xref: /openbmc/linux/arch/arm/mm/nommu.c (revision c819e2cf)
1 /*
2  *  linux/arch/arm/mm/nommu.c
3  *
4  * ARM uCLinux supporting functions.
5  */
6 #include <linux/module.h>
7 #include <linux/mm.h>
8 #include <linux/pagemap.h>
9 #include <linux/io.h>
10 #include <linux/memblock.h>
11 #include <linux/kernel.h>
12 
13 #include <asm/cacheflush.h>
14 #include <asm/sections.h>
15 #include <asm/page.h>
16 #include <asm/setup.h>
17 #include <asm/traps.h>
18 #include <asm/mach/arch.h>
19 #include <asm/cputype.h>
20 #include <asm/mpu.h>
21 #include <asm/procinfo.h>
22 
23 #include "mm.h"
24 
25 #ifdef CONFIG_ARM_MPU
26 struct mpu_rgn_info mpu_rgn_info;
27 
28 /* Region number */
29 static void rgnr_write(u32 v)
30 {
31 	asm("mcr        p15, 0, %0, c6, c2, 0" : : "r" (v));
32 }
33 
34 /* Data-side / unified region attributes */
35 
36 /* Region access control register */
37 static void dracr_write(u32 v)
38 {
39 	asm("mcr        p15, 0, %0, c6, c1, 4" : : "r" (v));
40 }
41 
42 /* Region size register */
43 static void drsr_write(u32 v)
44 {
45 	asm("mcr        p15, 0, %0, c6, c1, 2" : : "r" (v));
46 }
47 
48 /* Region base address register */
49 static void drbar_write(u32 v)
50 {
51 	asm("mcr        p15, 0, %0, c6, c1, 0" : : "r" (v));
52 }
53 
54 static u32 drbar_read(void)
55 {
56 	u32 v;
57 	asm("mrc        p15, 0, %0, c6, c1, 0" : "=r" (v));
58 	return v;
59 }
60 /* Optional instruction-side region attributes */
61 
62 /* I-side Region access control register */
63 static void iracr_write(u32 v)
64 {
65 	asm("mcr        p15, 0, %0, c6, c1, 5" : : "r" (v));
66 }
67 
68 /* I-side Region size register */
69 static void irsr_write(u32 v)
70 {
71 	asm("mcr        p15, 0, %0, c6, c1, 3" : : "r" (v));
72 }
73 
74 /* I-side Region base address register */
75 static void irbar_write(u32 v)
76 {
77 	asm("mcr        p15, 0, %0, c6, c1, 1" : : "r" (v));
78 }
79 
80 static unsigned long irbar_read(void)
81 {
82 	unsigned long v;
83 	asm("mrc        p15, 0, %0, c6, c1, 1" : "=r" (v));
84 	return v;
85 }
86 
87 /* MPU initialisation functions */
88 void __init sanity_check_meminfo_mpu(void)
89 {
90 	int i;
91 	phys_addr_t phys_offset = PHYS_OFFSET;
92 	phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
93 	struct memblock_region *reg;
94 	bool first = true;
95 	phys_addr_t mem_start;
96 	phys_addr_t mem_end;
97 
98 	for_each_memblock(memory, reg) {
99 		if (first) {
100 			/*
101 			 * Initially only use memory continuous from
102 			 * PHYS_OFFSET */
103 			if (reg->base != phys_offset)
104 				panic("First memory bank must be contiguous from PHYS_OFFSET");
105 
106 			mem_start = reg->base;
107 			mem_end = reg->base + reg->size;
108 			specified_mem_size = reg->size;
109 			first = false;
110 		} else {
111 			/*
112 			 * memblock auto merges contiguous blocks, remove
113 			 * all blocks afterwards
114 			 */
115 			pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
116 				  &mem_start, &reg->base);
117 			memblock_remove(reg->base, reg->size);
118 		}
119 	}
120 
121 	/*
122 	 * MPU has curious alignment requirements: Size must be power of 2, and
123 	 * region start must be aligned to the region size
124 	 */
125 	if (phys_offset != 0)
126 		pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
127 
128 	/*
129 	 * Maximum aligned region might overflow phys_addr_t if phys_offset is
130 	 * 0. Hence we keep everything below 4G until we take the smaller of
131 	 * the aligned_region_size and rounded_mem_size, one of which is
132 	 * guaranteed to be smaller than the maximum physical address.
