1 /* 2 * arch/arm/probes/decode.h 3 * 4 * Copyright (C) 2011 Jon Medhurst <tixy@yxit.co.uk>. 5 * 6 * Some contents moved here from arch/arm/include/asm/kprobes.h which is 7 * Copyright (C) 2006, 2007 Motorola Inc. 8 * 9 * This program is free software; you can redistribute it and/or modify 10 * it under the terms of the GNU General Public License version 2 as 11 * published by the Free Software Foundation. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 16 * General Public License for more details. 17 */ 18 19 #ifndef _ARM_KERNEL_PROBES_H 20 #define _ARM_KERNEL_PROBES_H 21 22 #include <linux/types.h> 23 #include <linux/stddef.h> 24 #include <asm/probes.h> 25 #include <asm/kprobes.h> 26 27 void __init arm_probes_decode_init(void); 28 29 extern probes_check_cc * const probes_condition_checks[16]; 30 31 #if __LINUX_ARM_ARCH__ >= 7 32 33 /* str_pc_offset is architecturally defined from ARMv7 onwards */ 34 #define str_pc_offset 8 35 #define find_str_pc_offset() 36 37 #else /* __LINUX_ARM_ARCH__ < 7 */ 38 39 /* We need a run-time check to determine str_pc_offset */ 40 extern int str_pc_offset; 41 void __init find_str_pc_offset(void); 42 43 #endif 44 45 46 /* 47 * Update ITSTATE after normal execution of an IT block instruction. 48 * 49 * The 8 IT state bits are split into two parts in CPSR: 50 * ITSTATE<1:0> are in CPSR<26:25> 51 * ITSTATE<7:2> are in CPSR<15:10> 52 */ 53 static inline unsigned long it_advance(unsigned long cpsr) 54 { 55 if ((cpsr & 0x06000400) == 0) { 56 /* ITSTATE<2:0> == 0 means end of IT block, so clear IT state */ 57 cpsr &= ~PSR_IT_MASK; 58 } else { 59 /* We need to shift left ITSTATE<4:0> */ 60 const unsigned long mask = 0x06001c00; /* Mask ITSTATE<4:0> */ 61 unsigned long it = cpsr & mask; 62 it <<= 1; 63 it |= it >> (27 - 10); /* Carry ITSTATE<2> to correct place */ 64 it &= mask; 65 cpsr &= ~mask; 66 cpsr |= it; 67 } 68 return cpsr; 69 } 70 71 static inline void __kprobes bx_write_pc(long pcv, struct pt_regs *regs) 72 { 73 long cpsr = regs->ARM_cpsr; 74 if (pcv & 0x1) { 75 cpsr |= PSR_T_BIT; 76 pcv &= ~0x1; 77 } else { 78 cpsr &= ~PSR_T_BIT; 79 pcv &= ~0x2; /* Avoid UNPREDICTABLE address allignment */ 80 } 81 regs->ARM_cpsr = cpsr; 82 regs->ARM_pc = pcv; 83 } 84 85 86 #if __LINUX_ARM_ARCH__ >= 6 87 88 /* Kernels built for >= ARMv6 should never run on <= ARMv5 hardware, so... */ 89 #define load_write_pc_interworks true 90 #define test_load_write_pc_interworking() 91 92 #else /* __LINUX_ARM_ARCH__ < 6 */ 93 94 /* We need run-time testing to determine if load_write_pc() should interwork. */ 95 extern bool load_write_pc_interworks; 96 void __init test_load_write_pc_interworking(void); 97 98 #endif 99 100 static inline void __kprobes load_write_pc(long pcv, struct pt_regs *regs) 101 { 102 if (load_write_pc_interworks) 103 bx_write_pc(pcv, regs); 104 else 105 regs->ARM_pc = pcv; 106 } 107 108 109 #if __LINUX_ARM_ARCH__ >= 7 110 111 #define alu_write_pc_interworks true 112 #define test_alu_write_pc_interworking() 113 114 #elif __LINUX_ARM_ARCH__ <= 5 115 116 /* Kernels built for <= ARMv5 should never run on >= ARMv6 hardware, so... */ 117 #define alu_write_pc_interworks false 118 #define test_alu_write_pc_interworking() 119 120 #else /* __LINUX_ARM_ARCH__ == 6 */ 121 122 /* We could be an ARMv6 binary on ARMv7 hardware so we need a run-time check. */ 123 extern bool alu_write_pc_interworks; 124 void __init test_alu_write_pc_interworking(void); 125 126 #endif /* __LINUX_ARM_ARCH__ == 6 */ 127 128 static inline void __kprobes alu_write_pc(long pcv, struct pt_regs *regs) 129 { 130 if (alu_write_pc_interworks) 131 bx_write_pc(pcv, regs); 132 else 133 regs->ARM_pc = pcv; 134 } 135 136 137 /* 138 * Test if load/store instructions writeback the address register. 