1 /* 2 * arch/arm/kernel/kprobes.c 3 * 4 * Kprobes on ARM 5 * 6 * Abhishek Sagar <sagar.abhishek@gmail.com> 7 * Copyright (C) 2006, 2007 Motorola Inc. 8 * 9 * Nicolas Pitre <nico@marvell.com> 10 * Copyright (C) 2007 Marvell Ltd. 11 * 12 * This program is free software; you can redistribute it and/or modify 13 * it under the terms of the GNU General Public License version 2 as 14 * published by the Free Software Foundation. 15 * 16 * This program is distributed in the hope that it will be useful, 17 * but WITHOUT ANY WARRANTY; without even the implied warranty of 18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 19 * General Public License for more details. 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/kprobes.h> 24 #include <linux/module.h> 25 #include <linux/slab.h> 26 #include <linux/stop_machine.h> 27 #include <linux/sched/debug.h> 28 #include <linux/stringify.h> 29 #include <asm/traps.h> 30 #include <asm/opcodes.h> 31 #include <asm/cacheflush.h> 32 #include <linux/percpu.h> 33 #include <linux/bug.h> 34 #include <asm/patch.h> 35 36 #include "../decode-arm.h" 37 #include "../decode-thumb.h" 38 #include "core.h" 39 40 #define MIN_STACK_SIZE(addr) \ 41 min((unsigned long)MAX_STACK_SIZE, \ 42 (unsigned long)current_thread_info() + THREAD_START_SP - (addr)) 43 44 #define flush_insns(addr, size) \ 45 flush_icache_range((unsigned long)(addr), \ 46 (unsigned long)(addr) + \ 47 (size)) 48 49 /* Used as a marker in ARM_pc to note when we're in a jprobe. */ 50 #define JPROBE_MAGIC_ADDR 0xffffffff 51 52 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL; 53 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk); 54 55 56 int __kprobes arch_prepare_kprobe(struct kprobe *p) 57 { 58 kprobe_opcode_t insn; 59 kprobe_opcode_t tmp_insn[MAX_INSN_SIZE]; 60 unsigned long addr = (unsigned long)p->addr; 61 bool thumb; 62 kprobe_decode_insn_t *decode_insn; 63 const union decode_action *actions; 64 int is; 65 const struct decode_checker **checkers; 66 67 if (in_exception_text(addr)) 68 return -EINVAL; 69 70 #ifdef CONFIG_THUMB2_KERNEL 71 thumb = true; 72 addr &= ~1; /* Bit 0 would normally be set to indicate Thumb code */ 73 insn = __mem_to_opcode_thumb16(((u16 *)addr)[0]); 74 if (is_wide_instruction(insn)) { 75 u16 inst2 = __mem_to_opcode_thumb16(((u16 *)addr)[1]); 76 insn = __opcode_thumb32_compose(insn, inst2); 77 decode_insn = thumb32_probes_decode_insn; 78 actions = kprobes_t32_actions; 79 checkers = kprobes_t32_checkers; 80 } else { 81 decode_insn = thumb16_probes_decode_insn; 82 actions = kprobes_t16_actions; 83 checkers = kprobes_t16_checkers; 84 } 85 #else /* !CONFIG_THUMB2_KERNEL */ 86 thumb = false; 87 if (addr & 0x3) 88 return -EINVAL; 89 insn = __mem_to_opcode_arm(*p->addr); 90 decode_insn = arm_probes_decode_insn; 91 actions = kprobes_arm_actions; 92 checkers = kprobes_arm_checkers; 93 #endif 94 95 p->opcode = insn; 96 p->ainsn.insn = tmp_insn; 97 98 switch ((*decode_insn)(insn, &p->ainsn, true, actions, checkers)) { 99 case INSN_REJECTED: /* not supported */ 100 return -EINVAL; 101 102 case INSN_GOOD: /* instruction uses slot */ 103 p->ainsn.insn = get_insn_slot(); 104 if (!p->ainsn.insn) 105 return -ENOMEM; 106 for (is = 0; is < MAX_INSN_SIZE; ++is) 107 p->ainsn.insn[is] = tmp_insn[is]; 108 flush_insns(p->ainsn.insn, 109 sizeof(p->ainsn.insn[0]) * MAX_INSN_SIZE); 110 p->ainsn.insn_fn = (probes_insn_fn_t *) 111 ((uintptr_t)p->ainsn.insn | thumb); 112 break; 113 114 case INSN_GOOD_NO_SLOT: /* instruction doesn't need insn slot */ 115 p->ainsn.insn = NULL; 116 break; 117 } 118 119 /* 120 * Never instrument insn like 'str r0, [sp, +/-r1]'. Also, insn likes 121 * 'str r0, [sp, #-68]' should also be prohibited. 