1 /* 2 * arch/arm/kernel/kprobes.c 3 * 4 * Kprobes on ARM 5 * 6 * Abhishek Sagar <sagar.abhishek@gmail.com> 7 * Copyright (C) 2006, 2007 Motorola Inc. 8 * 9 * Nicolas Pitre <nico@marvell.com> 10 * Copyright (C) 2007 Marvell Ltd. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/kprobes.h> 24 #include <linux/module.h> 25 #include <linux/slab.h> 26 #include <linux/stop_machine.h> 27 #include <linux/sched/debug.h> 28 #include <linux/stringify.h> 29 #include <asm/traps.h> 30 #include <asm/opcodes.h> 31 #include <asm/cacheflush.h> 32 #include <linux/percpu.h> 33 #include <linux/bug.h> 34 #include <asm/patch.h> 35 #include <asm/sections.h> 36 37 #include "../decode-arm.h" 38 #include "../decode-thumb.h" 39 #include "core.h" 40 41 #define MIN_STACK_SIZE(addr) \ 42 min((unsigned long)MAX_STACK_SIZE, \ 43 (unsigned long)current_thread_info() + THREAD_START_SP - (addr)) 44 45 #define flush_insns(addr, size) \ 46 flush_icache_range((unsigned long)(addr), \ 47 (unsigned long)(addr) + \ 48 (size)) 49 50 /* Used as a marker in ARM_pc to note when we're in a jprobe. */ 51 #define JPROBE_MAGIC_ADDR 0xffffffff 52 53 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 54 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 55 56 57 int __kprobes arch_prepare_kprobe(struct kprobe *p) 58 { 59 kprobe_opcode_t insn; 60 kprobe_opcode_t tmp_insn[MAX_INSN_SIZE]; 61 unsigned long addr = (unsigned long)p->addr; 62 bool thumb; 63 kprobe_decode_insn_t *decode_insn; 64 const union decode_action *actions; 65 int is; 66 const struct decode_checker **checkers; 67 68 #ifdef CONFIG_THUMB2_KERNEL 69 thumb = true; 70 addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */ 71 insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]); 72 if (is_wide_instruction(insn)) { 73 u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]); 74 insn = __opcode_thumb32_compose(insn, inst2); 75 decode_insn = thumb32_probes_decode_insn; 76 actions = kprobes_t32_actions; 77 checkers = kprobes_t32_checkers; 78 } else { 79 decode_insn = thumb16_probes_decode_insn; 80 actions = kprobes_t16_actions; 81 checkers = kprobes_t16_checkers; 82 } 83 #else /* !CONFIG_THUMB2_KERNEL */ 84 thumb = false; 85 if (addr & 0x3) 86 return -EINVAL; 87 insn = __mem_to_opcode_arm(*p->addr); 88 decode_insn = arm_probes_decode_insn; 89 actions = kprobes_arm_actions; 90 checkers = kprobes_arm_checkers; 91 #endif 92 93 p->opcode = insn; 94 p->ainsn.insn = tmp_insn; 95 96 switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) { 97 case INSN_REJECTED: /* not supported */ 98 return -EINVAL; 99 100 case INSN_GOOD: /* instruction uses slot */ 101 p->ainsn.insn = get_insn_slot(); 102 if (!p->ainsn.insn) 103 return -ENOMEM; 104 for (is = 0; is < MAX_INSN_SIZE; ++is) 105 p->ainsn.insn[is] = tmp_insn[is]; 106 flush_insns(p->ainsn.insn, 107 sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE); 108 p->ainsn.insn_fn = (probes_insn_fn_t *) 109 ((uintptr_t)p->ainsn.insn | thumb); 110 break; 111 112 case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */ 113 p->ainsn.insn = NULL; 114 break; 115 } 116 117 /* 118 * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes 119 * 'str r0, [sp, #-68]' should also be prohibited. 120 * See __und_svc. 121 */ 122 if ((p->ainsn.stack_space < 0) || 123 (p->ainsn.stack_space > MAX_STACK_SIZE)) 124 return -EINVAL; 125 126 return 0; 127 } 128 129 void __kprobes arch_arm_kprobe(struct kprobe *p) 130 { 131 unsigned int brkp; 132 void *addr; 133 134 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { 135 /* Remove any Thumb flag */ 136 addr = (void *)((uintptr_t)p->addr & ~1); 137 138 if (is_wide_instruction(p->opcode)) 139 brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION; 140 else 141 brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION; 142 } else { 143 kprobe_opcode_t insn = p->opcode; 144 145 addr = p->addr; 146 brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION; 147 148 if (insn >= 0xe0000000) 149 brkp |= 0xe0000000; /* Unconditional instruction */ 150 else 151 brkp |= insn & 0xf0000000; /* Copy condition from insn */ 152 } 153 154 patch_text(addr, brkp); 155 } 156 157 /* 158 * The actual disarming is done here on each CPU and synchronized using 159 * stop_machine. This synchronization is necessary on SMP to avoid removing 160 * a probe between the moment the 'Undefined Instruction' exception is raised 161 * and the moment the exception handler reads the faulting instruction from 162 * memory. It is also needed to atomically set the two half-words of a 32-bit 163 * Thumb breakpoint. 