static void unregister_test_probe(struct test_probe *probe)
1226 {
1227 	if (probe->registered) {
1228 		unregister_kprobe(&probe->kprobe);
1229 		probe->kprobe.flags = 0; /* Clear disable flag to allow reuse */
1230 	}
1231 	probe->registered = false;
1232 }
1233 
1234 static int register_test_probe(struct test_probe *probe)
1235 {
1236 	int ret;
1237 
1238 	if (probe->registered)
1239 		BUG();
1240 
1241 	ret = register_kprobe(&probe->kprobe);
1242 	if (ret >= 0) {
1243 		probe->registered = true;
1244 		probe->hit = -1;
1245 	}
1246 	return ret;
1247 }
1248 
1249 static int __kprobes
1250 test_before_pre_handler(struct kprobe *p, struct pt_regs *regs)
1251 {
1252 	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1253 	return 0;
1254 }
1255 
1256 static void __kprobes
1257 test_before_post_handler(struct kprobe *p, struct pt_regs *regs,
1258 							unsigned long flags)
1259 {
1260 	setup_test_context(regs);
1261 	initial_regs = *regs;
1262 	initial_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1263 }
1264 
1265 static int __kprobes
1266 test_case_pre_handler(struct kprobe *p, struct pt_regs *regs)
1267 {
1268 	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1269 	return 0;
1270 }
1271 
1272 static int __kprobes
1273 test_after_pre_handler(struct kprobe *p, struct pt_regs *regs)
1274 {
1275 	struct test_arg *args;
1276 
1277 	if (container_of(p, struct test_probe, kprobe)->hit == test_instance)
1278 		return 0; /* Already run for this test instance */
1279 
1280 	result_regs = *regs;
1281 
1282 	/* Mask out results which are indeterminate */
1283 	result_regs.ARM_cpsr &= ~PSR_IGNORE_BITS;
1284 	for (args = current_args; args[0].type != ARG_TYPE_END; ++args)
1285 		if (args[0].type == ARG_TYPE_REG_MASKED) {
1286 			struct test_arg_regptr *arg =
1287 				(struct test_arg_regptr *)args;
1288 			result_regs.uregs[arg->reg] &= arg->val;
1289 		}
1290 
1291 	/* Undo any changes done to SP by the test case */
1292 	regs->ARM_sp = (unsigned long)current_stack;
1293 	/* Enable interrupts in case setup_test_context disabled them */
1294 	regs->ARM_cpsr &= ~PSR_I_BIT;
1295 
1296 	container_of(p, struct test_probe, kprobe)->hit = test_instance;
1297 	return 0;
1298 }
1299 
1300 static struct test_probe test_before_probe = {
1301 	.kprobe.pre_handler	= test_before_pre_handler,
1302 	.kprobe.post_handler	= test_before_post_handler,
1303 };
1304 
1305 static struct test_probe test_case_probe = {
1306 	.kprobe.pre_handler	= test_case_pre_handler,
1307 };
1308 
1309 static struct test_probe test_after_probe = {
1310 	.kprobe.pre_handler	= test_after_pre_handler,
1311 };
1312 
1313 static struct test_probe test_after2_probe = {
1314 	.kprobe.pre_handler	= test_after_pre_handler,
1315 };
1316 
1317 static void test_case_cleanup(void)
1318 {
1319 	unregister_test_probe(&test_before_probe);
1320 	unregister_test_probe(&test_case_probe);
1321 	unregister_test_probe(&test_after_probe);
1322 	unregister_test_probe(&test_after2_probe);
1323 }
1324 
1325 static void print_registers(struct pt_regs *regs)
1326 {
1327 	pr_err("r0  %08lx | r1  %08lx | r2  %08lx | r3  %08lx\n",