122 * See __und_svc. 123 */ 124 if ((p->ainsn.stack_space < 0) || 125 (p->ainsn.stack_space > MAX_STACK_SIZE)) 126 return -EINVAL; 127 128 return 0; 129 } 130 131 void __kprobes arch_arm_kprobe(struct kprobe *p) 132 { 133 unsigned int brkp; 134 void *addr; 135 136 if (IS_ENABLED(CONFIG_THUMB2_KERNEL)) { 137 /* Remove any Thumb flag */ 138 addr = (void *)((uintptr_t)p->addr & ~1); 139 140 if (is_wide_instruction(p->opcode)) 141 brkp = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION; 142 else 143 brkp = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION; 144 } else { 145 kprobe_opcode_t insn = p->opcode; 146 147 addr = p->addr; 148 brkp = KPROBE_ARM_BREAKPOINT_INSTRUCTION; 149 150 if (insn >= 0xe0000000) 151 brkp |= 0xe0000000; /* Unconditional instruction */ 152 else 153 brkp |= insn & 0xf0000000; /* Copy condition from insn */ 154 } 155 156 patch_text(addr, brkp); 157 } 158 159 /* 160 * The actual disarming is done here on each CPU and synchronized using 161 * stop_machine. This synchronization is necessary on SMP to avoid removing 162 * a probe between the moment the 'Undefined Instruction' exception is raised 163 * and the moment the exception handler reads the faulting instruction from 164 * memory. It is also needed to atomically set the two half-words of a 32-bit 165 * Thumb breakpoint. 166 */ 167 struct patch { 168 void *addr; 169 unsigned int insn; 170 }; 171 172 static int __kprobes_remove_breakpoint(void *data) 173 { 174 struct patch *p = data; 175 __patch_text(p->addr, p->insn); 176 return 0; 177 } 178 179 void __kprobes kprobes_remove_breakpoint(void *addr, unsigned int insn) 180 { 181 struct patch p = { 182 .addr = addr, 183 .insn = insn, 184 }; 185 stop_machine(__kprobes_remove_breakpoint, &p, cpu_online_mask); 186 } 187 188 void __kprobes arch_disarm_kprobe(struct kprobe *p) 189 { 190 kprobes_remove_breakpoint((void *)((uintptr_t)p->addr & ~1), 191 p->opcode); 192 } 193 194 void __kprobes arch_remove_kprobe(struct kprobe *p) 195 { 196 if (p->ainsn.insn) { 197 free_insn_slot(p->ainsn.insn, 0); 198 p->ainsn.insn = NULL; 199 } 200 } 201 202 static void __kprobes save_previous_kprobe(struct kprobe_ctlblk *kcb) 203 { 204 kcb->prev_kprobe.kp = kprobe_running(); 205 kcb->prev_kprobe.status = kcb->kprobe_status; 206 } 207 208 static void __kprobes restore_previous_kprobe(struct kprobe_ctlblk *kcb) 209 { 210 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp); 211 kcb->kprobe_status = kcb->prev_kprobe.status; 212 } 213 214 static void __kprobes set_current_kprobe(struct kprobe *p) 215 { 216 __this_cpu_write(current_kprobe, p); 217 } 218 219 static void __kprobes 220 singlestep_skip(struct kprobe *p, struct pt_regs *regs) 221 { 222 #ifdef CONFIG_THUMB2_KERNEL 223 regs->ARM_cpsr = it_advance(regs->ARM_cpsr); 