164 */ 165 struct patch { 166 void *addr; 167 unsigned int insn; 168 }; 169 170 static int __kprobes_remove_breakpoint(void *data) 171 { 172 struct patch *p = data; 173 __patch_text(p->addr, p->insn); 174 return 0; 175 } 176 177 void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn) 178 { 179 struct patch p = { 180 .addr = addr, 181 .insn = insn, 182 }; 183 stop_machine_cpuslocked(__kprobes_remove_breakpoint, &p, 184 cpu_online_mask); 185 } 186 187 void __kprobes arch_disarm_kprobe(struct kprobe *p) 188 { 189 kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1), 190 p->opcode); 191 } 192 193 void __kprobes arch_remove_kprobe(struct kprobe *p) 194 { 195 if (p->ainsn.insn) { 196 free_insn_slot(p->ainsn.insn, 0); 197 p->ainsn.insn = NULL; 198 } 199 } 200 201 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 202 { 203 kcb->prev_kprobe.kp = kprobe_running(); 204 kcb->prev_kprobe.status = kcb->kprobe_status; 205 } 206 207 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 208 { 209 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 210 kcb->kprobe_status = kcb->prev_kprobe.status; 211 } 212 213 static void __kprobes set_current_kprobe(struct kprobe *p) 214 { 215 __this_cpu_write(current_kprobe, p); 216 } 217 218 static void __kprobes 219 singlestep_skip(struct kprobe *p, struct pt_regs *regs) 220 { 221 #ifdef CONFIG_THUMB2_KERNEL 222 regs->ARM_cpsr = it_advance(regs->ARM_cpsr); 223 if (is_wide_instruction(p->opcode)) 224 regs->ARM_pc += 4; 225 else 226 regs->ARM_pc += 2; 227 #else 228 regs->ARM_pc += 4; 229 #endif 230 } 231 232 static inline void __kprobes 233 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) 234 { 235 p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs); 236 } 237 238 /* 239 * Called with IRQs disabled. IRQs must remain disabled from that point 240 * all the way until processing this kprobe is complete. The current 241 * kprobes implementation cannot process more than one nested level of 242 * kprobe, and that level is reserved for user kprobe handlers, so we can't 243 * risk encountering a new kprobe in an interrupt handler. 244 */ 245 void __kprobes kprobe_handler(struct pt_regs *regs) 246 { 247 struct kprobe *p, *cur; 248 struct kprobe_ctlblk *kcb; 249 250 kcb = get_kprobe_ctlblk(); 251 cur = kprobe_running(); 252 253 #ifdef CONFIG_THUMB2_KERNEL 254 /* 255 * First look for a probe which was registered using an address with 256 * bit 0 set, this is the usual situation for pointers to Thumb code. 257 * If not found, fallback to looking for one with bit 0 clear. 258 */ 259 p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1)); 260 if (!p) 261 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc); 262 263 #else /* ! CONFIG_THUMB2_KERNEL */ 264 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc); 265 #endif 266 267 if (p) { 268 if (!p->ainsn.insn_check_cc(regs->ARM_cpsr)) { 269 /* 270 * Probe hit but conditional execution check failed, 271 * so just skip the instruction and continue as if 272 * nothing had happened. 273 * In this case, we can skip recursing check too. 274 */ 275 singlestep_skip(p, regs); 276 } else if (cur) { 277 /* Kprobe is pending, so we're recursing. */ 278 switch (kcb->kprobe_status) { 279 case KPROBE_HIT_ACTIVE: 280 case KPROBE_HIT_SSDONE: 281 case KPROBE_HIT_SS: 282 /* A pre- or post-handler probe got us here. */ 283 kprobes_inc_nmissed_count(p); 284 save_previous_kprobe(kcb); 285 set_current_kprobe(p); 286 kcb->kprobe_status = KPROBE_REENTER; 287 singlestep(p, regs, kcb); 288 restore_previous_kprobe(kcb); 289 break; 290 case KPROBE_REENTER: 291 /* A nested probe was hit in FIQ, it is a BUG */ 292 pr_warn("Unrecoverable kprobe detected at %p.