xref: /openbmc/linux/arch/arm/probes/decode.h (revision fadbafc1)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * arch/arm/probes/decode.h
4  *
5  * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
6  *
7  * Some contents moved here from arch/arm/include/asm/kprobes.h which is
8  * Copyright (C) 2006, 2007 Motorola Inc.
9  */
10 
11 #ifndef _ARM_KERNEL_PROBES_H
12 #define  _ARM_KERNEL_PROBES_H
13 
14 #include <linux/types.h>
15 #include <linux/stddef.h>
16 #include <asm/probes.h>
17 #include <asm/ptrace.h>
18 #include <asm/kprobes.h>
19 
20 void __init arm_probes_decode_init(void);
21 
22 extern probes_check_cc * const probes_condition_checks[16];
23 
24 #if __LINUX_ARM_ARCH__ >= 7
25 
26 /* str_pc_offset is architecturally defined from ARMv7 onwards */
27 #define str_pc_offset 8
28 #define find_str_pc_offset()
29 
30 #else /* __LINUX_ARM_ARCH__ < 7 */
31 
32 /* We need a run-time check to determine str_pc_offset */
33 extern int str_pc_offset;
34 void __init find_str_pc_offset(void);
35 
36 #endif
37 
38 
39 static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
40 {
41 	long cpsr = regs->ARM_cpsr;
42 	if (pcv & 0x1) {
43 		cpsr |= PSR_T_BIT;
44 		pcv &= ~0x1;
45 	} else {
46 		cpsr &= ~PSR_T_BIT;
47 		pcv &= ~0x2;	/* Avoid UNPREDICTABLE address allignment */
48 	}
49 	regs->ARM_cpsr = cpsr;
50 	regs->ARM_pc = pcv;
51 }
52 
53 
54 #if __LINUX_ARM_ARCH__ >= 6
55 
56 /* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
57 #define load_write_pc_interworks true
58 #define test_load_write_pc_interworking()
59 
60 #else /* __LINUX_ARM_ARCH__ < 6 */
61 
62 /* We need run-time testing to determine if load_write_pc() should interwork. */
63 extern bool load_write_pc_interworks;
64 void __init test_load_write_pc_interworking(void);
65 
66 #endif
67 
68 static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
69 {
70 	if (load_write_pc_interworks)
71 		bx_write_pc(pcv, regs);
72 	else
73 		regs->ARM_pc = pcv;
74 }
75 
76 
77 #if __LINUX_ARM_ARCH__ >= 7
78 
79 #define alu_write_pc_interworks true
80 #define test_alu_write_pc_interworking()
81 
82 #elif __LINUX_ARM_ARCH__ <= 5
83 
84 /* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
85 #define alu_write_pc_interworks false
86 #define test_alu_write_pc_interworking()
87 
88 #else /* __LINUX_ARM_ARCH__ == 6 */
89 
90 /* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
91 extern bool alu_write_pc_interworks;
92 void __init test_alu_write_pc_interworking(void);
93 
94 #endif /* __LINUX_ARM_ARCH__ == 6 */
95 
96 static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
97 {
98 	if (alu_write_pc_interworks)
99 		bx_write_pc(pcv, regs);
100 	else
101 		regs->ARM_pc = pcv;
102 }
103 
104 
105 /*
106  * Test if load/store instructions writeback the address register.
107  * if P (bit 24) == 0 or W (bit 21) == 1
108  */
109 #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
110 
111 /*
112  * The following definitions and macros are used to build instruction
113  * decoding tables for use by probes_decode_insn.
114  *
115  * These tables are a concatenation of entries each of which consist of one of
116  * the decode_* structs. All of the fields in every type of decode structure
117  * are of the union type decode_item, therefore the entire decode table can be
118  * viewed as an array of these and declared like:
119  *
120  *	static const union decode_item table_name[] = {};
121  *
122  * In order to construct each entry in the table, macros are used to
123  * initialise a number of sequential decode_item values in a layout which
124  * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
125  * decode_simulate by initialising four decode_item objects like this...
126  *
127  *	{.bits = _type},
128  *	{.bits = _mask},
129  *	{.bits = _value},
130  *	{.action = _handler},
131  *
132  * Initialising a specified member of the union means that the compiler
133  * will produce a warning if the argument is of an incorrect type.
134  *
135  * Below is a list of each of the macros used to initialise entries and a
136  * description of the action performed when that entry is matched to an
137  * instruction. A match is found when (instruction & mask) == value.