224 if (is_wide_instruction(p->opcode)) 225 regs->ARM_pc += 4; 226 else 227 regs->ARM_pc += 2; 228 #else 229 regs->ARM_pc += 4; 230 #endif 231 } 232 233 static inline void __kprobes 234 singlestep(struct kprobe *p, struct pt_regs *regs, struct kprobe_ctlblk *kcb) 235 { 236 p->ainsn.insn_singlestep(p->opcode, &p->ainsn, regs); 237 } 238 239 /* 240 * Called with IRQs disabled. IRQs must remain disabled from that point 241 * all the way until processing this kprobe is complete. The current 242 * kprobes implementation cannot process more than one nested level of 243 * kprobe, and that level is reserved for user kprobe handlers, so we can't 244 * risk encountering a new kprobe in an interrupt handler. 245 */ 246 void __kprobes kprobe_handler(struct pt_regs *regs) 247 { 248 struct kprobe *p, *cur; 249 struct kprobe_ctlblk *kcb; 250 251 kcb = get_kprobe_ctlblk(); 252 cur = kprobe_running(); 253 254 #ifdef CONFIG_THUMB2_KERNEL 255 /* 256 * First look for a probe which was registered using an address with 257 * bit 0 set, this is the usual situation for pointers to Thumb code. 258 * If not found, fallback to looking for one with bit 0 clear. 259 */ 260 p = get_kprobe((kprobe_opcode_t *)(regs->ARM_pc | 1)); 261 if (!p) 262 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc); 263 264 #else /* ! CONFIG_THUMB2_KERNEL */ 265 p = get_kprobe((kprobe_opcode_t *)regs->ARM_pc); 266 #endif 267 268 if (p) { 269 if (cur) { 270 /* Kprobe is pending, so we're recursing. */ 271 switch (kcb->kprobe_status) { 272 case KPROBE_HIT_ACTIVE: 273 case KPROBE_HIT_SSDONE: 274 /* A pre- or post-handler probe got us here. */ 275 kprobes_inc_nmissed_count(p); 276 save_previous_kprobe(kcb); 277 set_current_kprobe(p); 278 kcb->kprobe_status = KPROBE_REENTER; 279 singlestep(p, regs, kcb); 280 restore_previous_kprobe(kcb); 281 break; 282 default: 283 /* impossible cases */ 284 BUG(); 285 } 286 } else if (p->ainsn.insn_check_cc(regs->ARM_cpsr)) { 287 /* Probe hit and conditional execution check ok. */ 288 set_current_kprobe(p); 289 kcb->kprobe_status = KPROBE_HIT_ACTIVE; 290 291 /* 292 * If we have no pre-handler or it returned 0, we 293 * continue with normal processing. If we have a 294 * pre-handler and it returned non-zero, it prepped 295 * for calling the break_handler below on re-entry, 296 * so get out doing nothing more here. 297 */ 298 if (!p->pre_handler || !p->pre_handler(p, regs)) { 299 kcb->kprobe_status = KPROBE_HIT_SS; 300 singlestep(p, regs, kcb); 301 if (p->post_handler) { 302 kcb->kprobe_status = KPROBE_HIT_SSDONE; 303 p->post_handler(p, regs, 0); 304 } 305 reset_current_kprobe(); 306 } 307 } else { 308 /* 309 * Probe hit but conditional execution check failed, 310 * so just skip the instruction and continue as if 311 * nothing had happened. 312 */ 313 singlestep_skip(p, regs); 314 } 315 } else if (cur) { 316 /* We probably hit a jprobe. Call its break handler. */ 317 if (cur->break_handler && cur->break_handler(cur, regs)) { 318 kcb->kprobe_status = KPROBE_HIT_SS; 319 singlestep(cur, regs, kcb); 320 if (cur->post_handler) { 321 kcb->kprobe_status = KPROBE_HIT_SSDONE; 322 cur->post_handler(cur, regs, 0); 323 } 324 } 325 reset_current_kprobe(); 326 } else { 327 /* 328 * The probe was removed and a race is in progress. 