1 /* 2 * linux/arch/arm/mm/nommu.c 3 * 4 * ARM uCLinux supporting functions. 5 */ 6 #include <linux/module.h> 7 #include <linux/mm.h> 8 #include <linux/pagemap.h> 9 #include <linux/io.h> 10 #include <linux/memblock.h> 11 #include <linux/kernel.h> 12 13 #include <asm/cacheflush.h> 14 #include <asm/sections.h> 15 #include <asm/page.h> 16 #include <asm/setup.h> 17 #include <asm/traps.h> 18 #include <asm/mach/arch.h> 19 #include <asm/cputype.h> 20 #include <asm/mpu.h> 21 #include <asm/procinfo.h> 22 23 #include "mm.h" 24 25 #ifdef CONFIG_ARM_MPU 26 struct mpu_rgn_info mpu_rgn_info; 27 28 /* Region number */ 29 static void rgnr_write(u32 v) 30 { 31 asm("mcr p15, 0, %0, c6, c2, 0" : : "r" (v)); 32 } 33 34 /* Data-side / unified region attributes */ 35 36 /* Region access control register */ 37 static void dracr_write(u32 v) 38 { 39 asm("mcr p15, 0, %0, c6, c1, 4" : : "r" (v)); 40 } 41 42 /* Region size register */ 43 static void drsr_write(u32 v) 44 { 45 asm("mcr p15, 0, %0, c6, c1, 2" : : "r" (v)); 46 } 47 48 /* Region base address register */ 49 static void drbar_write(u32 v) 50 { 51 asm("mcr p15, 0, %0, c6, c1, 0" : : "r" (v)); 52 } 53 54 static u32 drbar_read(void) 55 { 56 u32 v; 57 asm("mrc p15, 0, %0, c6, c1, 0" : "=r" (v)); 58 return v; 59 } 60 /* Optional instruction-side region attributes */ 61 62 /* I-side Region access control register */ 63 static void iracr_write(u32 v) 64 { 65 asm("mcr p15, 0, %0, c6, c1, 5" : : "r" (v)); 66 } 67 68 /* I-side Region size register */ 69 static void irsr_write(u32 v) 70 { 71 asm("mcr p15, 0, %0, c6, c1, 3" : : "r" (v)); 72 } 73 74 /* I-side Region base address register */ 75 static void irbar_write(u32 v) 76 { 77 asm("mcr p15, 0, %0, c6, c1, 1" : : "r" (v)); 78 } 79 80 static unsigned long irbar_read(void) 81 { 82 unsigned long v; 83 asm("mrc p15, 0, %0, c6, c1, 1" : "=r" (v)); 84 return v; 85 } 86 87 /* MPU initialisation functions */ 88 void __init sanity_check_meminfo_mpu(void) 89 { 90 int i; 91 struct membank *bank = meminfo.bank; 92 phys_addr_t phys_offset = PHYS_OFFSET; 93 phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size; 94 95 /* Initially only use memory continuous from PHYS_OFFSET */ 96 if (bank_phys_start(&bank[0]) != phys_offset) 97 panic("First memory bank must be contiguous from PHYS_OFFSET"); 98 99 /* Banks have already been sorted by start address */ 100 for (i = 1; i < meminfo.nr_banks; i++) { 101 if (bank[i].start <= bank_phys_end(&bank[0]) && 102 bank_phys_end(&bank[i]) > bank_phys_end(&bank[0])) { 103 bank[0].size = bank_phys_end(&bank[i]) - bank[0].start; 104 } else { 105 pr_notice("Ignoring RAM after 0x%.8lx. " 106 "First non-contiguous (ignored) bank start: 0x%.8lx\n", 107 (unsigned long)bank_phys_end(&bank[0]), 108 (unsigned long)bank_phys_start(&bank[i])); 109 break; 110 } 111 } 112 /* All contiguous banks are now merged in to the first bank */ 113 meminfo.nr_banks = 1; 114 specified_mem_size = bank[0].size; 115 116 /* 117 * MPU has curious alignment requirements: Size must be power of 2, and 118 * region start must be aligned to the region size 119 */ 120 if (phys_offset != 0) 121 pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n"); 122 123 /* 124 * Maximum aligned region might overflow phys_addr_t if phys_offset is 125 * 0. Hence we keep everything below 4G until we take the smaller of 126 * the aligned_region_size and rounded_mem_size, one of which is 127 * guaranteed to be smaller than the maximum physical address. 128 */ 129 aligned_region_size = (phys_offset - 1) ^ (phys_offset); 130 /* Find the max power-of-two sized region that fits inside our bank */ 131 rounded_mem_size = (1 << __fls(bank[0].size)) - 1; 132 133 /* The actual region size is the smaller of the two */ 134 aligned_region_size = aligned_region_size < rounded_mem_size 135 ? aligned_region_size + 1 136 : rounded_mem_size + 1; 137 138 if (aligned_region_size != specified_mem_size) 139 pr_warn("Truncating memory from 0x%.8lx to 0x%.8lx (MPU region constraints)", 140 (unsigned long)specified_mem_size, 141 (unsigned long)aligned_region_size); 142 143 meminfo.bank[0].size = aligned_region_size; 144 pr_debug("MPU Region from 0x%.8lx size 0x%.8lx (end 0x%.8lx))\n", 145 (unsigned long)phys_offset, 146 (unsigned long)aligned_region_size, 147 (unsigned long)bank_phys_end(&bank[0])); 148 149 } 150 151 static int mpu_present(void) 152 { 153 return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7); 154 } 155 156 static int mpu_max_regions(void) 157 { 158 /* 159 * We don't support a different number of I/D side regions so if we 160 * have separate instruction and data memory maps then return 161 * whichever side has a smaller number of supported regions. 