xref: /openbmc/linux/arch/arm/probes/kprobes/core.c (revision dfd4f649)
1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <sagar.abhishek@gmail.com>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <nico@marvell.com>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/sched/debug.h>
28 #include <linux/stringify.h>
29 #include <asm/traps.h>
30 #include <asm/opcodes.h>
31 #include <asm/cacheflush.h>
32 #include <linux/percpu.h>
33 #include <linux/bug.h>
34 #include <asm/patch.h>
35 #include <asm/sections.h>
36 
37 #include "../decode-arm.h"
38 #include "../decode-thumb.h"
39 #include "core.h"
40 
41 #define MIN_STACK_SIZE(addr) 				\
42 	min((unsigned long)MAX_STACK_SIZE,		\
43 	    (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
44 
45 #define flush_insns(addr, size)				\
46 	flush_icache_range((unsigned long)(addr),	\
47 			   (unsigned long)(addr) +	\
48 			   (size))
49 
50 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
51 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
52 
53 
54 int __kprobes arch_prepare_kprobe(struct kprobe *p)
55 {
56 	kprobe_opcode_t insn;
57 	kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
58 	unsigned long addr = (unsigned long)p->addr;
59 	bool thumb;
60 	kprobe_decode_insn_t *decode_insn;
61 	const union decode_action *actions;
62 	int is;
63 	const struct decode_checker **checkers;
64 
65 #ifdef CONFIG_THUMB2_KERNEL
66 	thumb = true;
67 	addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
68 	insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
69 	if (is_wide_instruction(insn)) {
70 		u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
71 		insn = __opcode_thumb32_compose(insn, inst2);
72 		decode_insn = thumb32_probes_decode_insn;
73 		actions = kprobes_t32_actions;
74 		checkers = kprobes_t32_checkers;
75 	} else {
76 		decode_insn = thumb16_probes_decode_insn;
77 		actions = kprobes_t16_actions;
78 		checkers = kprobes_t16_checkers;
79 	}
80 #else /* !CONFIG_THUMB2_KERNEL */
81 	thumb = false;
82 	if (addr & 0x3)
83 		return -EINVAL;
84 	insn = __mem_to_opcode_arm(*p->addr);
85 	decode_insn = arm_probes_decode_insn;
86 	actions = kprobes_arm_actions;
87 	checkers = kprobes_arm_checkers;
88 #endif
89 
90 	p->opcode = insn;
91 	p->ainsn.insn = tmp_insn;
92 
93 	switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) {
94 	case INSN_REJECTED:	/* not supported */
95 		return -EINVAL;
96 
97 	case INSN_GOOD:		/* instruction uses slot */
98 		p->ainsn.insn = get_insn_slot();
99 		if (!p->ainsn.insn)
100 			return -ENOMEM;
101 		for (is = 0; is < MAX_INSN_SIZE; ++is)
102 			p->ainsn.insn[is] = tmp_insn[is];
103 		flush_insns(p->ainsn.insn,
104 				sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
105 		p->ainsn.insn_fn = (probes_insn_fn_t *)
106 					((uintptr_t)p->ainsn.insn | thumb);
107 		break;
108 
109 	case INSN_GOOD_NO_SLOT:	/* instruction doesn't need insn slot */
110 		p->ainsn.insn = NULL;
111 		break;
112 	}
113 
114 	/*
115 	 * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes
116 	 * 'str r0, [sp, #-68]' should also be prohibited.
117 	 * See __und_svc.
118 	 */
119 	if ((p->ainsn.stack_space < 0) ||
120 			(p->ainsn.stack_space > MAX_STACK_SIZE))
121 		return -EINVAL;
122 
123 	return 0;
124 }
125 
126 void __kprobes arch_arm_kprobe(struct kprobe *p)
127 {
128 	unsigned int brkp;
129 	void *addr;
130 
131 	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
132 		/* Remove any Thumb flag */
133 		addr = (void *)((uintptr_t)p->addr & ~1);
134 
135 		if (is_wide_instruction(p->opcode))
136 			brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
137 		else
138 			brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
139 	} else {
140 		kprobe_opcode_t insn = p->opcode;
141 
142 		addr = p->addr;
143 		brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
144 
145 		if (insn >= 0xe0000000)
146 			brkp |= 0xe0000000;  /* Unconditional instruction */
147 		else
148 			brkp |= insn & 0xf0000000;  /* Copy condition from insn */
149 	}
150 
151 	patch_text(addr, brkp);
152 }
153 
154 /*
155  * The actual disarming is done here on each CPU and synchronized using
156  * stop_machine. This synchronization is necessary on SMP to avoid removing
157  * a probe between the moment the 'Undefined Instruction' exception is raised
158  * and the moment the exception handler reads the faulting instruction from
159  * memory. It is also needed to atomically set the two half-words of a 32-bit
160  * Thumb breakpoint.