329 * There is nothing we can do about it. Let's restart 330 * the instruction. By the time we can restart, the 331 * real instruction will be there. 332 */ 333 } 334 } 335 336 static int __kprobes kprobe_trap_handler(struct pt_regs *regs, unsigned int instr) 337 { 338 unsigned long flags; 339 local_irq_save(flags); 340 kprobe_handler(regs); 341 local_irq_restore(flags); 342 return 0; 343 } 344 345 int __kprobes kprobe_fault_handler(struct pt_regs *regs, unsigned int fsr) 346 { 347 struct kprobe *cur = kprobe_running(); 348 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 349 350 switch (kcb->kprobe_status) { 351 case KPROBE_HIT_SS: 352 case KPROBE_REENTER: 353 /* 354 * We are here because the instruction being single 355 * stepped caused a page fault. We reset the current 356 * kprobe and the PC to point back to the probe address 357 * and allow the page fault handler to continue as a 358 * normal page fault. 359 */ 360 regs->ARM_pc = (long)cur->addr; 361 if (kcb->kprobe_status == KPROBE_REENTER) { 362 restore_previous_kprobe(kcb); 363 } else { 364 reset_current_kprobe(); 365 } 366 break; 367 368 case KPROBE_HIT_ACTIVE: 369 case KPROBE_HIT_SSDONE: 370 /* 371 * We increment the nmissed count for accounting, 372 * we can also use npre/npostfault count for accounting 373 * these specific fault cases. 374 */ 375 kprobes_inc_nmissed_count(cur); 376 377 /* 378 * We come here because instructions in the pre/post 379 * handler caused the page_fault, this could happen 380 * if handler tries to access user space by 381 * copy_from_user(), get_user() etc. Let the 382 * user-specified handler try to fix it. 383 */ 384 if (cur->fault_handler && cur->fault_handler(cur, regs, fsr)) 385 return 1; 386 break; 387 388 default: 389 break; 390 } 391 392 return 0; 393 } 394 395 int __kprobes kprobe_exceptions_notify(struct notifier_block *self, 396 unsigned long val, void *data) 397 { 398 /* 399 * notify_die() is currently never called on ARM, 400 * so this callback is currently empty. 401 */ 402 return NOTIFY_DONE; 403 } 404 405 /* 406 * When a retprobed function returns, trampoline_handler() is called, 407 * calling the kretprobe's handler. We construct a struct pt_regs to 408 * give a view of registers r0-r11 to the user return-handler. This is 409 * not a complete pt_regs structure, but that should be plenty sufficient 410 * for kretprobe handlers which should normally be interested in r0 only 411 * anyway. 412 */ 413 void __naked __kprobes kretprobe_trampoline(void) 414 { 415 __asm__ __volatile__ ( 416 "stmdb sp!, {r0 - r11} \n\t" 417 "mov r0, sp \n\t" 418 "bl trampoline_handler \n\t" 419 "mov lr, r0 \n\t" 420 "ldmia sp!, {r0 - r11} \n\t" 421 #ifdef CONFIG_THUMB2_KERNEL 422 "bx lr \n\t" 423 #else 424 "mov pc, lr \n\t" 425 #endif 426 : : : "memory"); 427 } 428 429 /* Called from kretprobe_trampoline */ 430 static __used __kprobes void *trampoline_handler(struct pt_regs *regs) 431 { 432 struct kretprobe_instance *ri = NULL; 433 struct hlist_head *head, empty_rp; 434 struct hlist_node *tmp; 435 unsigned long flags, orig_ret_address = 0; 436 unsigned long trampoline_address = (unsigned long)&kretprobe_trampoline; 437 438 INIT_HLIST_HEAD(&empty_rp); 439 kretprobe_hash_lock(current, &head, &flags); 440 441 /* 442 * It is possible to have multiple instances associated with a given 443 * task either because multiple functions in the call path have 444 * a return probe installed on them, and/or more than one return 445 * probe was registered for a target function. 