xref: /openbmc/linux/arch/arm/probes/decode.h (revision a01822e94ee53e8ebc9632fe2764048b81921254)
1 /* SPDX-License-Identifier: GPL-2.0-only */
2 /*
3  * arch/arm/probes/decode.h
4  *
5  * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>.
6  *
7  * Some contents moved here from arch/arm/include/asm/kprobes.h which is
8  * Copyright (C) 2006, 2007 Motorola Inc.
9  */
10 
11 #ifndef _ARM_KERNEL_PROBES_H
12 #define  _ARM_KERNEL_PROBES_H
13 
14 #include <linux/types.h>
15 #include <linux/stddef.h>
16 #include <asm/probes.h>
17 #include <asm/kprobes.h>
18 
19 void __init arm_probes_decode_init(void);
20 
21 extern probes_check_cc * const probes_condition_checks[16];
22 
23 #if __LINUX_ARM_ARCH__ >= 7
24 
25 /* str_pc_offset is architecturally defined from ARMv7 onwards */
26 #define str_pc_offset 8
27 #define find_str_pc_offset()
28 
29 #else /* __LINUX_ARM_ARCH__ < 7 */
30 
31 /* We need a run-time check to determine str_pc_offset */
32 extern int str_pc_offset;
33 void __init find_str_pc_offset(void);
34 
35 #endif
36 
37 
38 /*
39  * Update ITSTATE after normal execution of an IT block instruction.
40  *
41  * The 8 IT state bits are split into two parts in CPSR:
42  *	ITSTATE<1:0> are in CPSR<26:25>
43  *	ITSTATE<7:2> are in CPSR<15:10>
44  */
45 static inline unsigned long it_advance(unsigned long cpsr)
46 	{
47 	if ((cpsr & 0x06000400) == 0) {
48 		/* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */
49 		cpsr &= ~PSR_IT_MASK;
50 	} else {
51 		/* We need to shift left ITSTATE<4:0> */
52 		const unsigned long mask = 0x06001c00;  /* Mask ITSTATE<4:0> */
53 		unsigned long it = cpsr & mask;
54 		it <<= 1;
55 		it |= it >> (27 - 10);  /* Carry ITSTATE<2> to correct place */
56 		it &= mask;
57 		cpsr &= ~mask;
58 		cpsr |= it;
59 	}
60 	return cpsr;
61 }
62 
63 static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs)
64 {
65 	long cpsr = regs->ARM_cpsr;
66 	if (pcv & 0x1) {
67 		cpsr |= PSR_T_BIT;
68 		pcv &= ~0x1;
69 	} else {
70 		cpsr &= ~PSR_T_BIT;
71 		pcv &= ~0x2;	/* Avoid UNPREDICTABLE address allignment */
72 	}
73 	regs->ARM_cpsr = cpsr;
74 	regs->ARM_pc = pcv;
75 }
76 
77 
78 #if __LINUX_ARM_ARCH__ >= 6
79 
80 /* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */
81 #define load_write_pc_interworks true
82 #define test_load_write_pc_interworking()
83 
84 #else /* __LINUX_ARM_ARCH__ < 6 */
85 
86 /* We need run-time testing to determine if load_write_pc() should interwork. */
87 extern bool load_write_pc_interworks;
88 void __init test_load_write_pc_interworking(void);
89 
90 #endif
91 
92 static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs)
93 {
94 	if (load_write_pc_interworks)
95 		bx_write_pc(pcv, regs);
96 	else
97 		regs->ARM_pc = pcv;
98 }
99 
100 
101 #if __LINUX_ARM_ARCH__ >= 7
102 
103 #define alu_write_pc_interworks true
104 #define test_alu_write_pc_interworking()
105 
106 #elif __LINUX_ARM_ARCH__ <= 5
107 
108 /* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */
109 #define alu_write_pc_interworks false
110 #define test_alu_write_pc_interworking()
111 
112 #else /* __LINUX_ARM_ARCH__ == 6 */
113 
114 /* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */
115 extern bool alu_write_pc_interworks;
116 void __init test_alu_write_pc_interworking(void);
117 
118 #endif /* __LINUX_ARM_ARCH__ == 6 */
119 
120 static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs)
121 {
122 	if (alu_write_pc_interworks)
123 		bx_write_pc(pcv, regs);
124 	else
125 		regs->ARM_pc = pcv;
126 }
127 
128 
129 /*
130  * Test if load/store instructions writeback the address register.
131  * if P (bit 24) == 0 or W (bit 21) == 1
132  */
133 #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000)
134 
135 /*
136  * The following definitions and macros are used to build instruction
137  * decoding tables for use by probes_decode_insn.
138  *
139  * These tables are a concatenation of entries each of which consist of one of
140  * the decode_* structs. All of the fields in every type of decode structure
141  * are of the union type decode_item, therefore the entire decode table can be
142  * viewed as an array of these and declared like:
143  *
144  *	static const union decode_item table_name[] = {};
145  *
146  * In order to construct each entry in the table, macros are used to
147  * initialise a number of sequential decode_item values in a layout which
148  * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct
149  * decode_simulate by initialising four decode_item objects like this...