\n", 293 p->addr); 294 /* fall through */ 295 default: 296 /* impossible cases */ 297 BUG(); 298 } 299 } else { 300 /* Probe hit and conditional execution check ok. */ 301 set_current_kprobe(p); 302 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 303 304 /* 305 * If we have no pre-handler or it returned 0, we 306 * continue with normal processing. If we have a 307 * pre-handler and it returned non-zero, it prepped 308 * for calling the break_handler below on re-entry, 309 * so get out doing nothing more here. 310 */ 311 if (!p->pre_handler || !p->pre_handler(p, regs)) { 312 kcb->kprobe_status = KPROBE_HIT_SS; 313 singlestep(p, regs, kcb); 314 if (p->post_handler) { 315 kcb->kprobe_status = KPROBE_HIT_SSDONE; 316 p->post_handler(p, regs, 0); 317 } 318 reset_current_kprobe(); 319 } 320 } 321 } else if (cur) { 322 /* We probably hit a jprobe. Call its break handler. */ 323 if (cur->break_handler && cur->break_handler(cur, regs)) { 324 kcb->kprobe_status = KPROBE_HIT_SS; 325 singlestep(cur, regs, kcb); 326 if (cur->post_handler) { 327 kcb->kprobe_status = KPROBE_HIT_SSDONE; 328 cur->post_handler(cur, regs, 0); 329 } 330 } 331 reset_current_kprobe(); 332 } else { 333 /* 334 * The probe was removed and a race is in progress. 335 * There is nothing we can do about it. Let's restart 336 * the instruction. By the time we can restart, the 337 * real instruction will be there. 338 */ 339 } 340 } 341 342 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr) 343 { 344 unsigned long flags; 345 local_irq_save(flags); 346 kprobe_handler(regs); 347 local_irq_restore(flags); 348 return 0; 349 } 350 351 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr) 352 { 353 struct kprobe *cur = kprobe_running(); 354 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 355 356 switch (kcb->kprobe_status) { 357 case KPROBE_HIT_SS: 358 case KPROBE_REENTER: 359 /* 360 * We are here because the instruction being single 361 * stepped caused a page fault. We reset the current 362 * kprobe and the PC to point back to the probe address 363 * and allow the page fault handler to continue as a 364 * normal page fault. 365 */ 366 regs->ARM_pc = (long)cur->addr; 367 if (kcb->kprobe_status == KPROBE_REENTER) { 368 restore_previous_kprobe(kcb); 369 } else { 370 reset_current_kprobe(); 371 } 372 break; 373 374 case KPROBE_HIT_ACTIVE: 375 case KPROBE_HIT_SSDONE: 376 /* 377 * We increment the nmissed count for accounting, 378 * we can also use npre/npostfault count for accounting 379 * these specific fault cases. 380 */ 381 kprobes_inc_nmissed_count(cur); 382 383 /* 384 * We come here because instructions in the pre/post 385 * handler caused the page_fault, this could happen 386 * if handler tries to access user space by 387 * copy_from_user(), get_user() etc. Let the 388 * user-specified handler try to fix it. 389 */ 390 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr)) 391 return 1; 392 break; 393 394 default: 395 break; 396 } 397 398 return 0; 399 } 400 401 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 402 unsigned long val, void *data) 403 { 404 /* 405 * notify_die() is currently never called on ARM, 406 * so this callback is currently empty. 407 */ 408 return NOTIFY_DONE; 409 } 410 411 /* 412 * When a retprobed function returns, trampoline_handler() is called, 413 * calling the kretprobe's handler. We construct a struct pt_regs to 414 * give a view of registers r0-r11 to the user return-handler. This is 415 * not a complete pt_regs structure, but that should be plenty sufficient 416 * for kretprobe handlers which should normally be interested in r0 only 417 * anyway. 