446 * 447 * We can handle this because: 448 * - instances are always inserted at the head of the list 449 * - when multiple return probes are registered for the same 450 * function, the first instance's ret_addr will point to the 451 * real return address, and all the rest will point to 452 * kretprobe_trampoline 453 */ 454 hlist_for_each_entry_safe(ri, tmp, head, hlist) { 455 if (ri->task != current) 456 /* another task is sharing our hash bucket */ 457 continue; 458 459 if (ri->rp && ri->rp->handler) { 460 __this_cpu_write(current_kprobe, &ri->rp->kp); 461 get_kprobe_ctlblk()->kprobe_status = KPROBE_HIT_ACTIVE; 462 ri->rp->handler(ri, regs); 463 __this_cpu_write(current_kprobe, NULL); 464 } 465 466 orig_ret_address = (unsigned long)ri->ret_addr; 467 recycle_rp_inst(ri, &empty_rp); 468 469 if (orig_ret_address != trampoline_address) 470 /* 471 * This is the real return address. Any other 472 * instances associated with this task are for 473 * other calls deeper on the call stack 474 */ 475 break; 476 } 477 478 kretprobe_assert(ri, orig_ret_address, trampoline_address); 479 kretprobe_hash_unlock(current, &flags); 480 481 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) { 482 hlist_del(&ri->hlist); 483 kfree(ri); 484 } 485 486 return (void *)orig_ret_address; 487 } 488 489 void __kprobes arch_prepare_kretprobe(struct kretprobe_instance *ri, 490 struct pt_regs *regs) 491 { 492 ri->ret_addr = (kprobe_opcode_t *)regs->ARM_lr; 493 494 /* Replace the return addr with trampoline addr. */ 495 regs->ARM_lr = (unsigned long)&kretprobe_trampoline; 496 } 497 498 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs) 499 { 500 struct jprobe *jp = container_of(p, struct jprobe, kp); 501 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 502 long sp_addr = regs->ARM_sp; 503 long cpsr; 504 505 kcb->jprobe_saved_regs = *regs; 506 memcpy(kcb->jprobes_stack, (void *)sp_addr, MIN_STACK_SIZE(sp_addr)); 507 regs->ARM_pc = (long)jp->entry; 508 509 cpsr = regs->ARM_cpsr | PSR_I_BIT; 510 #ifdef CONFIG_THUMB2_KERNEL 511 /* Set correct Thumb state in cpsr */ 512 if (regs->ARM_pc & 1) 513 cpsr |= PSR_T_BIT; 514 else 515 cpsr &= ~PSR_T_BIT; 516 #endif 517 regs->ARM_cpsr = cpsr; 518 519 preempt_disable(); 520 return 1; 521 } 522 523 void __kprobes jprobe_return(void) 524 { 525 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 526 527 __asm__ __volatile__ ( 528 /* 529 * Setup an empty pt_regs. Fill SP and PC fields as 530 * they're needed by longjmp_break_handler. 531 * 532 * We allocate some slack between the original SP and start of 533 * our fabricated regs. To be precise we want to have worst case 534 * covered which is STMFD with all 16 regs so we allocate 2 * 535 * sizeof(struct_pt_regs)). 536 * 537 * This is to prevent any simulated instruction from writing 538 * over the regs when they are accessing the stack. 