161  */
162 struct patch {
163 	void *addr;
164 	unsigned int insn;
165 };
166 
167 static int __kprobes_remove_breakpoint(void *data)
168 {
169 	struct patch *p = data;
170 	__patch_text(p->addr, p->insn);
171 	return 0;
172 }
173 
174 void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn)
175 {
176 	struct patch p = {
177 		.addr = addr,
178 		.insn = insn,
179 	};
180 	stop_machine_cpuslocked(__kprobes_remove_breakpoint, &p,
181 				cpu_online_mask);
182 }
183 
184 void __kprobes arch_disarm_kprobe(struct kprobe *p)
185 {
186 	kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1),
187 			p->opcode);
188 }
189 
190 void __kprobes arch_remove_kprobe(struct kprobe *p)
191 {
192 	if (p->ainsn.insn) {
193 		free_insn_slot(p->ainsn.insn, 0);
194 		p->ainsn.insn = NULL;
195 	}
196 }
197 
198 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
199 {
200 	kcb->prev_kprobe.kp = kprobe_running();
201 	kcb->prev_kprobe.status = kcb->kprobe_status;
202 }
203 
204 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
205 {
206 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
207 	kcb->kprobe_status = kcb->prev_kprobe.status;
208 }
209 
210 static void __kprobes set_current_kprobe(struct kprobe *p)
211 {
212 	__this_cpu_write(current_kprobe, p);
213 }
214 
215 static void __kprobes
216 singlestep_skip(struct kprobe *p, struct pt_regs *regs)
217 {
218 #ifdef CONFIG_THUMB2_KERNEL
219 	regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
220 	if (is_wide_instruction(p->opcode))
221 		regs->ARM_pc += 4;
222 	else
223 		regs->ARM_pc += 2;
224 #else
225 	regs->ARM_pc += 4;
226 #endif
227 }
228 
229 static inline void __kprobes
230 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
231 {
232 	p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
233 }
234 
235 /*
236  * Called with IRQs disabled. IRQs must remain disabled from that point
237  * all the way until processing this kprobe is complete.  The current
238  * kprobes implementation cannot process more than one nested level of
239  * kprobe, and that level is reserved for user kprobe handlers, so we can't
240  * risk encountering a new kprobe in an interrupt handler.
241  */
242 void __kprobes kprobe_handler(struct pt_regs *regs)
243 {
244 	struct kprobe *p, *cur;
245 	struct kprobe_ctlblk *kcb;
246 
247 	kcb = get_kprobe_ctlblk();
248 	cur = kprobe_running();
249 
250 #ifdef CONFIG_THUMB2_KERNEL
251 	/*
252 	 * First look for a probe which was registered using an address with
253 	 * bit 0 set, this is the usual situation for pointers to Thumb code.
254 	 * If not found, fallback to looking for one with bit 0 clear.
255 	 */
256 	p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
257 	if (!p)
258 		p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
259 
260 #else /* ! CONFIG_THUMB2_KERNEL */
261 	p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
262 #endif
263 
264 	if (p) {
265 		if (!p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
266 			/*
267 			 * Probe hit but conditional execution check failed,
268 			 * so just skip the instruction and continue as if
269 			 * nothing had happened.
270 			 * In this case, we can skip recursing check too.
271 			 */
272 			singlestep_skip(p, regs);
273 		} else if (cur) {
274 			/* Kprobe is pending, so we're recursing. */
275 			switch (kcb->kprobe_status) {
276 			case KPROBE_HIT_ACTIVE:
277 			case KPROBE_HIT_SSDONE:
278 			case KPROBE_HIT_SS:
279 				/* A pre- or post-handler probe got us here. */
280 				kprobes_inc_nmissed_count(p);
281 				save_previous_kprobe(kcb);
282 				set_current_kprobe(p);
283 				kcb->kprobe_status = KPROBE_REENTER;
284 				singlestep(p, regs, kcb);
285 				restore_previous_kprobe(kcb);
286 				break;
287 			case KPROBE_REENTER:
288 				/* A nested probe was hit in FIQ, it is a BUG */
289 				pr_warn("Unrecoverable kprobe detected.\n");
290 				dump_kprobe(p);
291 				/* fall through */
292 			default:
293 				/* impossible cases */
294 				BUG();
295 			}
296 		} else {
297 			/* Probe hit and conditional execution check ok. */
298 			set_current_kprobe(p);
299 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
300 
301 			/*
302 			 * If we have no pre-handler or it returned 0, we
303 			 * continue with normal processing. If we have a
304 			 * pre-handler and it returned non-zero, it will
305 			 * modify the execution path and no need to single
306 			 * stepping. Let's just reset current kprobe and exit.
