xref: /openbmc/linux/arch/arm/mm/nommu.c (revision cd5d5810)
1 /*
2  *  linux/arch/arm/mm/nommu.c
3  *
4  * ARM uCLinux supporting functions.
5  */
6 #include <linux/module.h>
7 #include <linux/mm.h>
8 #include <linux/pagemap.h>
9 #include <linux/io.h>
10 #include <linux/memblock.h>
11 #include <linux/kernel.h>
12 
13 #include <asm/cacheflush.h>
14 #include <asm/sections.h>
15 #include <asm/page.h>
16 #include <asm/setup.h>
17 #include <asm/traps.h>
18 #include <asm/mach/arch.h>
19 #include <asm/cputype.h>
20 #include <asm/mpu.h>
21 
22 #include "mm.h"
23 
24 #ifdef CONFIG_ARM_MPU
25 struct mpu_rgn_info mpu_rgn_info;
26 
27 /* Region number */
28 static void rgnr_write(u32 v)
29 {
30 	asm("mcr        p15, 0, %0, c6, c2, 0" : : "r" (v));
31 }
32 
33 /* Data-side / unified region attributes */
34 
35 /* Region access control register */
36 static void dracr_write(u32 v)
37 {
38 	asm("mcr        p15, 0, %0, c6, c1, 4" : : "r" (v));
39 }
40 
41 /* Region size register */
42 static void drsr_write(u32 v)
43 {
44 	asm("mcr        p15, 0, %0, c6, c1, 2" : : "r" (v));
45 }
46 
47 /* Region base address register */
48 static void drbar_write(u32 v)
49 {
50 	asm("mcr        p15, 0, %0, c6, c1, 0" : : "r" (v));
51 }
52 
53 static u32 drbar_read(void)
54 {
55 	u32 v;
56 	asm("mrc        p15, 0, %0, c6, c1, 0" : "=r" (v));
57 	return v;
58 }
59 /* Optional instruction-side region attributes */
60 
61 /* I-side Region access control register */
62 static void iracr_write(u32 v)
63 {
64 	asm("mcr        p15, 0, %0, c6, c1, 5" : : "r" (v));
65 }
66 
67 /* I-side Region size register */
68 static void irsr_write(u32 v)
69 {
70 	asm("mcr        p15, 0, %0, c6, c1, 3" : : "r" (v));
71 }
72 
73 /* I-side Region base address register */
74 static void irbar_write(u32 v)
75 {
76 	asm("mcr        p15, 0, %0, c6, c1, 1" : : "r" (v));
77 }
78 
79 static unsigned long irbar_read(void)
80 {
81 	unsigned long v;
82 	asm("mrc        p15, 0, %0, c6, c1, 1" : "=r" (v));
83 	return v;
84 }
85 
86 /* MPU initialisation functions */
87 void __init sanity_check_meminfo_mpu(void)
88 {
89 	int i;
90 	struct membank *bank = meminfo.bank;
91 	phys_addr_t phys_offset = PHYS_OFFSET;
92 	phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
93 
94 	/* Initially only use memory continuous from PHYS_OFFSET */
95 	if (bank_phys_start(&bank[0]) != phys_offset)
96 		panic("First memory bank must be contiguous from PHYS_OFFSET");
97 
98 	/* Banks have already been sorted by start address */
99 	for (i = 1; i < meminfo.nr_banks; i++) {
100 		if (bank[i].start <= bank_phys_end(&bank[0]) &&
101 		    bank_phys_end(&bank[i]) > bank_phys_end(&bank[0])) {
102 			bank[0].size = bank_phys_end(&bank[i]) - bank[0].start;
103 		} else {
104 			pr_notice("Ignoring RAM after 0x%.8lx. "
105 			"First non-contiguous (ignored) bank start: 0x%.8lx\n",
106 				(unsigned long)bank_phys_end(&bank[0]),
107 				(unsigned long)bank_phys_start(&bank[i]));
108 			break;
109 		}
110 	}
111 	/* All contiguous banks are now merged in to the first bank */
112 	meminfo.nr_banks = 1;
113 	specified_mem_size = bank[0].size;
114 
115 	/*
116 	 * MPU has curious alignment requirements: Size must be power of 2, and
117 	 * region start must be aligned to the region size
118 	 */
119 	if (phys_offset != 0)
120 		pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
121 
122 	/*
123 	 * Maximum aligned region might overflow phys_addr_t if phys_offset is
124 	 * 0. Hence we keep everything below 4G until we take the smaller of
125 	 * the aligned_region_size and rounded_mem_size, one of which is
126 	 * guaranteed to be smaller than the maximum physical address.
