1 /* 2 * linux/arch/arm/mm/nommu.c 3 * 4 * ARM uCLinux supporting functions. 5 */ 6 #include <linux/module.h> 7 #include <linux/mm.h> 8 #include <linux/pagemap.h> 9 #include <linux/io.h> 10 #include <linux/memblock.h> 11 #include <linux/kernel.h> 12 13 #include <asm/cacheflush.h> 14 #include <asm/sections.h> 15 #include <asm/page.h> 16 #include <asm/setup.h> 17 #include <asm/traps.h> 18 #include <asm/mach/arch.h> 19 #include <asm/cputype.h> 20 #include <asm/mpu.h> 21 22 #include "mm.h" 23 24 #ifdef CONFIG_ARM_MPU 25 struct mpu_rgn_info mpu_rgn_info; 26 27 /* Region number */ 28 static void rgnr_write(u32 v) 29 { 30 asm("mcr p15, 0, %0, c6, c2, 0" : : "r" (v)); 31 } 32 33 /* Data-side / unified region attributes */ 34 35 /* Region access control register */ 36 static void dracr_write(u32 v) 37 { 38 asm("mcr p15, 0, %0, c6, c1, 4" : : "r" (v)); 39 } 40 41 /* Region size register */ 42 static void drsr_write(u32 v) 43 { 44 asm("mcr p15, 0, %0, c6, c1, 2" : : "r" (v)); 45 } 46 47 /* Region base address register */ 48 static void drbar_write(u32 v) 49 { 50 asm("mcr p15, 0, %0, c6, c1, 0" : : "r" (v)); 51 } 52 53 static u32 drbar_read(void) 54 { 55 u32 v; 56 asm("mrc p15, 0, %0, c6, c1, 0" : "=r" (v)); 57 return v; 58 } 59 /* Optional instruction-side region attributes */ 60 61 /* I-side Region access control register */ 62 static void iracr_write(u32 v) 63 { 64 asm("mcr p15, 0, %0, c6, c1, 5" : : "r" (v)); 65 } 66 67 /* I-side Region size register */ 68 static void irsr_write(u32 v) 69 { 70 asm("mcr p15, 0, %0, c6, c1, 3" : : "r" (v)); 71 } 72 73 /* I-side Region base address register */ 74 static void irbar_write(u32 v) 75 { 76 asm("mcr p15, 0, %0, c6, c1, 1" : : "r" (v)); 77 } 78 79 static unsigned long irbar_read(void) 80 { 81 unsigned long v; 82 asm("mrc p15, 0, %0, c6, c1, 1" : "=r" (v)); 83 return v; 84 } 85 86 /* MPU initialisation functions */ 87 void __init sanity_check_meminfo_mpu(void) 88 { 89 int i; 90 struct membank *bank = meminfo.bank; 91 phys_addr_t phys_offset = PHYS_OFFSET; 92 phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size; 93 94 /* Initially only use memory continuous from PHYS_OFFSET */ 95 if (bank_phys_start(&bank[0]) != phys_offset) 96 panic("First memory bank must be contiguous from PHYS_OFFSET"); 97 98 /* Banks have already been sorted by start address */ 99 for (i = 1; i < meminfo.nr_banks; i++) { 100 if (bank[i].start <= bank_phys_end(&bank[0]) && 101 bank_phys_end(&bank[i]) > bank_phys_end(&bank[0])) { 102 bank[0].size = bank_phys_end(&bank[i]) - bank[0].start; 103 } else { 104 pr_notice("Ignoring RAM after 0x%.8lx. " 105 "First non-contiguous (ignored) bank start: 0x%.8lx\n", 106 (unsigned long)bank_phys_end(&bank[0]), 107 (unsigned long)bank_phys_start(&bank[i])); 108 break; 109 } 110 } 111 /* All contiguous banks are now merged in to the first bank */ 112 meminfo.nr_banks = 1; 113 specified_mem_size = bank[0].size; 114 115 /* 116 * MPU has curious alignment requirements: Size must be power of 2, and 117 * region start must be aligned to the region size 118 */ 119 if (phys_offset != 0) 120 pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n"); 121 122 /* 123 * Maximum aligned region might overflow phys_addr_t if phys_offset is 124 * 0. Hence we keep everything below 4G until we take the smaller of 125 * the aligned_region_size and rounded_mem_size, one of which is 126 * guaranteed to be smaller than the maximum physical address. 