138  *
139  * DECODE_TABLE(mask, value, table)
140  *	Instruction decoding jumps to parsing the new sub-table 'table'.
141  *
142  * DECODE_CUSTOM(mask, value, decoder)
143  *	The value of 'decoder' is used as an index into the array of
144  *	action functions, and the retrieved decoder function is invoked
145  *	to complete decoding of the instruction.
146  *
147  * DECODE_SIMULATE(mask, value, handler)
148  *	The probes instruction handler is set to the value found by
149  *	indexing into the action array using the value of 'handler'. This
150  *	will be used to simulate the instruction when the probe is hit.
151  *	Decoding returns with INSN_GOOD_NO_SLOT.
152  *
153  * DECODE_EMULATE(mask, value, handler)
154  *	The probes instruction handler is set to the value found by
155  *	indexing into the action array using the value of 'handler'. This
156  *	will be used to emulate the instruction when the probe is hit. The
157  *	modified instruction (see below) is placed in the probes instruction
158  *	slot so it may be called by the emulation code. Decoding returns
159  *	with INSN_GOOD.
160  *
161  * DECODE_REJECT(mask, value)
162  *	Instruction decoding fails with INSN_REJECTED
163  *
164  * DECODE_OR(mask, value)
165  *	This allows the mask/value test of multiple table entries to be
166  *	logically ORed. Once an 'or' entry is matched the decoding action to
167  *	be performed is that of the next entry which isn't an 'or'. E.g.
168  *
169  *		DECODE_OR	(mask1, value1)
170  *		DECODE_OR	(mask2, value2)
171  *		DECODE_SIMULATE	(mask3, value3, simulation_handler)
172  *
173  *	This means that if any of the three mask/value pairs match the
174  *	instruction being decoded, then 'simulation_handler' will be used
175  *	for it.
176  *
177  * Both the SIMULATE and EMULATE macros have a second form which take an
178  * additional 'regs' argument.
179  *
180  *	DECODE_SIMULATEX(mask, value, handler, regs)
181  *	DECODE_EMULATEX	(mask, value, handler, regs)
182  *
183  * These are used to specify what kind of CPU register is encoded in each of the
184  * least significant 5 nibbles of the instruction being decoded. The regs value
185  * is specified using the REGS macro, this takes any of the REG_TYPE_* values
186  * from enum decode_reg_type as arguments; only the '*' part of the name is
187  * given. E.g.
188  *
189  *	REGS(0, ANY, NOPC, 0, ANY)
190  *
191  * This indicates an instruction is encoded like:
192  *
193  *	bits 19..16	ignore
194  *	bits 15..12	any register allowed here
195  *	bits 11.. 8	any register except PC allowed here
196  *	bits  7.. 4	ignore
197  *	bits  3.. 0	any register allowed here
198  *
199  * This register specification is checked after a decode table entry is found to
200  * match an instruction (through the mask/value test). Any invalid register then
201  * found in the instruction will cause decoding to fail with INSN_REJECTED. In
202  * the above example this would happen if bits 11..8 of the instruction were
203  * 1111, indicating R15 or PC.
204  *
205  * As well as checking for legal combinations of registers, this data is also
206  * used to modify the registers encoded in the instructions so that an
207  * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
208  *
209  * Here is a real example which matches ARM instructions of the form
210  * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
211  *
212  *	DECODE_EMULATEX	(0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG,
213  *						 REGS(ANY, ANY, NOPC, 0, ANY)),
214  *						      ^    ^    ^        ^
215  *						      Rn   Rd   Rs       Rm
216  *
217  * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
218  * Rs == R15
219  *
220  * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
221  * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
222  * the kprobes instruction slot. This can then be called later by the handler
223  * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from
224  * the indicated slot in the action array), in order to simulate the instruction.
225  */
226 
227 enum decode_type {
228 	DECODE_TYPE_END,
229 	DECODE_TYPE_TABLE,
230 	DECODE_TYPE_CUSTOM,
231 	DECODE_TYPE_SIMULATE,
232 	DECODE_TYPE_EMULATE,
233 	DECODE_TYPE_OR,
234 	DECODE_TYPE_REJECT,
235 	NUM_DECODE_TYPES /* Must be last enum */
236 };
237 
238 #define DECODE_TYPE_BITS	4
239 #define DECODE_TYPE_MASK	((1 << DECODE_TYPE_BITS) - 1)
240 
241 enum decode_reg_type {
242 	REG_TYPE_NONE = 0, /* Not a register, ignore */
243 	REG_TYPE_ANY,	   /* Any register allowed */
244 	REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
245 	REG_TYPE_SP,	   /* Register must be SP */
246 	REG_TYPE_PC,	   /* Register must be PC */
247 	REG_TYPE_NOSP,	   /* Register must not be SP */
248 	REG_TYPE_NOSPPC,   /* Register must not be SP or PC */
249 	REG_TYPE_NOPC,	   /* Register must not be PC */
250 	REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */
251 
252 	/* The following types are used when the encoding for PC indicates
253 	 * another instruction form. This distiction only matters for test
254 	 * case coverage checks.