150  *
151  *	{.bits = _type},
152  *	{.bits = _mask},
153  *	{.bits = _value},
154  *	{.action = _handler},
155  *
156  * Initialising a specified member of the union means that the compiler
157  * will produce a warning if the argument is of an incorrect type.
158  *
159  * Below is a list of each of the macros used to initialise entries and a
160  * description of the action performed when that entry is matched to an
161  * instruction. A match is found when (instruction & mask) == value.
162  *
163  * DECODE_TABLE(mask, value, table)
164  *	Instruction decoding jumps to parsing the new sub-table 'table'.
165  *
166  * DECODE_CUSTOM(mask, value, decoder)
167  *	The value of 'decoder' is used as an index into the array of
168  *	action functions, and the retrieved decoder function is invoked
169  *	to complete decoding of the instruction.
170  *
171  * DECODE_SIMULATE(mask, value, handler)
172  *	The probes instruction handler is set to the value found by
173  *	indexing into the action array using the value of 'handler'. This
174  *	will be used to simulate the instruction when the probe is hit.
175  *	Decoding returns with INSN_GOOD_NO_SLOT.
176  *
177  * DECODE_EMULATE(mask, value, handler)
178  *	The probes instruction handler is set to the value found by
179  *	indexing into the action array using the value of 'handler'. This
180  *	will be used to emulate the instruction when the probe is hit. The
181  *	modified instruction (see below) is placed in the probes instruction
182  *	slot so it may be called by the emulation code. Decoding returns
183  *	with INSN_GOOD.
184  *
185  * DECODE_REJECT(mask, value)
186  *	Instruction decoding fails with INSN_REJECTED
187  *
188  * DECODE_OR(mask, value)
189  *	This allows the mask/value test of multiple table entries to be
190  *	logically ORed. Once an 'or' entry is matched the decoding action to
191  *	be performed is that of the next entry which isn't an 'or'. E.g.
192  *
193  *		DECODE_OR	(mask1, value1)
194  *		DECODE_OR	(mask2, value2)
195  *		DECODE_SIMULATE	(mask3, value3, simulation_handler)
196  *
197  *	This means that if any of the three mask/value pairs match the
198  *	instruction being decoded, then 'simulation_handler' will be used
199  *	for it.
200  *
201  * Both the SIMULATE and EMULATE macros have a second form which take an
202  * additional 'regs' argument.
203  *
204  *	DECODE_SIMULATEX(mask, value, handler, regs)
205  *	DECODE_EMULATEX	(mask, value, handler, regs)
206  *
207  * These are used to specify what kind of CPU register is encoded in each of the
208  * least significant 5 nibbles of the instruction being decoded. The regs value
209  * is specified using the REGS macro, this takes any of the REG_TYPE_* values
210  * from enum decode_reg_type as arguments; only the '*' part of the name is
211  * given. E.g.
212  *
213  *	REGS(0, ANY, NOPC, 0, ANY)
214  *
215  * This indicates an instruction is encoded like:
216  *
217  *	bits 19..16	ignore
218  *	bits 15..12	any register allowed here
219  *	bits 11.. 8	any register except PC allowed here
220  *	bits  7.. 4	ignore
221  *	bits  3.. 0	any register allowed here
222  *
223  * This register specification is checked after a decode table entry is found to
224  * match an instruction (through the mask/value test). Any invalid register then
225  * found in the instruction will cause decoding to fail with INSN_REJECTED. In
226  * the above example this would happen if bits 11..8 of the instruction were
227  * 1111, indicating R15 or PC.
228  *
229  * As well as checking for legal combinations of registers, this data is also
230  * used to modify the registers encoded in the instructions so that an
231  * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.)
232  *
233  * Here is a real example which matches ARM instructions of the form
234  * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>"
235  *
236  *	DECODE_EMULATEX	(0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG,
237  *						 REGS(ANY, ANY, NOPC, 0, ANY)),
238  *						      ^    ^    ^        ^
239  *						      Rn   Rd   Rs       Rm
240  *
241  * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because
242  * Rs == R15
243  *
244  * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the
245  * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into
246  * the kprobes instruction slot. This can then be called later by the handler
247  * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from
248  * the indicated slot in the action array), in order to simulate the instruction.
