xref: /openbmc/linux/arch/arm/probes/kprobes/core.c (revision 74ce1896)
1 /*
2  * arch/arm/kernel/kprobes.c
3  *
4  * Kprobes on ARM
5  *
6  * Abhishek Sagar <sagar.abhishek@gmail.com>
7  * Copyright (C) 2006, 2007 Motorola Inc.
8  *
9  * Nicolas Pitre <nico@marvell.com>
10  * Copyright (C) 2007 Marvell Ltd.
11  *
12  * This program is free software; you can redistribute it and/or modify
13  * it under the terms of the GNU General Public License version 2 as
14  * published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19  * General Public License for more details.
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/kprobes.h>
24 #include <linux/module.h>
25 #include <linux/slab.h>
26 #include <linux/stop_machine.h>
27 #include <linux/sched/debug.h>
28 #include <linux/stringify.h>
29 #include <asm/traps.h>
30 #include <asm/opcodes.h>
31 #include <asm/cacheflush.h>
32 #include <linux/percpu.h>
33 #include <linux/bug.h>
34 #include <asm/patch.h>
35 
36 #include "../decode-arm.h"
37 #include "../decode-thumb.h"
38 #include "core.h"
39 
40 #define MIN_STACK_SIZE(addr) 				\
41 	min((unsigned long)MAX_STACK_SIZE,		\
42 	    (unsigned long)current_thread_info() + THREAD_START_SP - (addr))
43 
44 #define flush_insns(addr, size)				\
45 	flush_icache_range((unsigned long)(addr),	\
46 			   (unsigned long)(addr) +	\
47 			   (size))
48 
49 /* Used as a marker in ARM_pc to note when we're in a jprobe. */
50 #define JPROBE_MAGIC_ADDR		0xffffffff
51 
52 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
53 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
54 
55 
56 int __kprobes arch_prepare_kprobe(struct kprobe *p)
57 {
58 	kprobe_opcode_t insn;
59 	kprobe_opcode_t tmp_insn[MAX_INSN_SIZE];
60 	unsigned long addr = (unsigned long)p->addr;
61 	bool thumb;
62 	kprobe_decode_insn_t *decode_insn;
63 	const union decode_action *actions;
64 	int is;
65 	const struct decode_checker **checkers;
66 
67 	if (in_exception_text(addr))
68 		return -EINVAL;
69 
70 #ifdef CONFIG_THUMB2_KERNEL
71 	thumb = true;
72 	addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */
73 	insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]);
74 	if (is_wide_instruction(insn)) {
75 		u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]);
76 		insn = __opcode_thumb32_compose(insn, inst2);
77 		decode_insn = thumb32_probes_decode_insn;
78 		actions = kprobes_t32_actions;
79 		checkers = kprobes_t32_checkers;
80 	} else {
81 		decode_insn = thumb16_probes_decode_insn;
82 		actions = kprobes_t16_actions;
83 		checkers = kprobes_t16_checkers;
84 	}
85 #else /* !CONFIG_THUMB2_KERNEL */
86 	thumb = false;
87 	if (addr & 0x3)
88 		return -EINVAL;
89 	insn = __mem_to_opcode_arm(*p->addr);
90 	decode_insn = arm_probes_decode_insn;
91 	actions = kprobes_arm_actions;
92 	checkers = kprobes_arm_checkers;
93 #endif
94 
95 	p->opcode = insn;
96 	p->ainsn.insn = tmp_insn;
97 
98 	switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) {
99 	case INSN_REJECTED:	/* not supported */
100 		return -EINVAL;
101 
102 	case INSN_GOOD:		/* instruction uses slot */
103 		p->ainsn.insn = get_insn_slot();
104 		if (!p->ainsn.insn)
105 			return -ENOMEM;
106 		for (is = 0; is < MAX_INSN_SIZE; ++is)
107 			p->ainsn.insn[is] = tmp_insn[is];
108 		flush_insns(p->ainsn.insn,
109 				sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE);
110 		p->ainsn.insn_fn = (probes_insn_fn_t *)
111 					((uintptr_t)p->ainsn.insn | thumb);
112 		break;
113 
114 	case INSN_GOOD_NO_SLOT:	/* instruction doesn't need insn slot */
115 		p->ainsn.insn = NULL;
116 		break;
117 	}
118 
119 	/*
120 	 * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes
121 	 * 'str r0, [sp, #-68]' should also be prohibited.