418 */ 419 void __naked __kprobes kretprobe_trampoline(void) 420 { 421 __asm__ __volatile__ ( 422 "stmdb sp!, {r0 - r11} \n\t" 423 "mov r0, sp \n\t" 424 "bl trampoline_handler \n\t" 425 "mov lr, r0 \n\t" 426 "ldmia sp!, {r0 - r11} \n\t" 427 #ifdef CONFIG_THUMB2_KERNEL 428 "bx lr \n\t" 429 #else 430 "mov pc, lr \n\t" 431 #endif 432 : : : "memory"); 433 } 434 435 /* Called from kretprobe_trampoline */ 436 static __used __kprobes void *trampoline_handler(struct pt_regs *regs) 437 { 438 struct kretprobe_instance *ri = NULL; 439 struct hlist_head *head, empty_rp; 440 struct hlist_node *tmp; 441 unsigned long flags, orig_ret_address = 0; 442 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 443 kprobe_opcode_t *correct_ret_addr = NULL; 444 445 INIT_HLIST_HEAD(&empty_rp); 446 kretprobe_hash_lock(current, &head, &flags); 447 448 /* 449 * It is possible to have multiple instances associated with a given 450 * task either because multiple functions in the call path have 451 * a return probe installed on them, and/or more than one return 452 * probe was registered for a target function. 453 * 454 * We can handle this because: 455 * - instances are always inserted at the head of the list 456 * - when multiple return probes are registered for the same 457 * function, the first instance's ret_addr will point to the 458 * real return address, and all the rest will point to 459 * kretprobe_trampoline 460 */ 461 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 462 if (ri->task != current) 463 /* another task is sharing our hash bucket */ 464 continue; 465 466 orig_ret_address = (unsigned long)ri->ret_addr; 467 468 if (orig_ret_address != trampoline_address) 469 /* 470 * This is the real return address. Any other 471 * instances associated with this task are for 472 * other calls deeper on the call stack 473 */ 474 break; 475 } 476 477 kretprobe_assert(ri, orig_ret_address, trampoline_address); 478 479 correct_ret_addr = ri->ret_addr; 480 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 481 if (ri->task != current) 482 /* another task is sharing our hash bucket */ 483 continue; 484 485 orig_ret_address = (unsigned long)ri->ret_addr; 486 if (ri->rp && ri->rp->handler) { 487 __this_cpu_write(current_kprobe, &ri->rp->kp); 488 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 489 ri->ret_addr = correct_ret_addr; 490 ri->rp->handler(ri, regs); 491 __this_cpu_write(current_kprobe, NULL); 492 } 493 494 recycle_rp_inst(ri, &empty_rp); 495 496 if (orig_ret_address != trampoline_address) 497 /* 498 * This is the real return address. Any other 499 * instances associated with this task are for 500 * other calls deeper on the call stack 501 */ 502 break; 503 } 504 505 kretprobe_hash_unlock(current, &flags); 506 507 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 508 hlist_del(&ri->hlist); 509 kfree(ri); 510 } 511 512 return (void *)orig_ret_address; 513 } 514 515 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 516 struct pt_regs *regs) 517 { 518 ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr; 519 520 /* Replace the return addr with trampoline addr. */ 521 regs->ARM_lr = (unsigned long)&kretprobe_trampoline; 522 } 523 524 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 525 { 526 struct jprobe *jp = container_of(p, struct jprobe, kp); 527 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 528 long sp_addr = regs->ARM_sp; 529 long cpsr; 530 531 kcb->jprobe_saved_regs = *regs; 532 memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr)); 533 regs->ARM_pc = (long)jp->entry; 534 535 cpsr = regs->ARM_cpsr | PSR_I_BIT; 536 #ifdef CONFIG_THUMB2_KERNEL 537 /* Set correct Thumb state in cpsr */ 538 if (regs->ARM_pc & 1) 539 cpsr |= PSR_T_BIT; 540 else 541 cpsr &= ~PSR_T_BIT; 542 #endif 543 regs->ARM_cpsr = cpsr; 544 545 preempt_disable(); 546 return 1; 547 } 548 549 void __kprobes jprobe_return(void) 550 { 551 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 552 553 __asm__ __volatile__ ( 554 /* 555 * Setup an empty pt_regs. Fill SP and PC fields as 556 * they're needed by longjmp_break_handler. 