133 	 */
134 	aligned_region_size = (phys_offset - 1) ^ (phys_offset);
135 	/* Find the max power-of-two sized region that fits inside our bank */
136 	rounded_mem_size = (1 <<  __fls(specified_mem_size)) - 1;
137 
138 	/* The actual region size is the smaller of the two */
139 	aligned_region_size = aligned_region_size < rounded_mem_size
140 				? aligned_region_size + 1
141 				: rounded_mem_size + 1;
142 
143 	if (aligned_region_size != specified_mem_size) {
144 		pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
145 				&specified_mem_size, &aligned_region_size);
146 		memblock_remove(mem_start + aligned_region_size,
147 				specified_mem_size - aligned_round_size);
148 
149 		mem_end = mem_start + aligned_region_size;
150 	}
151 
152 	pr_debug("MPU Region from %pa size %pa (end %pa))\n",
153 		&phys_offset, &aligned_region_size, &mem_end);
154 
155 }
156 
157 static int mpu_present(void)
158 {
159 	return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
160 }
161 
162 static int mpu_max_regions(void)
163 {
164 	/*
165 	 * We don't support a different number of I/D side regions so if we
166 	 * have separate instruction and data memory maps then return
167 	 * whichever side has a smaller number of supported regions.
168 	 */
169 	u32 dregions, iregions, mpuir;
170 	mpuir = read_cpuid(CPUID_MPUIR);
171 
172 	dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
173 
174 	/* Check for separate d-side and i-side memory maps */
175 	if (mpuir & MPUIR_nU)
176 		iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
177 
178 	/* Use the smallest of the two maxima */
179 	return min(dregions, iregions);
180 }
181 
182 static int mpu_iside_independent(void)
183 {
184 	/* MPUIR.nU specifies whether there is *not* a unified memory map */
185 	return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
186 }
187 
188 static int mpu_min_region_order(void)
189 {
190 	u32 drbar_result, irbar_result;
191 	/* We've kept a region free for this probing */
192 	rgnr_write(MPU_PROBE_REGION);
193 	isb();
194 	/*
195 	 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
196 	 * region order
197 	*/
198 	drbar_write(0xFFFFFFFC);
199 	drbar_result = irbar_result = drbar_read();
200 	drbar_write(0x0);
201 	/* If the MPU is non-unified, we use the larger of the two minima*/
202 	if (mpu_iside_independent()) {
203 		irbar_write(0xFFFFFFFC);
204 		irbar_result = irbar_read();
205 		irbar_write(0x0);
206 	}
207 	isb(); /* Ensure that MPU region operations have completed */
208 	/* Return whichever result is larger */
209 	return __ffs(max(drbar_result, irbar_result));
210 }
211 
212 static int mpu_setup_region(unsigned int number, phys_addr_t start,
213 			unsigned int size_order, unsigned int properties)
214 {
215 	u32 size_data;
216 
217 	/* We kept a region free for probing resolution of MPU regions*/
218 	if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
219 		return -ENOENT;
220 
221 	if (size_order > 32)
222 		return -ENOMEM;
223 
224 	if (size_order < mpu_min_region_order())
225 		return -ENOMEM;
226 
227 	/* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */
228 	size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
229 
230 	dsb(); /* Ensure all previous data accesses occur with old mappings */
231 	rgnr_write(number);
232 	isb();
233 	drbar_write(start);
234 	dracr_write(properties);
235 	isb(); /* Propagate properties before enabling region */
236 	drsr_write(size_data);
237 
238 	/* Check for independent I-side registers */
239 	if (mpu_iside_independent()) {
240 		irbar_write(start);
241 		iracr_write(properties);
242 		isb();
243 		irsr_write(size_data);
244 	}
245 	isb();
246 
247 	/* Store region info (we treat i/d side the same, so only store d) */
248 	mpu_rgn_info.rgns[number].dracr = properties;
249 	mpu_rgn_info.rgns[number].drbar = start;
250 	mpu_rgn_info.rgns[number].drsr = size_data;
251 	return 0;
252 }
253 
254 /*
255 * Set up default MPU regions, doing nothing if there is no MPU
256 */
257 void __init mpu_setup(void)
258 {
259 	int region_err;
260 	if (!mpu_present())
261 		return;
262 
263 	region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
264 					ilog2(meminfo.bank[0].size),
265 					MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
266 	if (region_err) {
267 		panic("MPU region initialization failure! %d", region_err);
268 	} else {
269 		pr_info("Using ARMv7 PMSA Compliant MPU. "
270 			 "Region independence: %s, Max regions: %d\n",
271 			mpu_iside_independent() ? "Yes" : "No",
272 			mpu_max_regions());
273 	}
274 }
275 #else
276 static void sanity_check_meminfo_mpu(void) {}
277 static void __init mpu_setup(void) {}
278 #endif /* CONFIG_ARM_MPU */
279 
280 void __init arm_mm_memblock_reserve(void)
281 {
282 #ifndef CONFIG_CPU_V7M
283 	/*
284 	 * Register the exception vector page.