122 	 * See __und_svc.
123 	 */
124 	if ((p->ainsn.stack_space < 0) ||
125 			(p->ainsn.stack_space > MAX_STACK_SIZE))
126 		return -EINVAL;
127 
128 	return 0;
129 }
130 
131 void __kprobes arch_arm_kprobe(struct kprobe *p)
132 {
133 	unsigned int brkp;
134 	void *addr;
135 
136 	if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) {
137 		/* Remove any Thumb flag */
138 		addr = (void *)((uintptr_t)p->addr & ~1);
139 
140 		if (is_wide_instruction(p->opcode))
141 			brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION;
142 		else
143 			brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION;
144 	} else {
145 		kprobe_opcode_t insn = p->opcode;
146 
147 		addr = p->addr;
148 		brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION;
149 
150 		if (insn >= 0xe0000000)
151 			brkp |= 0xe0000000;  /* Unconditional instruction */
152 		else
153 			brkp |= insn & 0xf0000000;  /* Copy condition from insn */
154 	}
155 
156 	patch_text(addr, brkp);
157 }
158 
159 /*
160  * The actual disarming is done here on each CPU and synchronized using
161  * stop_machine. This synchronization is necessary on SMP to avoid removing
162  * a probe between the moment the 'Undefined Instruction' exception is raised
163  * and the moment the exception handler reads the faulting instruction from
164  * memory. It is also needed to atomically set the two half-words of a 32-bit
165  * Thumb breakpoint.
166  */
167 struct patch {
168 	void *addr;
169 	unsigned int insn;
170 };
171 
172 static int __kprobes_remove_breakpoint(void *data)
173 {
174 	struct patch *p = data;
175 	__patch_text(p->addr, p->insn);
176 	return 0;
177 }
178 
179 void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn)
180 {
181 	struct patch p = {
182 		.addr = addr,
183 		.insn = insn,
184 	};
185 	stop_machine_cpuslocked(__kprobes_remove_breakpoint, &p,
186 				cpu_online_mask);
187 }
188 
189 void __kprobes arch_disarm_kprobe(struct kprobe *p)
190 {
191 	kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1),
192 			p->opcode);
193 }
194 
195 void __kprobes arch_remove_kprobe(struct kprobe *p)
196 {
197 	if (p->ainsn.insn) {
198 		free_insn_slot(p->ainsn.insn, 0);
199 		p->ainsn.insn = NULL;
200 	}
201 }
202 
203 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb)
204 {
205 	kcb->prev_kprobe.kp = kprobe_running();
206 	kcb->prev_kprobe.status = kcb->kprobe_status;
207 }
208 
209 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb)
210 {
211 	__this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
212 	kcb->kprobe_status = kcb->prev_kprobe.status;
213 }
214 
215 static void __kprobes set_current_kprobe(struct kprobe *p)
216 {
217 	__this_cpu_write(current_kprobe, p);
218 }
219 
220 static void __kprobes
221 singlestep_skip(struct kprobe *p, struct pt_regs *regs)
222 {
223 #ifdef CONFIG_THUMB2_KERNEL
224 	regs->ARM_cpsr = it_advance(regs->ARM_cpsr);
225 	if (is_wide_instruction(p->opcode))
226 		regs->ARM_pc += 4;
227 	else
228 		regs->ARM_pc += 2;
229 #else
230 	regs->ARM_pc += 4;
231 #endif
232 }
233 
234 static inline void __kprobes
235 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb)
236 {
237 	p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs);
238 }
239 
240 /*
241  * Called with IRQs disabled. IRQs must remain disabled from that point
242  * all the way until processing this kprobe is complete.  The current
243  * kprobes implementation cannot process more than one nested level of
244  * kprobe, and that level is reserved for user kprobe handlers, so we can't
245  * risk encountering a new kprobe in an interrupt handler.