139 * if P (bit 24) == 0 or W (bit 21) == 1 140 */ 141 #define is_writeback(insn) ((insn ^ 0x01000000) & 0x01200000) 142 143 /* 144 * The following definitions and macros are used to build instruction 145 * decoding tables for use by probes_decode_insn. 146 * 147 * These tables are a concatenation of entries each of which consist of one of 148 * the decode_* structs. All of the fields in every type of decode structure 149 * are of the union type decode_item, therefore the entire decode table can be 150 * viewed as an array of these and declared like: 151 * 152 * static const union decode_item table_name[] = {}; 153 * 154 * In order to construct each entry in the table, macros are used to 155 * initialise a number of sequential decode_item values in a layout which 156 * matches the relevant struct. E.g. DECODE_SIMULATE initialise a struct 157 * decode_simulate by initialising four decode_item objects like this... 158 * 159 * {.bits = _type}, 160 * {.bits = _mask}, 161 * {.bits = _value}, 162 * {.action = _handler}, 163 * 164 * Initialising a specified member of the union means that the compiler 165 * will produce a warning if the argument is of an incorrect type. 166 * 167 * Below is a list of each of the macros used to initialise entries and a 168 * description of the action performed when that entry is matched to an 169 * instruction. A match is found when (instruction & mask) == value. 170 * 171 * DECODE_TABLE(mask, value, table) 172 * Instruction decoding jumps to parsing the new sub-table 'table'. 173 * 174 * DECODE_CUSTOM(mask, value, decoder) 175 * The value of 'decoder' is used as an index into the array of 176 * action functions, and the retrieved decoder function is invoked 177 * to complete decoding of the instruction. 178 * 179 * DECODE_SIMULATE(mask, value, handler) 180 * The probes instruction handler is set to the value found by 181 * indexing into the action array using the value of 'handler'. This 182 * will be used to simulate the instruction when the probe is hit. 183 * Decoding returns with INSN_GOOD_NO_SLOT. 184 * 185 * DECODE_EMULATE(mask, value, handler) 186 * The probes instruction handler is set to the value found by 187 * indexing into the action array using the value of 'handler'. This 188 * will be used to emulate the instruction when the probe is hit. The 189 * modified instruction (see below) is placed in the probes instruction 190 * slot so it may be called by the emulation code. Decoding returns 191 * with INSN_GOOD. 192 * 193 * DECODE_REJECT(mask, value) 194 * Instruction decoding fails with INSN_REJECTED 195 * 196 * DECODE_OR(mask, value) 197 * This allows the mask/value test of multiple table entries to be 198 * logically ORed. Once an 'or' entry is matched the decoding action to 199 * be performed is that of the next entry which isn't an 'or'. E.g. 200 * 201 * DECODE_OR (mask1, value1) 202 * DECODE_OR (mask2, value2) 203 * DECODE_SIMULATE (mask3, value3, simulation_handler) 204 * 205 * This means that if any of the three mask/value pairs match the 206 * instruction being decoded, then 'simulation_handler' will be used 207 * for it. 208 * 209 * Both the SIMULATE and EMULATE macros have a second form which take an 210 * additional 'regs' argument. 