xref: /openbmc/linux/arch/arm/mm/pmsa-v7.c (revision 45c2f70c)
1 /*
2  * Based on linux/arch/arm/mm/nommu.c
3  *
4  * ARM PMSAv7 supporting functions.
5  */
6 
7 #include <linux/bitops.h>
8 #include <linux/memblock.h>
9 #include <linux/string.h>
10 
11 #include <asm/cacheflush.h>
12 #include <asm/cp15.h>
13 #include <asm/cputype.h>
14 #include <asm/mpu.h>
15 #include <asm/sections.h>
16 
17 #include "mm.h"
18 
19 struct region {
20 	phys_addr_t base;
21 	phys_addr_t size;
22 	unsigned long subreg;
23 };
24 
25 static struct region __initdata mem[MPU_MAX_REGIONS];
26 #ifdef CONFIG_XIP_KERNEL
27 static struct region __initdata xip[MPU_MAX_REGIONS];
28 #endif
29 
30 static unsigned int __initdata mpu_min_region_order;
31 static unsigned int __initdata mpu_max_regions;
32 
33 static int __init __mpu_min_region_order(void);
34 static int __init __mpu_max_regions(void);
35 
36 #ifndef CONFIG_CPU_V7M
37 
38 #define DRBAR	__ACCESS_CP15(c6, 0, c1, 0)
39 #define IRBAR	__ACCESS_CP15(c6, 0, c1, 1)
40 #define DRSR	__ACCESS_CP15(c6, 0, c1, 2)
41 #define IRSR	__ACCESS_CP15(c6, 0, c1, 3)
42 #define DRACR	__ACCESS_CP15(c6, 0, c1, 4)
43 #define IRACR	__ACCESS_CP15(c6, 0, c1, 5)
44 #define RNGNR	__ACCESS_CP15(c6, 0, c2, 0)
45 
46 /* Region number */
rgnr_write(u32 v)47 static inline void rgnr_write(u32 v)
48 {
49 	write_sysreg(v, RNGNR);
50 }
51 
52 /* Data-side / unified region attributes */
53 
54 /* Region access control register */
dracr_write(u32 v)55 static inline void dracr_write(u32 v)
56 {
57 	write_sysreg(v, DRACR);
58 }
59 
60 /* Region size register */
drsr_write(u32 v)61 static inline void drsr_write(u32 v)
62 {
63 	write_sysreg(v, DRSR);
64 }
65 
66 /* Region base address register */
drbar_write(u32 v)67 static inline void drbar_write(u32 v)
68 {
69 	write_sysreg(v, DRBAR);
70 }
71 
drbar_read(void)72 static inline u32 drbar_read(void)
73 {
74 	return read_sysreg(DRBAR);
75 }
76 /* Optional instruction-side region attributes */
77 
78 /* I-side Region access control register */
iracr_write(u32 v)79 static inline void iracr_write(u32 v)
80 {
81 	write_sysreg(v, IRACR);
82 }
83 
84 /* I-side Region size register */
irsr_write(u32 v)85 static inline void irsr_write(u32 v)
86 {
87 	write_sysreg(v, IRSR);
88 }
89 
90 /* I-side Region base address register */
irbar_write(u32 v)91 static inline void irbar_write(u32 v)
92 {
93 	write_sysreg(v, IRBAR);
94 }
95 
irbar_read(void)96 static inline u32 irbar_read(void)
97 {
98 	return read_sysreg(IRBAR);
99 }
100 
101 #else
102 
rgnr_write(u32 v)103 static inline void rgnr_write(u32 v)
104 {
105 	writel_relaxed(v, BASEADDR_V7M_SCB + PMSAv7_RNR);
106 }
107 
108 /* Data-side / unified region attributes */
109 
110 /* Region access control register */
dracr_write(u32 v)111 static inline void dracr_write(u32 v)
112 {
113 	u32 rsr = readl_relaxed(BASEADDR_V7M_SCB + PMSAv7_RASR) & GENMASK(15, 0);
114 
115 	writel_relaxed((v << 16) | rsr, BASEADDR_V7M_SCB + PMSAv7_RASR);
116 }
117 