246  */
247 void __kprobes kprobe_handler(struct pt_regs *regs)
248 {
249 	struct kprobe *p, *cur;
250 	struct kprobe_ctlblk *kcb;
251 
252 	kcb = get_kprobe_ctlblk();
253 	cur = kprobe_running();
254 
255 #ifdef CONFIG_THUMB2_KERNEL
256 	/*
257 	 * First look for a probe which was registered using an address with
258 	 * bit 0 set, this is the usual situation for pointers to Thumb code.
259 	 * If not found, fallback to looking for one with bit 0 clear.
260 	 */
261 	p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1));
262 	if (!p)
263 		p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
264 
265 #else /* ! CONFIG_THUMB2_KERNEL */
266 	p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc);
267 #endif
268 
269 	if (p) {
270 		if (!p->ainsn.insn_check_cc(regs->ARM_cpsr)) {
271 			/*
272 			 * Probe hit but conditional execution check failed,
273 			 * so just skip the instruction and continue as if
274 			 * nothing had happened.
275 			 * In this case, we can skip recursing check too.
276 			 */
277 			singlestep_skip(p, regs);
278 		} else if (cur) {
279 			/* Kprobe is pending, so we're recursing. */
280 			switch (kcb->kprobe_status) {
281 			case KPROBE_HIT_ACTIVE:
282 			case KPROBE_HIT_SSDONE:
283 			case KPROBE_HIT_SS:
284 				/* A pre- or post-handler probe got us here. */
285 				kprobes_inc_nmissed_count(p);
286 				save_previous_kprobe(kcb);
287 				set_current_kprobe(p);
288 				kcb->kprobe_status = KPROBE_REENTER;
289 				singlestep(p, regs, kcb);
290 				restore_previous_kprobe(kcb);
291 				break;
292 			case KPROBE_REENTER:
293 				/* A nested probe was hit in FIQ, it is a BUG */
294 				pr_warn("Unrecoverable kprobe detected at %p.\n",
295 					p->addr);
296 				/* fall through */
297 			default:
298 				/* impossible cases */
299 				BUG();
300 			}
301 		} else {
302 			/* Probe hit and conditional execution check ok. */
303 			set_current_kprobe(p);
304 			kcb->kprobe_status = KPROBE_HIT_ACTIVE;
305 
306 			/*
307 			 * If we have no pre-handler or it returned 0, we
308 			 * continue with normal processing.  If we have a
309 			 * pre-handler and it returned non-zero, it prepped
310 			 * for calling the break_handler below on re-entry,
311 			 * so get out doing nothing more here.
312 			 */
313 			if (!p->pre_handler || !p->pre_handler(p, regs)) {
314 				kcb->kprobe_status = KPROBE_HIT_SS;
315 				singlestep(p, regs, kcb);
316 				if (p->post_handler) {
317 					kcb->kprobe_status = KPROBE_HIT_SSDONE;
318 					p->post_handler(p, regs, 0);
319 				}
320 				reset_current_kprobe();
321 			}
322 		}
323 	} else if (cur) {
324 		/* We probably hit a jprobe.  Call its break handler. */
325 		if (cur->break_handler && cur->break_handler(cur, regs)) {
326 			kcb->kprobe_status = KPROBE_HIT_SS;
327 			singlestep(cur, regs, kcb);
328 			if (cur->post_handler) {
329 				kcb->kprobe_status = KPROBE_HIT_SSDONE;
330 				cur->post_handler(cur, regs, 0);
331 			}
332 		}
333 		reset_current_kprobe();
334 	} else {
335 		/*
336 		 * The probe was removed and a race is in progress.
337 		 * There is nothing we can do about it.  Let's restart
338 		 * the instruction.  By the time we can restart, the
339 		 * real instruction will be there.
340 		 */
341 	}
342 }
343 
344 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr)
345 {
346 	unsigned long flags;
347 	local_irq_save(flags);
348 	kprobe_handler(regs);
349 	local_irq_restore(flags);
350 	return 0;
351 }
352 
353 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr)
354 {
355 	struct kprobe *cur = kprobe_running();
356 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
357 
358 	switch (kcb->kprobe_status) {
359 	case KPROBE_HIT_SS:
360 	case KPROBE_REENTER:
361 		/*
362 		 * We are here because the instruction being single
363 		 * stepped caused a page fault. We reset the current
364 		 * kprobe and the PC to point back to the probe address
365 		 * and allow the page fault handler to continue as a
366 		 * normal page fault.