127 */ 128 aligned_region_size = (phys_offset - 1) ^ (phys_offset); 129 /* Find the max power-of-two sized region that fits inside our bank */ 130 rounded_mem_size = (1 << __fls(bank[0].size)) - 1; 131 132 /* The actual region size is the smaller of the two */ 133 aligned_region_size = aligned_region_size < rounded_mem_size 134 ? aligned_region_size + 1 135 : rounded_mem_size + 1; 136 137 if (aligned_region_size != specified_mem_size) 138 pr_warn("Truncating memory from 0x%.8lx to 0x%.8lx (MPU region constraints)", 139 (unsigned long)specified_mem_size, 140 (unsigned long)aligned_region_size); 141 142 meminfo.bank[0].size = aligned_region_size; 143 pr_debug("MPU Region from 0x%.8lx size 0x%.8lx (end 0x%.8lx))\n", 144 (unsigned long)phys_offset, 145 (unsigned long)aligned_region_size, 146 (unsigned long)bank_phys_end(&bank[0])); 147 148 } 149 150 static int mpu_present(void) 151 { 152 return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7); 153 } 154 155 static int mpu_max_regions(void) 156 { 157 /* 158 * We don't support a different number of I/D side regions so if we 159 * have separate instruction and data memory maps then return 160 * whichever side has a smaller number of supported regions. 161 */ 162 u32 dregions, iregions, mpuir; 163 mpuir = read_cpuid(CPUID_MPUIR); 164 165 dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION; 166 167 /* Check for separate d-side and i-side memory maps */ 168 if (mpuir & MPUIR_nU) 169 iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION; 170 171 /* Use the smallest of the two maxima */ 172 return min(dregions, iregions); 173 } 174 175 static int mpu_iside_independent(void) 176 { 177 /* MPUIR.nU specifies whether there is *not* a unified memory map */ 178 return read_cpuid(CPUID_MPUIR) & MPUIR_nU; 179 } 180 181 static int mpu_min_region_order(void) 182 { 183 u32 drbar_result, irbar_result; 184 /* We've kept a region free for this probing */ 185 rgnr_write(MPU_PROBE_REGION); 186 isb(); 187 /* 188 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum 189 * region order 190 */ 191 drbar_write(0xFFFFFFFC); 192 drbar_result = irbar_result = drbar_read(); 193 drbar_write(0x0); 194 /* If the MPU is non-unified, we use the larger of the two minima*/ 195 if (mpu_iside_independent()) { 196 irbar_write(0xFFFFFFFC); 197 irbar_result = irbar_read(); 198 irbar_write(0x0); 199 } 200 isb(); /* Ensure that MPU region operations have completed */ 201 /* Return whichever result is larger */ 202 return __ffs(max(drbar_result, irbar_result)); 203 } 204 205 static int mpu_setup_region(unsigned int number, phys_addr_t start, 206 unsigned int size_order, unsigned int properties) 207 { 208 u32 size_data; 209 210 /* We kept a region free for probing resolution of MPU regions*/ 211 if (number > mpu_max_regions() || number == MPU_PROBE_REGION) 212 return -ENOENT; 213 214 if (size_order > 32) 215 return -ENOMEM; 216 217 if (size_order < mpu_min_region_order()) 218 return -ENOMEM; 219 220 /* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */ 221 size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN; 222 223 dsb(); /* Ensure all previous data accesses occur with old mappings */ 224 rgnr_write(number); 225 isb(); 226 drbar_write(start); 227 dracr_write(properties); 228 isb(); /* Propagate properties before enabling region */ 229 drsr_write(size_data); 230 231 /* Check for independent I-side registers */ 232 if (mpu_iside_independent()) { 233 irbar_write(start); 234 iracr_write(properties); 235 isb(); 236 irsr_write(size_data); 237 } 238 isb(); 239 240 /* Store region info (we treat i/d side the same, so only store d) */ 241 mpu_rgn_info.rgns[number].dracr = properties; 242 mpu_rgn_info.rgns[number].drbar = start; 243 mpu_rgn_info.rgns[number].drsr = size_data; 244 