127 	 */
128 	aligned_region_size = (phys_offset - 1) ^ (phys_offset);
129 	/* Find the max power-of-two sized region that fits inside our bank */
130 	rounded_mem_size = (1 <<  __fls(bank[0].size)) - 1;
131 
132 	/* The actual region size is the smaller of the two */
133 	aligned_region_size = aligned_region_size < rounded_mem_size
134 				? aligned_region_size + 1
135 				: rounded_mem_size + 1;
136 
137 	if (aligned_region_size != specified_mem_size)
138 		pr_warn("Truncating memory from 0x%.8lx to 0x%.8lx (MPU region constraints)",
139 				(unsigned long)specified_mem_size,
140 				(unsigned long)aligned_region_size);
141 
142 	meminfo.bank[0].size = aligned_region_size;
143 	pr_debug("MPU Region from 0x%.8lx size 0x%.8lx (end 0x%.8lx))\n",
144 		(unsigned long)phys_offset,
145 		(unsigned long)aligned_region_size,
146 		(unsigned long)bank_phys_end(&bank[0]));
147 
148 }
149 
150 static int mpu_present(void)
151 {
152 	return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
153 }
154 
155 static int mpu_max_regions(void)
156 {
157 	/*
158 	 * We don't support a different number of I/D side regions so if we
159 	 * have separate instruction and data memory maps then return
160 	 * whichever side has a smaller number of supported regions.
161 	 */
162 	u32 dregions, iregions, mpuir;
163 	mpuir = read_cpuid(CPUID_MPUIR);
164 
165 	dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
166 
167 	/* Check for separate d-side and i-side memory maps */
168 	if (mpuir & MPUIR_nU)
169 		iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
170 
171 	/* Use the smallest of the two maxima */
172 	return min(dregions, iregions);
173 }
174 
175 static int mpu_iside_independent(void)
176 {
177 	/* MPUIR.nU specifies whether there is *not* a unified memory map */
178 	return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
179 }
180 
181 static int mpu_min_region_order(void)
182 {
183 	u32 drbar_result, irbar_result;
184 	/* We've kept a region free for this probing */
185 	rgnr_write(MPU_PROBE_REGION);
186 	isb();
187 	/*
188 	 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
189 	 * region order
190 	*/
191 	drbar_write(0xFFFFFFFC);
192 	drbar_result = irbar_result = drbar_read();
193 	drbar_write(0x0);
194 	/* If the MPU is non-unified, we use the larger of the two minima*/
195 	if (mpu_iside_independent()) {
196 		irbar_write(0xFFFFFFFC);
197 		irbar_result = irbar_read();
198 		irbar_write(0x0);
199 	}
200 	isb(); /* Ensure that MPU region operations have completed */
201 	/* Return whichever result is larger */
202 	return __ffs(max(drbar_result, irbar_result));
203 }
204 
205 static int mpu_setup_region(unsigned int number, phys_addr_t start,
206 			unsigned int size_order, unsigned int properties)
207 {
208 	u32 size_data;
209 
210 	/* We kept a region free for probing resolution of MPU regions*/
211 	if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
212 		return -ENOENT;
213 
214 	if (size_order > 32)
215 		return -ENOMEM;
216 
217 	if (size_order < mpu_min_region_order())
218 		return -ENOMEM;
219 
220 	/* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */
221 	size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
222 
223 	dsb(); /* Ensure all previous data accesses occur with old mappings */
224 	rgnr_write(number);
225 	isb();
226 	drbar_write(start);
227 	dracr_write(properties);
228 	isb(); /* Propagate properties before enabling region */
229 	drsr_write(size_data);
230 
231 	/* Check for independent I-side registers */
232 	if (mpu_iside_independent()) {
233 		irbar_write(start);
234 		iracr_write(properties);
235 		isb();
236 		irsr_write(size_data);
237 	}
238 	isb();
239 
240 	/* Store region info (we treat i/d side the same, so only store d) */
241 	mpu_rgn_info.rgns[number].dracr = properties;