1328 		regs->ARM_r0, regs->ARM_r1, regs->ARM_r2, regs->ARM_r3);
1329 	pr_err("r4  %08lx | r5  %08lx | r6  %08lx | r7  %08lx\n",
1330 		regs->ARM_r4, regs->ARM_r5, regs->ARM_r6, regs->ARM_r7);
1331 	pr_err("r8  %08lx | r9  %08lx | r10 %08lx | r11 %08lx\n",
1332 		regs->ARM_r8, regs->ARM_r9, regs->ARM_r10, regs->ARM_fp);
1333 	pr_err("r12 %08lx | sp  %08lx | lr  %08lx | pc  %08lx\n",
1334 		regs->ARM_ip, regs->ARM_sp, regs->ARM_lr, regs->ARM_pc);
1335 	pr_err("cpsr %08lx\n", regs->ARM_cpsr);
1336 }
1337 
1338 static void print_memory(u32 *mem, size_t size)
1339 {
1340 	int i;
1341 	for (i = 0; i < size / sizeof(u32); i += 4)
1342 		pr_err("%08x %08x %08x %08x\n", mem[i], mem[i+1],
1343 						mem[i+2], mem[i+3]);
1344 }
1345 
1346 static size_t expected_memory_size(u32 *sp)
1347 {
1348 	size_t size = sizeof(expected_memory);
1349 	int offset = (uintptr_t)sp - (uintptr_t)current_stack;
1350 	if (offset > 0)
1351 		size -= offset;
1352 	return size;
1353 }
1354 
1355 static void test_case_failed(const char *message)
1356 {
1357 	test_case_cleanup();
1358 
1359 	pr_err("FAIL: %s\n", message);
1360 	pr_err("FAIL: Test %s\n", current_title);
1361 	pr_err("FAIL: Scenario %d\n", test_case_run_count >> 1);
1362 }
1363 
1364 static unsigned long next_instruction(unsigned long pc)
1365 {
1366 #ifdef CONFIG_THUMB2_KERNEL
1367 	if ((pc & 1) &&
1368 	    !is_wide_instruction(__mem_to_opcode_thumb16(*(u16 *)(pc - 1))))
1369 		return pc + 2;
1370 	else
1371 #endif
1372 	return pc + 4;
1373 }
1374 
1375 static uintptr_t __used kprobes_test_case_start(const char **title, void *stack)
1376 {
1377 	struct test_arg *args;
1378 	struct test_arg_end *end_arg;
1379 	unsigned long test_code;
1380 
1381 	current_title = *title++;
1382 	args = (struct test_arg *)title;
1383 	current_args = args;
1384 	current_stack = stack;
1385 
1386 	++test_try_count;
1387 
1388 	while (args->type != ARG_TYPE_END)
1389 		++args;
1390 	end_arg = (struct test_arg_end *)args;
1391 
1392 	test_code = (unsigned long)(args + 1); /* Code starts after args */
1393 
1394 	test_case_is_thumb = end_arg->flags & ARG_FLAG_THUMB;
1395 	if (test_case_is_thumb)
1396 		test_code |= 1;
1397 
1398 	current_code_start = test_code;
1399 
1400 	current_branch_target = 0;
1401 	if (end_arg->branch_offset != end_arg->end_offset)
1402 		current_branch_target = test_code + end_arg->branch_offset;
1403 
1404 	test_code += end_arg->code_offset;
1405 	test_before_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1406 
1407 	test_code = next_instruction(test_code);
1408 	test_case_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1409 
1410 	if (test_case_is_thumb) {
1411 		u16 *p = (u16 *)(test_code & ~1);
1412 		current_instruction = __mem_to_opcode_thumb16(p[0]);
1413 		if (is_wide_instruction(current_instruction)) {
1414 			u16 instr2 = __mem_to_opcode_thumb16(p[1]);
1415 			current_instruction = __opcode_thumb32_compose(current_instruction, instr2);
1416 		}
1417 	} else {
1418 		current_instruction = __mem_to_opcode_arm(*(u32 *)test_code);
1419 	}
1420 
1421 	if (current_title[0] == '.')