307 			 */
308 			if (!p->pre_handler || !p->pre_handler(p, regs)) {
309 				kcb->kprobe_status = KPROBE_HIT_SS;
310 				singlestep(p, regs, kcb);
311 				if (p->post_handler) {
312 					kcb->kprobe_status = KPROBE_HIT_SSDONE;
313 					p->post_handler(p, regs, 0);
314 				}
315 			}
316 			reset_current_kprobe();
317 		}
318 	} else {
319 		/*
320 		 * The probe was removed and a race is in progress.
321 		 * There is nothing we can do about it.  Let's restart
322 		 * the instruction.  By the time we can restart, the
323 		 * real instruction will be there.
324 		 */
325 	}
326 }
327 
328 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
329 {
330 	unsigned long flags;
331 	local_irq_save(flags);
332 	kprobe_handler(regs);
333 	local_irq_restore(flags);
334 	return 0;
335 }
336 
337 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
338 {
339 	struct kprobe *cur = kprobe_running();
340 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
341 
342 	switch (kcb->kprobe_status) {
343 	case KPROBE_HIT_SS:
344 	case KPROBE_REENTER:
345 		/*
346 		 * We are here because the instruction being single
347 		 * stepped caused a page fault. We reset the current
348 		 * kprobe and the PC to point back to the probe address
349 		 * and allow the page fault handler to continue as a
350 		 * normal page fault.
351 		 */
352 		regs->ARM_pc = (long)cur->addr;
353 		if (kcb->kprobe_status == KPROBE_REENTER) {
354 			restore_previous_kprobe(kcb);
355 		} else {
356 			reset_current_kprobe();
357 		}
358 		break;
359 
360 	case KPROBE_HIT_ACTIVE:
361 	case KPROBE_HIT_SSDONE:
362 		/*
363 		 * We increment the nmissed count for accounting,
364 		 * we can also use npre/npostfault count for accounting
365 		 * these specific fault cases.
366 		 */
367 		kprobes_inc_nmissed_count(cur);
368 
369 		/*
370 		 * We come here because instructions in the pre/post
371 		 * handler caused the page_fault, this could happen
372 		 * if handler tries to access user space by
373 		 * copy_from_user(), get_user() etc. Let the
374 		 * user-specified handler try to fix it.
375 		 */
376 		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
377 			return 1;
378 		break;
379 
380 	default:
381 		break;
382 	}
383 
384 	return 0;
385 }
386 
387 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
388 				       unsigned long val, void *data)
389 {
390 	/*
391 	 * notify_die() is currently never called on ARM,
392 	 * so this callback is currently empty.
393 	 */
394 	return NOTIFY_DONE;
395 }
396 
397 /*
398  * When a retprobed function returns, trampoline_handler() is called,
399  * calling the kretprobe's handler. We construct a struct pt_regs to
400  * give a view of registers r0-r11 to the user return-handler.  This is
401  * not a complete pt_regs structure, but that should be plenty sufficient
402  * for kretprobe handlers which should normally be interested in r0 only
403  * anyway.
404  */
405 void __naked __kprobes kretprobe_trampoline(void)
406 {
407 	__asm__ __volatile__ (
408 		"stmdb	sp!, {r0 - r11}		\n\t"
409 		"mov	r0, sp			\n\t"
410 		"bl	trampoline_handler	\n\t"
411 		"mov	lr, r0			\n\t"
412 		"ldmia	sp!, {r0 - r11}		\n\t"
413 #ifdef CONFIG_THUMB2_KERNEL
414 		"bx	lr			\n\t"
415 #else
416 		"mov	pc, lr			\n\t"
417 #endif
418 		: : : "memory");
419 }
420 
421 /* Called from kretprobe_trampoline */
422 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
423 {
424 	struct kretprobe_instance *ri = NULL;
425 	struct hlist_head *head, empty_rp;
426 	struct hlist_node *tmp;
427 	unsigned long flags, orig_ret_address = 0;
428 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
429 	kprobe_opcode_t *correct_ret_addr = NULL;
430 
431 	INIT_HLIST_HEAD(&empty_rp);
432 	kretprobe_hash_lock(current, &head, &flags);
433 
434 	/*
435 	 * It is possible to have multiple instances associated with a given
436 	 * task either because multiple functions in the call path have
437 	 * a return probe installed on them, and/or more than one return
438 	 * probe was registered for a target function.