118 /* Region size register */
drsr_write(u32 v)119 static inline void drsr_write(u32 v)
120 {
121 	u32 racr = readl_relaxed(BASEADDR_V7M_SCB + PMSAv7_RASR) & GENMASK(31, 16);
122 
123 	writel_relaxed(v | racr, BASEADDR_V7M_SCB + PMSAv7_RASR);
124 }
125 
126 /* Region base address register */
drbar_write(u32 v)127 static inline void drbar_write(u32 v)
128 {
129 	writel_relaxed(v, BASEADDR_V7M_SCB + PMSAv7_RBAR);
130 }
131 
drbar_read(void)132 static inline u32 drbar_read(void)
133 {
134 	return readl_relaxed(BASEADDR_V7M_SCB + PMSAv7_RBAR);
135 }
136 
137 /* ARMv7-M only supports a unified MPU, so I-side operations are nop */
138 
iracr_write(u32 v)139 static inline void iracr_write(u32 v) {}
irsr_write(u32 v)140 static inline void irsr_write(u32 v) {}
irbar_write(u32 v)141 static inline void irbar_write(u32 v) {}
irbar_read(void)142 static inline unsigned long irbar_read(void) {return 0;}
143 
144 #endif
145 
try_split_region(phys_addr_t base,phys_addr_t size,struct region * region)146 static bool __init try_split_region(phys_addr_t base, phys_addr_t size, struct region *region)
147 {
148 	unsigned long  subreg, bslots, sslots;
149 	phys_addr_t abase = base & ~(size - 1);
150 	phys_addr_t asize = base + size - abase;
151 	phys_addr_t p2size = 1 << __fls(asize);
152 	phys_addr_t bdiff, sdiff;
153 
154 	if (p2size != asize)
155 		p2size *= 2;
156 
157 	bdiff = base - abase;
158 	sdiff = p2size - asize;
159 	subreg = p2size / PMSAv7_NR_SUBREGS;
160 
161 	if ((bdiff % subreg) || (sdiff % subreg))
162 		return false;
163 
164 	bslots = bdiff / subreg;
165 	sslots = sdiff / subreg;
166 
167 	if (bslots || sslots) {
168 		int i;
169 
170 		if (subreg < PMSAv7_MIN_SUBREG_SIZE)
171 			return false;
172 
173 		if (bslots + sslots > PMSAv7_NR_SUBREGS)
174 			return false;
175 
176 		for (i = 0; i < bslots; i++)
177 			_set_bit(i, &region->subreg);
178 
179 		for (i = 1; i <= sslots; i++)
180 			_set_bit(PMSAv7_NR_SUBREGS - i, &region->subreg);
181 	}
182 
183 	region->base = abase;
184 	region->size = p2size;
185 
186 	return true;
187 }
188 
allocate_region(phys_addr_t base,phys_addr_t size,unsigned int limit,struct region * regions)189 static int __init allocate_region(phys_addr_t base, phys_addr_t size,
190 				  unsigned int limit, struct region *regions)
191 {
192 	int count = 0;
193 	phys_addr_t diff = size;
194 	int attempts = MPU_MAX_REGIONS;
195 
196 	while (diff) {
197 		/* Try cover region as is (maybe with help of subregions) */
198 		if (try_split_region(base, size, &regions[count])) {
199 			count++;
200 			base += size;
201 			diff -= size;
202 			size = diff;
203 		} else {
204 			/*
205 			 * Maximum aligned region might overflow phys_addr_t
206 			 * if "base" is 0. Hence we keep everything below 4G
207 			 * until we take the smaller of the aligned region
208 			 * size ("asize") and rounded region size ("p2size"),
209 			 * one of which is guaranteed to be smaller than the
210 			 * maximum physical address.