211 * 212 * DECODE_SIMULATEX(mask, value, handler, regs) 213 * DECODE_EMULATEX (mask, value, handler, regs) 214 * 215 * These are used to specify what kind of CPU register is encoded in each of the 216 * least significant 5 nibbles of the instruction being decoded. The regs value 217 * is specified using the REGS macro, this takes any of the REG_TYPE_* values 218 * from enum decode_reg_type as arguments; only the '*' part of the name is 219 * given. E.g. 220 * 221 * REGS(0, ANY, NOPC, 0, ANY) 222 * 223 * This indicates an instruction is encoded like: 224 * 225 * bits 19..16 ignore 226 * bits 15..12 any register allowed here 227 * bits 11.. 8 any register except PC allowed here 228 * bits 7.. 4 ignore 229 * bits 3.. 0 any register allowed here 230 * 231 * This register specification is checked after a decode table entry is found to 232 * match an instruction (through the mask/value test). Any invalid register then 233 * found in the instruction will cause decoding to fail with INSN_REJECTED. In 234 * the above example this would happen if bits 11..8 of the instruction were 235 * 1111, indicating R15 or PC. 236 * 237 * As well as checking for legal combinations of registers, this data is also 238 * used to modify the registers encoded in the instructions so that an 239 * emulation routines can use it. (See decode_regs() and INSN_NEW_BITS.) 240 * 241 * Here is a real example which matches ARM instructions of the form 242 * "AND <Rd>,<Rn>,<Rm>,<shift> <Rs>" 243 * 244 * DECODE_EMULATEX (0x0e000090, 0x00000010, PROBES_DATA_PROCESSING_REG, 245 * REGS(ANY, ANY, NOPC, 0, ANY)), 246 * ^ ^ ^ ^ 247 * Rn Rd Rs Rm 248 * 249 * Decoding the instruction "AND R4, R5, R6, ASL R15" will be rejected because 250 * Rs == R15 251 * 252 * Decoding the instruction "AND R4, R5, R6, ASL R7" will be accepted and the 253 * instruction will be modified to "AND R0, R2, R3, ASL R1" and then placed into 254 * the kprobes instruction slot. This can then be called later by the handler 255 * function emulate_rd12rn16rm0rs8_rwflags (a pointer to which is retrieved from 256 * the indicated slot in the action array), in order to simulate the instruction. 257 */ 258 259 enum decode_type { 260 DECODE_TYPE_END, 261 DECODE_TYPE_TABLE, 262 DECODE_TYPE_CUSTOM, 263 DECODE_TYPE_SIMULATE, 264 DECODE_TYPE_EMULATE, 265 DECODE_TYPE_OR, 266 DECODE_TYPE_REJECT, 267 NUM_DECODE_TYPES /* Must be last enum */ 268 }; 269 270 #define DECODE_TYPE_BITS 4 271 #define DECODE_TYPE_MASK ((1 << DECODE_TYPE_BITS) - 1) 272 273 enum decode_reg_type { 274 REG_TYPE_NONE = 0, /* Not a register, ignore */ 275 REG_TYPE_ANY, /* Any register allowed */ 276 REG_TYPE_SAMEAS16, /* Register should be same as that at bits 19..16 */ 277 REG_TYPE_SP, /* Register must be SP */ 278 REG_TYPE_PC, /* Register must be PC */ 279 REG_TYPE_NOSP, /* Register must not be SP */ 280 REG_TYPE_NOSPPC, /* Register must not be SP or PC */ 281 REG_TYPE_NOPC, /* Register must not be PC */ 282 REG_TYPE_NOPCWB, /* No PC if load/store write-back flag also set */ 283 284 /* The following types are used when the encoding for PC indicates 285 * another instruction form. This distiction only matters for test 286 * case coverage checks. 