285 	 * some architectures which the DRAM is the exception vector to trap,
286 	 * alloc_page breaks with error, although it is not NULL, but "0."
287 	 */
288 	memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE);
289 #else /* ifndef CONFIG_CPU_V7M */
290 	/*
291 	 * There is no dedicated vector page on V7-M. So nothing needs to be
292 	 * reserved here.
293 	 */
294 #endif
295 }
296 
297 void __init sanity_check_meminfo(void)
298 {
299 	phys_addr_t end;
300 	sanity_check_meminfo_mpu();
301 	end = memblock_end_of_DRAM();
302 	high_memory = __va(end - 1) + 1;
303 	memblock_set_current_limit(end);
304 }
305 
306 /*
307  * early_paging_init() recreates boot time page table setup, allowing machines
308  * to switch over to a high (>4G) address space on LPAE systems
309  */
310 void __init early_paging_init(const struct machine_desc *mdesc,
311 			      struct proc_info_list *procinfo)
312 {
313 }
314 
315 /*
316  * paging_init() sets up the page tables, initialises the zone memory
317  * maps, and sets up the zero page, bad page and bad page tables.
318  */
319 void __init paging_init(const struct machine_desc *mdesc)
320 {
321 	early_trap_init((void *)CONFIG_VECTORS_BASE);
322 	mpu_setup();
323 	bootmem_init();
324 }
325 
326 /*
327  * We don't need to do anything here for nommu machines.
328  */
329 void setup_mm_for_reboot(void)
330 {
331 }
332 
333 void flush_dcache_page(struct page *page)
334 {
335 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
336 }
337 EXPORT_SYMBOL(flush_dcache_page);
338 
339 void flush_kernel_dcache_page(struct page *page)
340 {
341 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
342 }
343 EXPORT_SYMBOL(flush_kernel_dcache_page);
344 
345 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
346 		       unsigned long uaddr, void *dst, const void *src,
347 		       unsigned long len)
348 {
349 	memcpy(dst, src, len);
350 	if (vma->vm_flags & VM_EXEC)
351 		__cpuc_coherent_user_range(uaddr, uaddr + len);
352 }
353 
354 void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
355 				size_t size, unsigned int mtype)
356 {
357 	if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
358 		return NULL;
359 	return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
360 }
361 EXPORT_SYMBOL(__arm_ioremap_pfn);
362 
363 void __iomem *__arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset,
364 			   size_t size, unsigned int mtype, void *caller)
365 {
366 	return __arm_ioremap_pfn(pfn, offset, size, mtype);
367 }
368 
369 void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size,
370 			    unsigned int mtype)
371 {
372 	return (void __iomem *)phys_addr;
373 }
374 EXPORT_SYMBOL(__arm_ioremap);
375 
376 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
377 
378 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
379 				   unsigned int mtype, void *caller)
380 {
381 	return __arm_ioremap(phys_addr, size, mtype);
382 }
383 
384 void (*arch_iounmap)(volatile void __iomem *);
385 
386 void __arm_iounmap(volatile void __iomem *addr)
387 {
388 }
389 EXPORT_SYMBOL(__arm_iounmap);
390