557 * 558 * We allocate some slack between the original SP and start of 559 * our fabricated regs. To be precise we want to have worst case 560 * covered which is STMFD with all 16 regs so we allocate 2 * 561 * sizeof(struct_pt_regs)). 562 * 563 * This is to prevent any simulated instruction from writing 564 * over the regs when they are accessing the stack. 565 */ 566 #ifdef CONFIG_THUMB2_KERNEL 567 "sub r0, %0, %1 \n\t" 568 "mov sp, r0 \n\t" 569 #else 570 "sub sp, %0, %1 \n\t" 571 #endif 572 "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t" 573 "str %0, [sp, %2] \n\t" 574 "str r0, [sp, %3] \n\t" 575 "mov r0, sp \n\t" 576 "bl kprobe_handler \n\t" 577 578 /* 579 * Return to the context saved by setjmp_pre_handler 580 * and restored by longjmp_break_handler. 581 */ 582 #ifdef CONFIG_THUMB2_KERNEL 583 "ldr lr, [sp, %2] \n\t" /* lr = saved sp */ 584 "ldrd r0, r1, [sp, %5] \n\t" /* r0,r1 = saved lr,pc */ 585 "ldr r2, [sp, %4] \n\t" /* r2 = saved psr */ 586 "stmdb lr!, {r0, r1, r2} \n\t" /* push saved lr and */ 587 /* rfe context */ 588 "ldmia sp, {r0 - r12} \n\t" 589 "mov sp, lr \n\t" 590 "ldr lr, [sp], #4 \n\t" 591 "rfeia sp! \n\t" 592 #else 593 "ldr r0, [sp, %4] \n\t" 594 "msr cpsr_cxsf, r0 \n\t" 595 "ldmia sp, {r0 - pc} \n\t" 596 #endif 597 : 598 : "r" (kcb->jprobe_saved_regs.ARM_sp), 599 "I" (sizeof(struct pt_regs) * 2), 600 "J" (offsetof(struct pt_regs, ARM_sp)), 601 "J" (offsetof(struct pt_regs, ARM_pc)), 602 "J" (offsetof(struct pt_regs, ARM_cpsr)), 603 "J" (offsetof(struct pt_regs, ARM_lr)) 604 : "memory", "cc"); 605 } 606 607 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 608 { 609 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 610 long stack_addr = kcb->jprobe_saved_regs.ARM_sp; 611 long orig_sp = regs->ARM_sp; 612 struct jprobe *jp = container_of(p, struct jprobe, kp); 613 614 if (regs->ARM_pc == JPROBE_MAGIC_ADDR) { 615 if (orig_sp != stack_addr) { 616 struct pt_regs *saved_regs = 617 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp; 618 printk("current sp %lx does not match saved sp %lx\n", 619 orig_sp, stack_addr); 620 printk("Saved registers for jprobe %p\n", jp); 621 show_regs(saved_regs); 622 printk("Current registers\n"); 623 show_regs(regs); 624 BUG(); 625 } 626 *regs = kcb->jprobe_saved_regs; 627 memcpy((void *)stack_addr, kcb->jprobes_stack, 628 MIN_STACK_SIZE(stack_addr)); 629 preempt_enable_no_resched(); 630 return 1; 631 } 632 return 0; 633 } 634 635 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 636 { 637 return 0; 638 } 639 640 #ifdef CONFIG_THUMB2_KERNEL 641 642 static struct undef_hook kprobes_thumb16_break_hook = { 643 .instr_mask = 0xffff, 644 .instr_val = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION, 645 .cpsr_mask = MODE_MASK, 646 .cpsr_val = SVC_MODE, 647 .fn = kprobe_trap_handler, 648 }; 649 650 static struct undef_hook kprobes_thumb32_break_hook = { 651 .instr_mask = 0xffffffff, 652 .instr_val = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION, 653 .cpsr_mask = MODE_MASK, 654 .cpsr_val = SVC_MODE, 655 .fn = kprobe_trap_handler, 656 }; 657 658 #else /* !CONFIG_THUMB2_KERNEL */ 659 660 static struct undef_hook kprobes_arm_break_hook = { 661 .instr_mask = 0x0fffffff, 662 .instr_val = KPROBE_ARM_BREAKPOINT_INSTRUCTION, 663 .cpsr_mask = MODE_MASK, 664 .cpsr_val = SVC_MODE, 665 .fn = kprobe_trap_handler, 666 }; 667 668 #endif /* !CONFIG_THUMB2_KERNEL */ 669 670 int __init arch_init_kprobes() 671 { 672 arm_probes_decode_init(); 673 #ifdef CONFIG_THUMB2_KERNEL 674 register_undef_hook(&kprobes_thumb16_break_hook); 675 register_undef_hook(&kprobes_thumb32_break_hook); 676 #else 677 register_undef_hook(&kprobes_arm_break_hook); 678 #endif 679 return 0; 680 } 681 682 bool arch_within_kprobe_blacklist(unsigned long addr) 683 { 684 void *a = (void *)addr; 685 686 return __in_irqentry_text(addr) || 687 in_entry_text(addr) || 688 in_idmap_text(addr) || 689 memory_contains(__kprobes_text_start, __kprobes_text_end, a, 1); 690 } 691