367 		 */
368 		regs->ARM_pc = (long)cur->addr;
369 		if (kcb->kprobe_status == KPROBE_REENTER) {
370 			restore_previous_kprobe(kcb);
371 		} else {
372 			reset_current_kprobe();
373 		}
374 		break;
375 
376 	case KPROBE_HIT_ACTIVE:
377 	case KPROBE_HIT_SSDONE:
378 		/*
379 		 * We increment the nmissed count for accounting,
380 		 * we can also use npre/npostfault count for accounting
381 		 * these specific fault cases.
382 		 */
383 		kprobes_inc_nmissed_count(cur);
384 
385 		/*
386 		 * We come here because instructions in the pre/post
387 		 * handler caused the page_fault, this could happen
388 		 * if handler tries to access user space by
389 		 * copy_from_user(), get_user() etc. Let the
390 		 * user-specified handler try to fix it.
391 		 */
392 		if (cur->fault_handler && cur->fault_handler(cur, regs, fsr))
393 			return 1;
394 		break;
395 
396 	default:
397 		break;
398 	}
399 
400 	return 0;
401 }
402 
403 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
404 				       unsigned long val, void *data)
405 {
406 	/*
407 	 * notify_die() is currently never called on ARM,
408 	 * so this callback is currently empty.
409 	 */
410 	return NOTIFY_DONE;
411 }
412 
413 /*
414  * When a retprobed function returns, trampoline_handler() is called,
415  * calling the kretprobe's handler. We construct a struct pt_regs to
416  * give a view of registers r0-r11 to the user return-handler.  This is
417  * not a complete pt_regs structure, but that should be plenty sufficient
418  * for kretprobe handlers which should normally be interested in r0 only
419  * anyway.
420  */
421 void __naked __kprobes kretprobe_trampoline(void)
422 {
423 	__asm__ __volatile__ (
424 		"stmdb	sp!, {r0 - r11}		\n\t"
425 		"mov	r0, sp			\n\t"
426 		"bl	trampoline_handler	\n\t"
427 		"mov	lr, r0			\n\t"
428 		"ldmia	sp!, {r0 - r11}		\n\t"
429 #ifdef CONFIG_THUMB2_KERNEL
430 		"bx	lr			\n\t"
431 #else
432 		"mov	pc, lr			\n\t"
433 #endif
434 		: : : "memory");
435 }
436 
437 /* Called from kretprobe_trampoline */
438 static __used __kprobes void *trampoline_handler(struct pt_regs *regs)
439 {
440 	struct kretprobe_instance *ri = NULL;
441 	struct hlist_head *head, empty_rp;
442 	struct hlist_node *tmp;
443 	unsigned long flags, orig_ret_address = 0;
444 	unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline;
445 	kprobe_opcode_t *correct_ret_addr = NULL;
446 
447 	INIT_HLIST_HEAD(&empty_rp);
448 	kretprobe_hash_lock(current, &head, &flags);
449 
450 	/*
451 	 * It is possible to have multiple instances associated with a given
452 	 * task either because multiple functions in the call path have
453 	 * a return probe installed on them, and/or more than one return
454 	 * probe was registered for a target function.