539 */ 540 #ifdef CONFIG_THUMB2_KERNEL 541 "sub r0, %0, %1 \n\t" 542 "mov sp, r0 \n\t" 543 #else 544 "sub sp, %0, %1 \n\t" 545 #endif 546 "ldr r0, ="__stringify(JPROBE_MAGIC_ADDR)"\n\t" 547 "str %0, [sp, %2] \n\t" 548 "str r0, [sp, %3] \n\t" 549 "mov r0, sp \n\t" 550 "bl kprobe_handler \n\t" 551 552 /* 553 * Return to the context saved by setjmp_pre_handler 554 * and restored by longjmp_break_handler. 555 */ 556 #ifdef CONFIG_THUMB2_KERNEL 557 "ldr lr, [sp, %2] \n\t" /* lr = saved sp */ 558 "ldrd r0, r1, [sp, %5] \n\t" /* r0,r1 = saved lr,pc */ 559 "ldr r2, [sp, %4] \n\t" /* r2 = saved psr */ 560 "stmdb lr!, {r0, r1, r2} \n\t" /* push saved lr and */ 561 /* rfe context */ 562 "ldmia sp, {r0 - r12} \n\t" 563 "mov sp, lr \n\t" 564 "ldr lr, [sp], #4 \n\t" 565 "rfeia sp! \n\t" 566 #else 567 "ldr r0, [sp, %4] \n\t" 568 "msr cpsr_cxsf, r0 \n\t" 569 "ldmia sp, {r0 - pc} \n\t" 570 #endif 571 : 572 : "r" (kcb->jprobe_saved_regs.ARM_sp), 573 "I" (sizeof(struct pt_regs) * 2), 574 "J" (offsetof(struct pt_regs, ARM_sp)), 575 "J" (offsetof(struct pt_regs, ARM_pc)), 576 "J" (offsetof(struct pt_regs, ARM_cpsr)), 577 "J" (offsetof(struct pt_regs, ARM_lr)) 578 : "memory", "cc"); 579 } 580 581 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs) 582 { 583 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk(); 584 long stack_addr = kcb->jprobe_saved_regs.ARM_sp; 585 long orig_sp = regs->ARM_sp; 586 struct jprobe *jp = container_of(p, struct jprobe, kp); 587 588 if (regs->ARM_pc == JPROBE_MAGIC_ADDR) { 589 if (orig_sp != stack_addr) { 590 struct pt_regs *saved_regs = 591 (struct pt_regs *)kcb->jprobe_saved_regs.ARM_sp; 592 printk("current sp %lx does not match saved sp %lx\n", 593 orig_sp, stack_addr); 594 printk("Saved registers for jprobe %p\n", jp); 595 show_regs(saved_regs); 596 printk("Current registers\n"); 597 show_regs(regs); 598 BUG(); 599 } 600 *regs = kcb->jprobe_saved_regs; 601 memcpy((void *)stack_addr, kcb->jprobes_stack, 602 MIN_STACK_SIZE(stack_addr)); 603 preempt_enable_no_resched(); 604 return 1; 605 } 606 return 0; 607 } 608 609 int __kprobes arch_trampoline_kprobe(struct kprobe *p) 610 { 611 return 0; 612 } 613 614 #ifdef CONFIG_THUMB2_KERNEL 615 616 static struct undef_hook kprobes_thumb16_break_hook = { 617 .instr_mask = 0xffff, 618 .instr_val = KPROBE_THUMB16_BREAKPOINT_INSTRUCTION, 619 .cpsr_mask = MODE_MASK, 620 .cpsr_val = SVC_MODE, 621 .fn = kprobe_trap_handler, 622 }; 623 624 static struct undef_hook kprobes_thumb32_break_hook = { 625 .instr_mask = 0xffffffff, 626 .instr_val = KPROBE_THUMB32_BREAKPOINT_INSTRUCTION, 627 .cpsr_mask = MODE_MASK, 628 .cpsr_val = SVC_MODE, 629 .fn = kprobe_trap_handler, 630 }; 631 632 #else /* !CONFIG_THUMB2_KERNEL */ 633 634 static struct undef_hook kprobes_arm_break_hook = { 635 .instr_mask = 0x0fffffff, 636 .instr_val = KPROBE_ARM_BREAKPOINT_INSTRUCTION, 637 .cpsr_mask = MODE_MASK, 638 .cpsr_val = SVC_MODE, 639 .fn = kprobe_trap_handler, 640 }; 641 642 #endif /* !CONFIG_THUMB2_KERNEL */ 643 644 int __init arch_init_kprobes() 645 { 646 arm_probes_decode_init(); 647 #ifdef CONFIG_THUMB2_KERNEL 648 register_undef_hook(&kprobes_thumb16_break_hook); 649 register_undef_hook(&kprobes_thumb32_break_hook); 650 #else 651 register_undef_hook(&kprobes_arm_break_hook); 652 #endif 653 return 0; 654 } 655