1422 		verbose("%s\n", current_title);
1423 	else
1424 		verbose("%s\t@ %0*x\n", current_title,
1425 					test_case_is_thumb ? 4 : 8,
1426 					current_instruction);
1427 
1428 	test_code = next_instruction(test_code);
1429 	test_after_probe.kprobe.addr = (kprobe_opcode_t *)test_code;
1430 
1431 	if (kprobe_test_flags & TEST_FLAG_NARROW_INSTR) {
1432 		if (!test_case_is_thumb ||
1433 			is_wide_instruction(current_instruction)) {
1434 				test_case_failed("expected 16-bit instruction");
1435 				goto fail;
1436 		}
1437 	} else {
1438 		if (test_case_is_thumb &&
1439 			!is_wide_instruction(current_instruction)) {
1440 				test_case_failed("expected 32-bit instruction");
1441 				goto fail;
1442 		}
1443 	}
1444 
1445 	coverage_add(current_instruction);
1446 
1447 	if (end_arg->flags & ARG_FLAG_UNSUPPORTED) {
1448 		if (register_test_probe(&test_case_probe) < 0)
1449 			goto pass;
1450 		test_case_failed("registered probe for unsupported instruction");
1451 		goto fail;
1452 	}
1453 
1454 	if (end_arg->flags & ARG_FLAG_SUPPORTED) {
1455 		if (register_test_probe(&test_case_probe) >= 0)
1456 			goto pass;
1457 		test_case_failed("couldn't register probe for supported instruction");
1458 		goto fail;
1459 	}
1460 
1461 	if (register_test_probe(&test_before_probe) < 0) {
1462 		test_case_failed("register test_before_probe failed");
1463 		goto fail;
1464 	}
1465 	if (register_test_probe(&test_after_probe) < 0) {
1466 		test_case_failed("register test_after_probe failed");
1467 		goto fail;
1468 	}
1469 	if (current_branch_target) {
1470 		test_after2_probe.kprobe.addr =
1471 				(kprobe_opcode_t *)current_branch_target;
1472 		if (register_test_probe(&test_after2_probe) < 0) {
1473 			test_case_failed("register test_after2_probe failed");
1474 			goto fail;
1475 		}
1476 	}
1477 
1478 	/* Start first run of test case */
1479 	test_case_run_count = 0;
1480 	++test_instance;
1481 	return current_code_start;
1482 pass:
1483 	test_case_run_count = TEST_CASE_PASSED;
1484 	return (uintptr_t)test_after_probe.kprobe.addr;
1485 fail:
1486 	test_case_run_count = TEST_CASE_FAILED;
1487 	return (uintptr_t)test_after_probe.kprobe.addr;
1488 }
1489 
1490 static bool check_test_results(void)
1491 {
1492 	size_t mem_size = 0;
1493 	u32 *mem = 0;
1494 
1495 	if (memcmp(&expected_regs, &result_regs, sizeof(expected_regs))) {
1496 		test_case_failed("registers differ");
1497 		goto fail;
1498 	}
1499 
1500 	if (memory_needs_checking) {
1501 		mem = (u32 *)result_regs.ARM_sp;
1502 		mem_size = expected_memory_size(mem);
1503 		if (memcmp(expected_memory, mem, mem_size)) {
1504 			test_case_failed("test memory differs");
1505 			goto fail;
1506 		}
1507 	}
1508 
1509 	return true;
1510 
1511 fail:
1512 	pr_err("initial_regs:\n");
1513 	print_registers(&initial_regs);
1514 	pr_err("expected_regs:\n");
1515 	print_registers(&expected_regs);
1516 	pr_err("result_regs:\n");
1517 	print_registers(&result_regs);
1518 
1519 	if (mem) {
1520 		pr_err("current_stack=%p\n", current_stack);
1521 		pr_err("expected_memory:\n");
1522 		print_memory(expected_memory, mem_size);
1523 		pr_err("result_memory:\n");
1524 		print_memory(mem, mem_size);
1525 	}
1526 
1527 	return false;
1528 }
1529 
1530 static uintptr_t __used kprobes_test_case_end(void)
1531 {
1532 	if (test_case_run_count < 0) {
1533 		if (test_case_run_count == TEST_CASE_PASSED)
1534 			/* kprobes_test_case_start did all the needed testing */
1535 			goto pass;
1536 		else
1537 			/* kprobes_test_case_start failed */
1538 			goto fail;
1539 	}
1540 
1541 	if (test_before_probe.hit != test_instance) {
1542 		test_case_failed("test_before_handler not run");
1543 		goto fail;
1544 	}
1545 
1546 	if (test_after_probe.hit != test_instance &&
1547 				test_after2_probe.hit != test_instance) {
1548 		test_case_failed("test_after_handler not run");
1549 		goto fail;
1550 	}
1551 
1552 	/*
1553 	 * Even numbered test runs ran without a probe on the test case so
1554 	 * we can gather reference results. The subsequent odd numbered run
1555 	 * will have the probe inserted.