211 			 */
212 			phys_addr_t asize = (base - 1) ^ base;
213 			phys_addr_t p2size = (1 <<  __fls(diff)) - 1;
214 
215 			size = asize < p2size ? asize + 1 : p2size + 1;
216 		}
217 
218 		if (count > limit)
219 			break;
220 
221 		if (!attempts)
222 			break;
223 
224 		attempts--;
225 	}
226 
227 	return count;
228 }
229 
230 /* MPU initialisation functions */
pmsav7_adjust_lowmem_bounds(void)231 void __init pmsav7_adjust_lowmem_bounds(void)
232 {
233 	phys_addr_t  specified_mem_size = 0, total_mem_size = 0;
234 	phys_addr_t mem_start;
235 	phys_addr_t mem_end;
236 	phys_addr_t reg_start, reg_end;
237 	unsigned int mem_max_regions;
238 	bool first = true;
239 	int num;
240 	u64 i;
241 
242 	/* Free-up PMSAv7_PROBE_REGION */
243 	mpu_min_region_order = __mpu_min_region_order();
244 
245 	/* How many regions are supported */
246 	mpu_max_regions = __mpu_max_regions();
247 
248 	mem_max_regions = min((unsigned int)MPU_MAX_REGIONS, mpu_max_regions);
249 
250 	/* We need to keep one slot for background region */
251 	mem_max_regions--;
252 
253 #ifndef CONFIG_CPU_V7M
254 	/* ... and one for vectors */
255 	mem_max_regions--;
256 #endif
257 
258 #ifdef CONFIG_XIP_KERNEL
259 	/* plus some regions to cover XIP ROM */
260 	num = allocate_region(CONFIG_XIP_PHYS_ADDR, __pa(_exiprom) - CONFIG_XIP_PHYS_ADDR,
261 			      mem_max_regions, xip);
262 
263 	mem_max_regions -= num;
264 #endif
265 
266 	for_each_mem_range(i, &reg_start, &reg_end) {
267 		if (first) {
268 			phys_addr_t phys_offset = PHYS_OFFSET;
269 
270 			/*
271 			 * Initially only use memory continuous from
272 			 * PHYS_OFFSET */
273 			if (reg_start != phys_offset)
274 				panic("First memory bank must be contiguous from PHYS_OFFSET");
275 
276 			mem_start = reg_start;
277 			mem_end = reg_end;
278 			specified_mem_size = mem_end - mem_start;
279 			first = false;
280 		} else {
281 			/*
282 			 * memblock auto merges contiguous blocks, remove
283 			 * all blocks afterwards in one go (we can't remove
284 			 * blocks separately while iterating)
285 			 */
286 			pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
287 				  &mem_end, &reg_start);
288 			memblock_remove(reg_start, 0 - reg_start);
289 			break;
290 		}
291 	}
292 
293 	memset(mem, 0, sizeof(mem));
294 	num = allocate_region(mem_start, specified_mem_size, mem_max_regions, mem);
295 
296 	for (i = 0; i < num; i++) {
297 		unsigned long  subreg = mem[i].size / PMSAv7_NR_SUBREGS;
298 
299 		total_mem_size += mem[i].size - subreg * hweight_long(mem[i].subreg);
300 
301 		pr_debug("MPU: base %pa size %pa disable subregions: %*pbl\n",
302 			 &mem[i].base, &mem[i].size, PMSAv7_NR_SUBREGS, &mem[i].subreg);
303 	}
304 
305 	if (total_mem_size != specified_mem_size) {
306 		pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
307 				&specified_mem_size, &total_mem_size);
308 		memblock_remove(mem_start + total_mem_size,
309 				specified_mem_size - total_mem_size);
310 	}
311 }
312 
__mpu_max_regions(void)313 static int __init __mpu_max_regions(void)
314 {
315 	/*
316 	 * We don't support a different number of I/D side regions so if we
317 	 * have separate instruction and data memory maps then return
318 	 * whichever side has a smaller number of supported regions.
319 	 */
320 	u32 dregions, iregions, mpuir;
321 
322 	mpuir = read_cpuid_mputype();
323 
324 	dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
325 
326 	/* Check for separate d-side and i-side memory maps */
327 	if (mpuir & MPUIR_nU)
328 		iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
329 
330 	/* Use the smallest of the two maxima */
331 	return min(dregions, iregions);
332 }
333 
mpu_iside_independent(void)334 static int __init mpu_iside_independent(void)
335 {
336 	/* MPUIR.nU specifies whether there is *not* a unified memory map */
337 	return read_cpuid_mputype() & MPUIR_nU;
338 }
339 
__mpu_min_region_order(void)340 static int __init __mpu_min_region_order(void)
341 {
342 	u32 drbar_result, irbar_result;
343 
344 	/* We've kept a region free for this probing */
345 	rgnr_write(PMSAv7_PROBE_REGION);
346 	isb();
347 	/*