return 0; 245 } 246 247 /* 248 * Set up default MPU regions, doing nothing if there is no MPU 249 */ 250 void __init mpu_setup(void) 251 { 252 int region_err; 253 if (!mpu_present()) 254 return; 255 256 region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET, 257 ilog2(meminfo.bank[0].size), 258 MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL); 259 if (region_err) { 260 panic("MPU region initialization failure! %d", region_err); 261 } else { 262 pr_info("Using ARMv7 PMSA Compliant MPU. " 263 "Region independence: %s, Max regions: %d\n", 264 mpu_iside_independent() ? "Yes" : "No", 265 mpu_max_regions()); 266 } 267 } 268 #else 269 static void sanity_check_meminfo_mpu(void) {} 270 static void __init mpu_setup(void) {} 271 #endif /* CONFIG_ARM_MPU */ 272 273 void __init arm_mm_memblock_reserve(void) 274 { 275 #ifndef CONFIG_CPU_V7M 276 /* 277 * Register the exception vector page. 278 * some architectures which the DRAM is the exception vector to trap, 279 * alloc_page breaks with error, although it is not NULL, but "0." 280 */ 281 memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE); 282 #else /* ifndef CONFIG_CPU_V7M */ 283 /* 284 * There is no dedicated vector page on V7-M. So nothing needs to be 285 * reserved here. 286 */ 287 #endif 288 } 289 290 void __init sanity_check_meminfo(void) 291 { 292 phys_addr_t end; 293 sanity_check_meminfo_mpu(); 294 end = bank_phys_end(&meminfo.bank[meminfo.nr_banks - 1]); 295 high_memory = __va(end - 1) + 1; 296 } 297 298 /* 299 * paging_init() sets up the page tables, initialises the zone memory 300 * maps, and sets up the zero page, bad page and bad page tables. 301 */ 302 void __init paging_init(const struct machine_desc *mdesc) 303 { 304 early_trap_init((void *)CONFIG_VECTORS_BASE); 305 mpu_setup(); 306 bootmem_init(); 307 } 308 309 /* 310 * We don't need to do anything here for nommu machines. 311 */ 312 void setup_mm_for_reboot(void) 313 { 314 } 315 316 void flush_dcache_page(struct page *page) 317 { 318 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); 319 } 320 EXPORT_SYMBOL(flush_dcache_page); 321 322 void flush_kernel_dcache_page(struct page *page) 323 { 324 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); 325 } 326 EXPORT_SYMBOL(flush_kernel_dcache_page); 327 328 void copy_to_user_page(struct vm_area_struct *vma, struct page *page, 329 unsigned long uaddr, void *dst, const void *src, 330 unsigned long len) 331 { 332 memcpy(dst, src, len); 333 if (vma->vm_flags & VM_EXEC) 334 __cpuc_coherent_user_range(uaddr, uaddr + len); 335 } 336 337 void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, 338 size_t size, unsigned int mtype) 339 { 340 if (pfn >= (0x100000000ULL >> PAGE_SHIFT)) 341 return NULL; 342 return (void __iomem *) (offset + (pfn << PAGE_SHIFT)); 343 } 344 EXPORT_SYMBOL(__arm_ioremap_pfn); 345 346 void __iomem *__arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset, 347 size_t size, unsigned int mtype, void *caller) 348 { 349 return __arm_ioremap_pfn(pfn, offset, size, mtype); 350 } 351 352 void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size, 353 unsigned int mtype) 354 { 355 return (void __iomem *)phys_addr; 356 } 357 EXPORT_SYMBOL(__arm_ioremap); 358 359 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *); 360 361 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size, 362 unsigned int mtype, void *caller) 363 { 364 return __arm_ioremap(phys_addr, size, mtype); 365 } 366 367 void (*arch_iounmap)(volatile void __iomem *); 368 369 void __arm_iounmap(volatile void __iomem *addr) 370 { 371 } 372 EXPORT_SYMBOL(__arm_iounmap); 373