249  */
250 
251 enum decode_type {
252 	DECODE_TYPE_END,
253 	DECODE_TYPE_TABLE,
254 	DECODE_TYPE_CUSTOM,
255 	DECODE_TYPE_SIMULATE,
256 	DECODE_TYPE_EMULATE,
257 	DECODE_TYPE_OR,
258 	DECODE_TYPE_REJECT,
259 	NUM_DECODE_TYPES /* Must be last enum */
260 };
261 
262 #define DECODE_TYPE_BITS	4
263 #define DECODE_TYPE_MASK	((1 << DECODE_TYPE_BITS) - 1)
264 
265 enum decode_reg_type {
266 	REG_TYPE_NONE = 0, /* Not a register, ignore */
267 	REG_TYPE_ANY,	   /* Any register allowed */
268 	REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */
269 	REG_TYPE_SP,	   /* Register must be SP */
270 	REG_TYPE_PC,	   /* Register must be PC */
271 	REG_TYPE_NOSP,	   /* Register must not be SP */
272 	REG_TYPE_NOSPPC,   /* Register must not be SP or PC */
273 	REG_TYPE_NOPC,	   /* Register must not be PC */
274 	REG_TYPE_NOPCWB,   /* No PC if load/store write-back flag also set */
275 
276 	/* The following types are used when the encoding for PC indicates
277 	 * another instruction form. This distiction only matters for test
278 	 * case coverage checks.
279 	 */
280 	REG_TYPE_NOPCX,	   /* Register must not be PC */
281 	REG_TYPE_NOSPPCX,  /* Register must not be SP or PC */
282 
283 	/* Alias to allow '0' arg to be used in REGS macro. */
284 	REG_TYPE_0 = REG_TYPE_NONE
285 };
286 
287 #define REGS(r16, r12, r8, r4, r0)	\
288 	(((REG_TYPE_##r16) << 16) +	\
289 	((REG_TYPE_##r12) << 12) +	\
290 	((REG_TYPE_##r8) << 8) +	\
291 	((REG_TYPE_##r4) << 4) +	\
292 	(REG_TYPE_##r0))
293 
294 union decode_item {
295 	u32			bits;
296 	const union decode_item	*table;
297 	int			action;
298 };
299 
300 struct decode_header;
301 typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t,
302 						  struct arch_probes_insn *,
303 						  const struct decode_header *);
304 
305 union decode_action {
306 	probes_insn_handler_t	*handler;
307 	probes_custom_decode_t	*decoder;
308 };
309 
310 typedef enum probes_insn (probes_check_t)(probes_opcode_t,
311 					   struct arch_probes_insn *,
312 					   const struct decode_header *);
313 
314 struct decode_checker {
315 	probes_check_t	*checker;
316 };
317 
318 #define DECODE_END			\
319 	{.bits = DECODE_TYPE_END}
320 
321 
322 struct decode_header {
323 	union decode_item	type_regs;
324 	union decode_item	mask;
325 	union decode_item	value;
326 };
327 
328 #define DECODE_HEADER(_type, _mask, _value, _regs)		\
329 	{.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)},	\
330 	{.bits = (_mask)},					\
331 	{.bits = (_value)}
332 
333 
334 struct decode_table {
335 	struct decode_header	header;
336 	union decode_item	table;
337 };
338 
339 #define DECODE_TABLE(_mask, _value, _table)			\
340 	DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0),	\
341 	{.table = (_table)}
342 
343 
344 struct decode_custom {
345 	struct decode_header	header;
346 	union decode_item	decoder;
347 };
348 
349 #define DECODE_CUSTOM(_mask, _value, _decoder)			\
350 	DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0),	\
351 	{.action = (_decoder)}
352 
353 
354 struct decode_simulate {
355 	struct decode_header	header;
356 	union decode_item	handler;
357 };
358 
359 #define DECODE_SIMULATEX(_mask, _value, _handler, _regs)		\
360 	DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs),	\
361 	{.action = (_handler)}
362 
363 #define DECODE_SIMULATE(_mask, _value, _handler)	\
364 	DECODE_SIMULATEX(_mask, _value, _handler, 0)
365 
366 
367 struct decode_emulate {
368 	struct decode_header	header;
369 	union decode_item	handler;
370 };
371 
372 #define DECODE_EMULATEX(_mask, _value, _handler, _regs)			\
373 	DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs),	\
374 	{.action = (_handler)}
375 
376 #define DECODE_EMULATE(_mask, _value, _handler)		\
377 	DECODE_EMULATEX(_mask, _value, _handler, 0)
378 
379 
380 struct decode_or {
381 	struct decode_header	header;
382 };
383 
384 #define DECODE_OR(_mask, _value)				\
385 	DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0)
386 
387 enum probes_insn {
388 	INSN_REJECTED,
389 	INSN_GOOD,
390 	INSN_GOOD_NO_SLOT
391 };
392 
393 struct decode_reject {
394 	struct decode_header	header;
395 };
396 
397 #define DECODE_REJECT(_mask, _value)				\
398 	DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0)
399 
400 probes_insn_handler_t probes_simulate_nop;
401 probes_insn_handler_t probes_emulate_none;
402 
403 int __kprobes
404 probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi,
405 		const union decode_item *table, bool thumb, bool emulate,
406 		const union decode_action *actions,
407 		const struct decode_checker **checkers);
408 
409 #endif
410