348 	 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
349 	 * region order
350 	*/
351 	drbar_write(0xFFFFFFFC);
352 	drbar_result = irbar_result = drbar_read();
353 	drbar_write(0x0);
354 	/* If the MPU is non-unified, we use the larger of the two minima*/
355 	if (mpu_iside_independent()) {
356 		irbar_write(0xFFFFFFFC);
357 		irbar_result = irbar_read();
358 		irbar_write(0x0);
359 	}
360 	isb(); /* Ensure that MPU region operations have completed */
361 	/* Return whichever result is larger */
362 
363 	return __ffs(max(drbar_result, irbar_result));
364 }
365 
mpu_setup_region(unsigned int number,phys_addr_t start,unsigned int size_order,unsigned int properties,unsigned int subregions,bool need_flush)366 static int __init mpu_setup_region(unsigned int number, phys_addr_t start,
367 				   unsigned int size_order, unsigned int properties,
368 				   unsigned int subregions, bool need_flush)
369 {
370 	u32 size_data;
371 
372 	/* We kept a region free for probing resolution of MPU regions*/
373 	if (number > mpu_max_regions
374 	    || number >= MPU_MAX_REGIONS)
375 		return -ENOENT;
376 
377 	if (size_order > 32)
378 		return -ENOMEM;
379 
380 	if (size_order < mpu_min_region_order)
381 		return -ENOMEM;
382 
383 	/* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */
384 	size_data = ((size_order - 1) << PMSAv7_RSR_SZ) | 1 << PMSAv7_RSR_EN;
385 	size_data |= subregions << PMSAv7_RSR_SD;
386 
387 	if (need_flush)
388 		flush_cache_all();
389 
390 	dsb(); /* Ensure all previous data accesses occur with old mappings */
391 	rgnr_write(number);
392 	isb();
393 	drbar_write(start);
394 	dracr_write(properties);
395 	isb(); /* Propagate properties before enabling region */
396 	drsr_write(size_data);
397 
398 	/* Check for independent I-side registers */
399 	if (mpu_iside_independent()) {
400 		irbar_write(start);
401 		iracr_write(properties);
402 		isb();
403 		irsr_write(size_data);
404 	}
405 	isb();
406 
407 	/* Store region info (we treat i/d side the same, so only store d) */
408 	mpu_rgn_info.rgns[number].dracr = properties;
409 	mpu_rgn_info.rgns[number].drbar = start;
410 	mpu_rgn_info.rgns[number].drsr = size_data;
411 
412 	mpu_rgn_info.used++;
413 
414 	return 0;
415 }
416 
417 /*
418 * Set up default MPU regions, doing nothing if there is no MPU
419 */
pmsav7_setup(void)420 void __init pmsav7_setup(void)
421 {
422 	int i, region = 0, err = 0;
423 
424 	/* Setup MPU (order is important) */
425 
426 	/* Background */
427 	err |= mpu_setup_region(region++, 0, 32,
428 				PMSAv7_ACR_XN | PMSAv7_RGN_STRONGLY_ORDERED | PMSAv7_AP_PL1RW_PL0RW,
429 				0, false);
430 
431 #ifdef CONFIG_XIP_KERNEL
432 	/* ROM */
433 	for (i = 0; i < ARRAY_SIZE(xip); i++) {
434 		/*
435                  * In case we overwrite RAM region we set earlier in
436                  * head-nommu.S (which is cachable) all subsequent
437                  * data access till we setup RAM bellow would be done
438                  * with BG region (which is uncachable), thus we need
439                  * to clean and invalidate cache.
440 		 */
441 		bool need_flush = region == PMSAv7_RAM_REGION;
442 
443 		if (!xip[i].size)
444 			continue;
445 
446 		err |= mpu_setup_region(region++, xip[i].base, ilog2(xip[i].size),
447 					PMSAv7_AP_PL1RO_PL0NA | PMSAv7_RGN_NORMAL,
448 					xip[i].subreg, need_flush);
449 	}
450 #endif
451 
452 	/* RAM */
453 	for (i = 0; i < ARRAY_SIZE(mem); i++) {
454 		if (!mem[i].size)
455 			continue;
456 
457 		err |= mpu_setup_region(region++, mem[i].base, ilog2(mem[i].size),
458 					PMSAv7_AP_PL1RW_PL0RW | PMSAv7_RGN_NORMAL,
459 					mem[i].subreg, false);
460 	}
461 
462 	/* Vectors */
463 #ifndef CONFIG_CPU_V7M
464 	err |= mpu_setup_region(region++, vectors_base, ilog2(2 * PAGE_SIZE),
465 				PMSAv7_AP_PL1RW_PL0NA | PMSAv7_RGN_NORMAL,
466 				0, false);
467 #endif
468 	if (err) {
469 		panic("MPU region initialization failure! %d", err);
470 	} else {
471 		pr_info("Using ARMv7 PMSA Compliant MPU. "
472 			 "Region independence: %s, Used %d of %d regions\n",
473 			mpu_iside_independent() ? "Yes" : "No",
474 			mpu_rgn_info.used, mpu_max_regions);
475 	}
476 }
477