255 	 */
256 	REG_TYPE_NOPCX,	   /* Register must not be PC */
257 	REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */
258 
259 	/* Alias to allow '0' arg to be used in REGS macro. */
260 	REG_TYPE_0 = REG_TYPE_NONE
261 };
262 
263 #define REGS(r16, r12, r8, r4, r0)	\
264 	(((REG_TYPE_##r16) << 16) +	\
265 	((REG_TYPE_##r12) << 12) +	\
266 	((REG_TYPE_##r8) << 8) +	\
267 	((REG_TYPE_##r4) << 4) +	\
268 	(REG_TYPE_##r0))
269 
270 union decode_item {
271 	u32			bits;
272 	const union decode_item	*table;
273 	int			action;
274 };
275 
276 struct decode_header;
277 typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t,
278 						  struct arch_probes_insn *,
279 						  const struct decode_header *);
280 
281 union decode_action {
282 	probes_insn_handler_t	*handler;
283 	probes_custom_decode_t	*decoder;
284 };
285 
286 typedef enum probes_insn (probes_check_t)(probes_opcode_t,
287 					   struct arch_probes_insn *,
288 					   const struct decode_header *);
289 
290 struct decode_checker {
291 	probes_check_t	*checker;
292 };
293 
294 #define DECODE_END			\
295 	{.bits = DECODE_TYPE_END}
296 
297 
298 struct decode_header {
299 	union decode_item	type_regs;
300 	union decode_item	mask;
301 	union decode_item	value;
302 };
303 
304 #define DECODE_HEADER(_type, _mask, _value, _regs)		\
305 	{.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},	\
306 	{.bits = (_mask)},					\
307 	{.bits = (_value)}
308 
309 
310 struct decode_table {
311 	struct decode_header	header;
312 	union decode_item	table;
313 };
314 
315 #define DECODE_TABLE(_mask, _value, _table)			\
316 	DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),	\
317 	{.table = (_table)}
318 
319 
320 struct decode_custom {
321 	struct decode_header	header;
322 	union decode_item	decoder;
323 };
324 
325 #define DECODE_CUSTOM(_mask, _value, _decoder)			\
326 	DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),	\
327 	{.action = (_decoder)}
328 
329 
330 struct decode_simulate {
331 	struct decode_header	header;
332 	union decode_item	handler;
333 };
334 
335 #define DECODE_SIMULATEX(_mask, _value, _handler, _regs)		\
336 	DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),	\
337 	{.action = (_handler)}
338 
339 #define DECODE_SIMULATE(_mask, _value, _handler)	\
340 	DECODE_SIMULATEX(_mask, _value, _handler, 0)
341 
342 
343 struct decode_emulate {
344 	struct decode_header	header;
345 	union decode_item	handler;
346 };
347 
348 #define DECODE_EMULATEX(_mask, _value, _handler, _regs)			\
349 	DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),	\
350 	{.action = (_handler)}
351 
352 #define DECODE_EMULATE(_mask, _value, _handler)		\
353 	DECODE_EMULATEX(_mask, _value, _handler, 0)
354 
355 
356 struct decode_or {
357 	struct decode_header	header;
358 };
359 
360 #define DECODE_OR(_mask, _value)				\
361 	DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
362 
363 enum probes_insn {
364 	INSN_REJECTED,
365 	INSN_GOOD,
366 	INSN_GOOD_NO_SLOT
367 };
368 
369 struct decode_reject {
370 	struct decode_header	header;
371 };
372 
373 #define DECODE_REJECT(_mask, _value)				\
374 	DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
375 
376 probes_insn_handler_t probes_simulate_nop;
377 probes_insn_handler_t probes_emulate_none;
378 
379 int __kprobes
380 probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
381 		const union decode_item *table, bool thumb, bool emulate,
382 		const union decode_action *actions,
383 		const struct decode_checker **checkers);
384 
385 #endif
386