1556 	*/
1557 	if ((test_case_run_count & 1) == 0) {
1558 		/* Save results from run without probe */
1559 		u32 *mem = (u32 *)result_regs.ARM_sp;
1560 		expected_regs = result_regs;
1561 		memcpy(expected_memory, mem, expected_memory_size(mem));
1562 
1563 		/* Insert probe onto test case instruction */
1564 		if (register_test_probe(&test_case_probe) < 0) {
1565 			test_case_failed("register test_case_probe failed");
1566 			goto fail;
1567 		}
1568 	} else {
1569 		/* Check probe ran as expected */
1570 		if (probe_should_run == 1) {
1571 			if (test_case_probe.hit != test_instance) {
1572 				test_case_failed("test_case_handler not run");
1573 				goto fail;
1574 			}
1575 		} else if (probe_should_run == 0) {
1576 			if (test_case_probe.hit == test_instance) {
1577 				test_case_failed("test_case_handler ran");
1578 				goto fail;
1579 			}
1580 		}
1581 
1582 		/* Remove probe for any subsequent reference run */
1583 		unregister_test_probe(&test_case_probe);
1584 
1585 		if (!check_test_results())
1586 			goto fail;
1587 
1588 		if (is_last_scenario)
1589 			goto pass;
1590 	}
1591 
1592 	/* Do next test run */
1593 	++test_case_run_count;
1594 	++test_instance;
1595 	return current_code_start;
1596 fail:
1597 	++test_fail_count;
1598 	goto end;
1599 pass:
1600 	++test_pass_count;
1601 end:
1602 	test_case_cleanup();
1603 	return 0;
1604 }
1605 
1606 
1607 /*
1608  * Top level test functions
1609  */
1610 
1611 static int run_test_cases(void (*tests)(void), const union decode_item *table)
1612 {
1613 	int ret;
1614 
1615 	pr_info("    Check decoding tables\n");
1616 	ret = table_test(table);
1617 	if (ret)
1618 		return ret;
1619 
1620 	pr_info("    Run test cases\n");
1621 	ret = coverage_start(table);
1622 	if (ret)
1623 		return ret;
1624 
1625 	tests();
1626 
1627 	coverage_end();
1628 	return 0;
1629 }
1630 
1631 
1632 static int __init run_all_tests(void)
1633 {
1634 	int ret = 0;
1635 
1636 	pr_info("Beginning kprobe tests...\n");
1637 
1638 #ifndef CONFIG_THUMB2_KERNEL
1639 
1640 	pr_info("Probe ARM code\n");
1641 	ret = run_api_tests(arm_func);
1642 	if (ret)
1643 		goto out;
1644 
1645 	pr_info("ARM instruction simulation\n");
1646 	ret = run_test_cases(kprobe_arm_test_cases, probes_decode_arm_table);
1647 	if (ret)
1648 		goto out;
1649 
1650 #else /* CONFIG_THUMB2_KERNEL */
1651 
1652 	pr_info("Probe 16-bit Thumb code\n");
1653 	ret = run_api_tests(thumb16_func);
1654 	if (ret)
1655 		goto out;
1656 
1657 	pr_info("Probe 32-bit Thumb code, even halfword\n");
1658 	ret = run_api_tests(thumb32even_func);
1659 	if (ret)
1660 		goto out;
1661 
1662 	pr_info("Probe 32-bit Thumb code, odd halfword\n");
1663 	ret = run_api_tests(thumb32odd_func);
1664 	if (ret)
1665 		goto out;
1666 
1667 	pr_info("16-bit Thumb instruction simulation\n");
1668 	ret = run_test_cases(kprobe_thumb16_test_cases,
1669 				probes_decode_thumb16_table);
1670 	if (ret)
1671 		goto out;
1672 
1673 	pr_info("32-bit Thumb instruction simulation\n");
1674 	ret = run_test_cases(kprobe_thumb32_test_cases,
1675 				probes_decode_thumb32_table);
1676 	if (ret)
1677 		goto out;
1678 #endif
1679 
1680 	pr_info("Total instruction simulation tests=%d, pass=%d fail=%d\n",
1681 		test_try_count, test_pass_count, test_fail_count);
1682 	if (test_fail_count) {
1683 		ret = -EINVAL;
1684 		goto out;
1685 	}
1686 
1687 #if BENCHMARKING
1688 	pr_info("Benchmarks\n");
1689 	ret = run_benchmarks();
1690 	if (ret)
1691 		goto out;
1692 #endif
1693 
1694 #if __LINUX_ARM_ARCH__ >= 7
1695 	/* We are able to run all test cases so coverage should be complete */
1696 	if (coverage_fail) {
1697 		pr_err("FAIL: Test coverage checks failed\n");
1698 		ret = -EINVAL;
1699 		goto out;
1700 	}
1701 #endif
1702 
1703 out:
1704 	if (ret == 0)
1705 		ret = tests_failed;
1706 	if (ret == 0)
1707 		pr_info("Finished kprobe tests OK\n");
1708 	else
1709 		pr_err("kprobe tests failed\n");
1710 
1711 	return ret;
1712 }
1713 
1714 
1715 /*
1716  * Module setup
1717  */
1718 
1719 #ifdef MODULE
1720 
1721 static void __exit kprobe_test_exit(void)
1722 {
1723 }
1724 
1725 module_init(run_all_tests)
1726 module_exit(kprobe_test_exit)
1727 MODULE_LICENSE("GPL");
1728 
1729 #else /* !MODULE */
1730 
1731 late_initcall(run_all_tests);
1732 
1733 #endif
1734