242 	mpu_rgn_info.rgns[number].drbar = start;
243 	mpu_rgn_info.rgns[number].drsr = size_data;
244 	return 0;
245 }
246 
247 /*
248 * Set up default MPU regions, doing nothing if there is no MPU
249 */
250 void __init mpu_setup(void)
251 {
252 	int region_err;
253 	if (!mpu_present())
254 		return;
255 
256 	region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
257 					ilog2(meminfo.bank[0].size),
258 					MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
259 	if (region_err) {
260 		panic("MPU region initialization failure! %d", region_err);
261 	} else {
262 		pr_info("Using ARMv7 PMSA Compliant MPU. "
263 			 "Region independence: %s, Max regions: %d\n",
264 			mpu_iside_independent() ? "Yes" : "No",
265 			mpu_max_regions());
266 	}
267 }
268 #else
269 static void sanity_check_meminfo_mpu(void) {}
270 static void __init mpu_setup(void) {}
271 #endif /* CONFIG_ARM_MPU */
272 
273 void __init arm_mm_memblock_reserve(void)
274 {
275 #ifndef CONFIG_CPU_V7M
276 	/*
277 	 * Register the exception vector page.
278 	 * some architectures which the DRAM is the exception vector to trap,
279 	 * alloc_page breaks with error, although it is not NULL, but "0."
280 	 */
281 	memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE);
282 #else /* ifndef CONFIG_CPU_V7M */
283 	/*
284 	 * There is no dedicated vector page on V7-M. So nothing needs to be
285 	 * reserved here.
286 	 */
287 #endif
288 }
289 
290 void __init sanity_check_meminfo(void)
291 {
292 	phys_addr_t end;
293 	sanity_check_meminfo_mpu();
294 	end = bank_phys_end(&meminfo.bank[meminfo.nr_banks - 1]);
295 	high_memory = __va(end - 1) + 1;
296 }
297 
298 /*
299  * paging_init() sets up the page tables, initialises the zone memory
300  * maps, and sets up the zero page, bad page and bad page tables.
301  */
302 void __init paging_init(const struct machine_desc *mdesc)
303 {
304 	early_trap_init((void *)CONFIG_VECTORS_BASE);
305 	mpu_setup();
306 	bootmem_init();
307 }
308 
309 /*
310  * We don't need to do anything here for nommu machines.
311  */
312 void setup_mm_for_reboot(void)
313 {
314 }
315 
316 void flush_dcache_page(struct page *page)
317 {
318 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
319 }
320 EXPORT_SYMBOL(flush_dcache_page);
321 
322 void flush_kernel_dcache_page(struct page *page)
323 {
324 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
325 }
326 EXPORT_SYMBOL(flush_kernel_dcache_page);
327 
328 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
329 		       unsigned long uaddr, void *dst, const void *src,
330 		       unsigned long len)
331 {
332 	memcpy(dst, src, len);
333 	if (vma->vm_flags & VM_EXEC)
334 		__cpuc_coherent_user_range(uaddr, uaddr + len);
335 }
336 
337 void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
338 				size_t size, unsigned int mtype)
339 {
340 	if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
341 		return NULL;
342 	return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
343 }
344 EXPORT_SYMBOL(__arm_ioremap_pfn);
345 
346 void __iomem *__arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset,
347 			   size_t size, unsigned int mtype, void *caller)
348 {
349 	return __arm_ioremap_pfn(pfn, offset, size, mtype);
350 }
351 
352 void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size,
353 			    unsigned int mtype)
354 {
355 	return (void __iomem *)phys_addr;
356 }
357 EXPORT_SYMBOL(__arm_ioremap);
358 
359 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
360 
361 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
362 				   unsigned int mtype, void *caller)
363 {
364 	return __arm_ioremap(phys_addr, size, mtype);
365 }
366 
367 void (*arch_iounmap)(volatile void __iomem *);
368 
369 void __arm_iounmap(volatile void __iomem *addr)
370 {
371 }
372 EXPORT_SYMBOL(__arm_iounmap);
373