455 	 *
456 	 * We can handle this because:
457 	 *     - instances are always inserted at the head of the list
458 	 *     - when multiple return probes are registered for the same
459 	 *       function, the first instance's ret_addr will point to the
460 	 *       real return address, and all the rest will point to
461 	 *       kretprobe_trampoline
462 	 */
463 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
464 		if (ri->task != current)
465 			/* another task is sharing our hash bucket */
466 			continue;
467 
468 		orig_ret_address = (unsigned long)ri->ret_addr;
469 
470 		if (orig_ret_address != trampoline_address)
471 			/*
472 			 * This is the real return address. Any other
473 			 * instances associated with this task are for
474 			 * other calls deeper on the call stack
475 			 */
476 			break;
477 	}
478 
479 	kretprobe_assert(ri, orig_ret_address, trampoline_address);
480 
481 	correct_ret_addr = ri->ret_addr;
482 	hlist_for_each_entry_safe(ri, tmp, head, hlist) {
483 		if (ri->task != current)
484 			/* another task is sharing our hash bucket */
485 			continue;
486 
487 		orig_ret_address = (unsigned long)ri->ret_addr;
488 		if (ri->rp && ri->rp->handler) {
489 			__this_cpu_write(current_kprobe, &ri->rp->kp);
490 			get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE;
491 			ri->ret_addr = correct_ret_addr;
492 			ri->rp->handler(ri, regs);
493 			__this_cpu_write(current_kprobe, NULL);
494 		}
495 
496 		recycle_rp_inst(ri, &empty_rp);
497 
498 		if (orig_ret_address != trampoline_address)
499 			/*
500 			 * This is the real return address. Any other
501 			 * instances associated with this task are for
502 			 * other calls deeper on the call stack
503 			 */
504 			break;
505 	}
506 
507 	kretprobe_hash_unlock(current, &flags);
508 
509 	hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
510 		hlist_del(&ri->hlist);
511 		kfree(ri);
512 	}
513 
514 	return (void *)orig_ret_address;
515 }
516 
517 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri,
518 				      struct pt_regs *regs)
519 {
520 	ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr;
521 
522 	/* Replace the return addr with trampoline addr. */
523 	regs->ARM_lr = (unsigned long)&kretprobe_trampoline;
524 }
525 
526 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
527 {
528 	struct jprobe *jp = container_of(p, struct jprobe, kp);
529 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
530 	long sp_addr = regs->ARM_sp;
531 	long cpsr;
532 
533 	kcb->jprobe_saved_regs = *regs;
534 	memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr));
535 	regs->ARM_pc = (long)jp->entry;
536 
537 	cpsr = regs->ARM_cpsr | PSR_I_BIT;
538 #ifdef CONFIG_THUMB2_KERNEL
539 	/* Set correct Thumb state in cpsr */
540 	if (regs->ARM_pc & 1)
541 		cpsr |= PSR_T_BIT;
542 	else
543 		cpsr &= ~PSR_T_BIT;
544 #endif
545 	regs->ARM_cpsr = cpsr;
546 
547 	preempt_disable();
548 	return 1;
549 }
550 
551 void __kprobes jprobe_return(void)
552 {
553 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
554 
555 	__asm__ __volatile__ (
556 		/*
557 		 * Setup an empty pt_regs. Fill SP and PC fields as
558 		 * they're needed by longjmp_break_handler.
559 		 *
560 		 * We allocate some slack between the original SP and start of
561 		 * our fabricated regs. To be precise we want to have worst case
562 		 * covered which is STMFD with all 16 regs so we allocate 2 *
563 		 * sizeof(struct_pt_regs)).
564 		 *
565 		 * This is to prevent any simulated instruction from writing
566 		 * over the regs when they are accessing the stack.
567 		 */
568 #ifdef CONFIG_THUMB2_KERNEL
569 		"sub    r0, %0, %1		\n\t"
570 		"mov    sp, r0			\n\t"
571 #else
572 		"sub    sp, %0, %1		\n\t"
573 #endif
574 		"ldr    r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t"
575 		"str    %0, [sp, %2]		\n\t"
576 		"str    r0, [sp, %3]		\n\t"
577 		"mov    r0, sp			\n\t"
578 		"bl     kprobe_handler		\n\t"
579 
580 		/*
581 		 * Return to the context saved by setjmp_pre_handler
582 		 * and restored by longjmp_break_handler.