287 */ 288 REG_TYPE_NOPCX, /* Register must not be PC */ 289 REG_TYPE_NOSPPCX, /* Register must not be SP or PC */ 290 291 /* Alias to allow '0' arg to be used in REGS macro. */ 292 REG_TYPE_0 = REG_TYPE_NONE 293 }; 294 295 #define REGS(r16, r12, r8, r4, r0) \ 296 (((REG_TYPE_##r16) << 16) + \ 297 ((REG_TYPE_##r12) << 12) + \ 298 ((REG_TYPE_##r8) << 8) + \ 299 ((REG_TYPE_##r4) << 4) + \ 300 (REG_TYPE_##r0)) 301 302 union decode_item { 303 u32 bits; 304 const union decode_item *table; 305 int action; 306 }; 307 308 struct decode_header; 309 typedef enum probes_insn (probes_custom_decode_t)(probes_opcode_t, 310 struct arch_probes_insn *, 311 const struct decode_header *); 312 313 union decode_action { 314 probes_insn_handler_t *handler; 315 probes_custom_decode_t *decoder; 316 }; 317 318 typedef enum probes_insn (probes_check_t)(probes_opcode_t, 319 struct arch_probes_insn *, 320 const struct decode_header *); 321 322 struct decode_checker { 323 probes_check_t *checker; 324 }; 325 326 #define DECODE_END \ 327 {.bits = DECODE_TYPE_END} 328 329 330 struct decode_header { 331 union decode_item type_regs; 332 union decode_item mask; 333 union decode_item value; 334 }; 335 336 #define DECODE_HEADER(_type, _mask, _value, _regs) \ 337 {.bits = (_type) | ((_regs) << DECODE_TYPE_BITS)}, \ 338 {.bits = (_mask)}, \ 339 {.bits = (_value)} 340 341 342 struct decode_table { 343 struct decode_header header; 344 union decode_item table; 345 }; 346 347 #define DECODE_TABLE(_mask, _value, _table) \ 348 DECODE_HEADER(DECODE_TYPE_TABLE, _mask, _value, 0), \ 349 {.table = (_table)} 350 351 352 struct decode_custom { 353 struct decode_header header; 354 union decode_item decoder; 355 }; 356 357 #define DECODE_CUSTOM(_mask, _value, _decoder) \ 358 DECODE_HEADER(DECODE_TYPE_CUSTOM, _mask, _value, 0), \ 359 {.action = (_decoder)} 360 361 362 struct decode_simulate { 363 struct decode_header header; 364 union decode_item handler; 365 }; 366 367 #define DECODE_SIMULATEX(_mask, _value, _handler, _regs) \ 368 DECODE_HEADER(DECODE_TYPE_SIMULATE, _mask, _value, _regs), \ 369 {.action = (_handler)} 370 371 #define DECODE_SIMULATE(_mask, _value, _handler) \ 372 DECODE_SIMULATEX(_mask, _value, _handler, 0) 373 374 375 struct decode_emulate { 376 struct decode_header header; 377 union decode_item handler; 378 }; 379 380 #define DECODE_EMULATEX(_mask, _value, _handler, _regs) \ 381 DECODE_HEADER(DECODE_TYPE_EMULATE, _mask, _value, _regs), \ 382 {.action = (_handler)} 383 384 #define DECODE_EMULATE(_mask, _value, _handler) \ 385 DECODE_EMULATEX(_mask, _value, _handler, 0) 386 387 388 struct decode_or { 389 struct decode_header header; 390 }; 391 392 #define DECODE_OR(_mask, _value) \ 393 DECODE_HEADER(DECODE_TYPE_OR, _mask, _value, 0) 394 395 enum probes_insn { 396 INSN_REJECTED, 397 INSN_GOOD, 398 INSN_GOOD_NO_SLOT 399 }; 400 401 struct decode_reject { 402 struct decode_header header; 403 }; 404 405 #define DECODE_REJECT(_mask, _value) \ 406 DECODE_HEADER(DECODE_TYPE_REJECT, _mask, _value, 0) 407 408 probes_insn_handler_t probes_simulate_nop; 409 probes_insn_handler_t probes_emulate_none; 410 411 int __kprobes 412 probes_decode_insn(probes_opcode_t insn, struct arch_probes_insn *asi, 413 const union decode_item *table, bool thumb, bool emulate, 414 const union decode_action *actions, 415 const struct decode_checker **checkers); 416 417 #endif 418