439 	 *
440 	 * We can handle this because:
441 	 *     - instances are always inserted at the head of the list
442 	 *     - when multiple return probes are registered for the same
443 	 *       function, the first instance's ret_addr will point to the
444 	 *       real return address, and all the rest will point to
445 	 *       kretprobe_trampoline
446 	 */
447 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
448 		if (ri->task != current)
449 			/* another task is sharing our hash bucket */
450 			continue;
451 
452 		orig_ret_address = (unsigned long)ri->ret_addr;
453 
454 		if (orig_ret_address != trampoline_address)
455 			/*
456 			 * This is the real return address. Any other
457 			 * instances associated with this task are for
458 			 * other calls deeper on the call stack
459 			 */
460 			break;
461 	}
462 
463 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
464 
465 	correct_ret_addr = ri->ret_addr;
466 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
467 		if (ri->task != current)
468 			/* another task is sharing our hash bucket */
469 			continue;
470 
471 		orig_ret_address = (unsigned long)ri->ret_addr;
472 		if (ri->rp && ri->rp->handler) {
473 			__this_cpu_write(current_kprobe, &ri->rp->kp);
474 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
475 			ri->ret_addr = correct_ret_addr;
476 			ri->rp->handler(ri, regs);
477 			__this_cpu_write(current_kprobe, NULL);
478 		}
479 
480 		recycle_rp_inst(ri, &empty_rp);
481 
482 		if (orig_ret_address != trampoline_address)
483 			/*
484 			 * This is the real return address. Any other
485 			 * instances associated with this task are for
486 			 * other calls deeper on the call stack
487 			 */
488 			break;
489 	}
490 
491 	kretprobe_hash_unlock(current, &flags);
492 
493 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
494 		hlist_del(&ri->hlist);
495 		kfree(ri);
496 	}
497 
498 	return (void *)orig_ret_address;
499 }
500 
501 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
502 				      struct pt_regs *regs)
503 {
504 	ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
505 
506 	/* Replace the return addr with trampoline addr. */
507 	regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
508 }
509 
510 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
511 {
512 	return 0;
513 }
514 
515 #ifdef CONFIG_THUMB2_KERNEL
516 
517 static struct undef_hook kprobes_thumb16_break_hook = {
518 	.instr_mask	= 0xffff,
519 	.instr_val	= KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
520 	.cpsr_mask	= MODE_MASK,
521 	.cpsr_val	= SVC_MODE,
522 	.fn		= kprobe_trap_handler,
523 };
524 
525 static struct undef_hook kprobes_thumb32_break_hook = {
526 	.instr_mask	= 0xffffffff,
527 	.instr_val	= KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
528 	.cpsr_mask	= MODE_MASK,
529 	.cpsr_val	= SVC_MODE,
530 	.fn		= kprobe_trap_handler,
531 };
532 
533 #else  /* !CONFIG_THUMB2_KERNEL */
534 
535 static struct undef_hook kprobes_arm_break_hook = {
536 	.instr_mask	= 0x0fffffff,
537 	.instr_val	= KPROBE_ARM_BREAKPOINT_INSTRUCTION,
538 	.cpsr_mask	= MODE_MASK,
539 	.cpsr_val	= SVC_MODE,
540 	.fn		= kprobe_trap_handler,
541 };
542 
543 #endif /* !CONFIG_THUMB2_KERNEL */
544 
545 int __init arch_init_kprobes()
546 {
547 	arm_probes_decode_init();
548 #ifdef CONFIG_THUMB2_KERNEL
549 	register_undef_hook(&kprobes_thumb16_break_hook);
550 	register_undef_hook(&kprobes_thumb32_break_hook);
551 #else
552 	register_undef_hook(&kprobes_arm_break_hook);
553 #endif
554 	return 0;
555 }
556 
557 bool arch_within_kprobe_blacklist(unsigned long addr)
558 {
559 	void *a = (void *)addr;
560 
561 	return __in_irqentry_text(addr) ||
562 	       in_entry_text(addr) ||
563 	       in_idmap_text(addr) ||
564 	       memory_contains(__kprobes_text_start, __kprobes_text_end, a, 1);
565 }
566