583 		 */
584 #ifdef CONFIG_THUMB2_KERNEL
585 		"ldr	lr, [sp, %2]		\n\t" /* lr = saved sp */
586 		"ldrd	r0, r1, [sp, %5]	\n\t" /* r0,r1 = saved lr,pc */
587 		"ldr	r2, [sp, %4]		\n\t" /* r2 = saved psr */
588 		"stmdb	lr!, {r0, r1, r2}	\n\t" /* push saved lr and */
589 						      /* rfe context */
590 		"ldmia	sp, {r0 - r12}		\n\t"
591 		"mov	sp, lr			\n\t"
592 		"ldr	lr, [sp], #4		\n\t"
593 		"rfeia	sp!			\n\t"
594 #else
595 		"ldr	r0, [sp, %4]		\n\t"
596 		"msr	cpsr_cxsf, r0		\n\t"
597 		"ldmia	sp, {r0 - pc}		\n\t"
598 #endif
599 		:
600 		: "r" (kcb->jprobe_saved_regs.ARM_sp),
601 		  "I" (sizeof(struct pt_regs) * 2),
602 		  "J" (offsetof(struct pt_regs, ARM_sp)),
603 		  "J" (offsetof(struct pt_regs, ARM_pc)),
604 		  "J" (offsetof(struct pt_regs, ARM_cpsr)),
605 		  "J" (offsetof(struct pt_regs, ARM_lr))
606 		: "memory", "cc");
607 }
608 
609 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
610 {
611 	struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
612 	long stack_addr = kcb->jprobe_saved_regs.ARM_sp;
613 	long orig_sp = regs->ARM_sp;
614 	struct jprobe *jp = container_of(p, struct jprobe, kp);
615 
616 	if (regs->ARM_pc == JPROBE_MAGIC_ADDR) {
617 		if (orig_sp != stack_addr) {
618 			struct pt_regs *saved_regs =
619 				(struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp;
620 			printk("current sp %lx does not match saved sp %lx\n",
621 			       orig_sp, stack_addr);
622 			printk("Saved registers for jprobe %p\n", jp);
623 			show_regs(saved_regs);
624 			printk("Current registers\n");
625 			show_regs(regs);
626 			BUG();
627 		}
628 		*regs = kcb->jprobe_saved_regs;
629 		memcpy((void *)stack_addr, kcb->jprobes_stack,
630 		       MIN_STACK_SIZE(stack_addr));
631 		preempt_enable_no_resched();
632 		return 1;
633 	}
634 	return 0;
635 }
636 
637 int __kprobes arch_trampoline_kprobe(struct kprobe *p)
638 {
639 	return 0;
640 }
641 
642 #ifdef CONFIG_THUMB2_KERNEL
643 
644 static struct undef_hook kprobes_thumb16_break_hook = {
645 	.instr_mask	= 0xffff,
646 	.instr_val	= KPROBE_THUMB16_BREAKPOINT_INSTRUCTION,
647 	.cpsr_mask	= MODE_MASK,
648 	.cpsr_val	= SVC_MODE,
649 	.fn		= kprobe_trap_handler,
650 };
651 
652 static struct undef_hook kprobes_thumb32_break_hook = {
653 	.instr_mask	= 0xffffffff,
654 	.instr_val	= KPROBE_THUMB32_BREAKPOINT_INSTRUCTION,
655 	.cpsr_mask	= MODE_MASK,
656 	.cpsr_val	= SVC_MODE,
657 	.fn		= kprobe_trap_handler,
658 };
659 
660 #else  /* !CONFIG_THUMB2_KERNEL */
661 
662 static struct undef_hook kprobes_arm_break_hook = {
663 	.instr_mask	= 0x0fffffff,
664 	.instr_val	= KPROBE_ARM_BREAKPOINT_INSTRUCTION,
665 	.cpsr_mask	= MODE_MASK,
666 	.cpsr_val	= SVC_MODE,
667 	.fn		= kprobe_trap_handler,
668 };
669 
670 #endif /* !CONFIG_THUMB2_KERNEL */
671 
672 int __init arch_init_kprobes()
673 {
674 	arm_probes_decode_init();
675 #ifdef CONFIG_THUMB2_KERNEL
676 	register_undef_hook(&kprobes_thumb16_break_hook);
677 	register_undef_hook(&kprobes_thumb32_break_hook);
678 #else
679 	register_undef_hook(&kprobes_arm_break_hook);
680 #endif
681 	return 0;
682 }
683