162 */ 163 u32 dregions, iregions, mpuir; 164 mpuir = read_cpuid(CPUID_MPUIR); 165 166 dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION; 167 168 /* Check for separate d-side and i-side memory maps */ 169 if (mpuir & MPUIR_nU) 170 iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION; 171 172 /* Use the smallest of the two maxima */ 173 return min(dregions, iregions); 174 } 175 176 static int mpu_iside_independent(void) 177 { 178 /* MPUIR.nU specifies whether there is *not* a unified memory map */ 179 return read_cpuid(CPUID_MPUIR) & MPUIR_nU; 180 } 181 182 static int mpu_min_region_order(void) 183 { 184 u32 drbar_result, irbar_result; 185 /* We've kept a region free for this probing */ 186 rgnr_write(MPU_PROBE_REGION); 187 isb(); 188 /* 189 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum 190 * region order 191 */ 192 drbar_write(0xFFFFFFFC); 193 drbar_result = irbar_result = drbar_read(); 194 drbar_write(0x0); 195 /* If the MPU is non-unified, we use the larger of the two minima*/ 196 if (mpu_iside_independent()) { 197 irbar_write(0xFFFFFFFC); 198 irbar_result = irbar_read(); 199 irbar_write(0x0); 200 } 201 isb(); /* Ensure that MPU region operations have completed */ 202 /* Return whichever result is larger */ 203 return __ffs(max(drbar_result, irbar_result)); 204 } 205 206 static int mpu_setup_region(unsigned int number, phys_addr_t start, 207 unsigned int size_order, unsigned int properties) 208 { 209 u32 size_data; 210 211 /* We kept a region free for probing resolution of MPU regions*/ 212 if (number > mpu_max_regions() || number == MPU_PROBE_REGION) 213 return -ENOENT; 214 215 if (size_order > 32) 216 return -ENOMEM; 217 218 if (size_order < mpu_min_region_order()) 219 return -ENOMEM; 220 221 /* Writing N to bits 5:1 (RSR_SZ) specifies region size 2^N+1 */ 222 size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN; 223 224 dsb(); /* Ensure all previous data accesses occur with old mappings */ 225 rgnr_write(number); 226 isb(); 227 drbar_write(start); 228 dracr_write(properties); 229 isb(); /* Propagate properties before enabling region */ 230 drsr_write(size_data); 231 232 /* Check for independent I-side registers */ 233 if (mpu_iside_independent()) { 234 irbar_write(start); 235 iracr_write(properties); 236 isb(); 237 irsr_write(size_data); 238 } 239 isb(); 240 241 /* Store region info (we treat i/d side the same, so only store d) */ 242 mpu_rgn_info.rgns[number].dracr = properties; 243 mpu_rgn_info.rgns[number].drbar = start; 244 mpu_rgn_info.rgns[number].drsr = size_data; 245 return 0; 246 } 247 248 /* 249 * Set up default MPU regions, doing nothing if there is no MPU 250 */ 251 void __init mpu_setup(void) 252 { 253 int region_err; 254 if (!mpu_present()) 255 return; 256 257 region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET, 258 ilog2(meminfo.bank[0].size), 259 MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL); 260 if (region_err) { 261 panic("MPU region initialization failure! %d", region_err); 262 } else { 263 pr_info("Using ARMv7 PMSA Compliant MPU. " 264 "Region independence: %s, Max regions: %d\n", 265 mpu_iside_independent() ? "Yes" : "No", 266 mpu_max_regions()); 267 } 268 } 269 #else 270 static void sanity_check_meminfo_mpu(void) {} 271 static void __init mpu_setup(void) {} 272 #endif /* CONFIG_ARM_MPU */ 273 274 void __init arm_mm_memblock_reserve(void) 275 { 276 #ifndef CONFIG_CPU_V7M 277 /* 278 * Register the exception vector page. 279 * some architectures which the DRAM is the exception vector to trap, 280 * alloc_page breaks with error, although it is not NULL, but "0." 281 */ 282 memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE); 283 #else /* ifndef CONFIG_CPU_V7M */ 284 /* 285 * There is no dedicated vector page on V7-M. So nothing needs to be 286 * reserved here. 287 */ 288 #endif 289 } 290 291 void __init sanity_check_meminfo(void) 292 { 293 phys_addr_t end; 294 sanity_check_meminfo_mpu(); 295 end = bank_phys_end(&meminfo.bank[meminfo.nr_banks - 1]); 296 high_memory = __va(end - 1) + 1; 297 } 298 299 /* 300 * early_paging_init() recreates boot time page table setup, allowing machines 301 * to switch over to a high (>4G) address space on LPAE systems 302 */ 303 void __init early_paging_init(const struct machine_desc *mdesc, 304 struct proc_info_list *procinfo) 305 { 306 } 307 308 /* 309 * paging_init() sets up the page tables, initialises the zone memory 310 * maps, and sets up the zero page, bad page and bad page tables. 311 */ 312 void __init paging_init(const struct machine_desc *mdesc) 313 { 314 early_trap_init((void *)CONFIG_VECTORS_BASE); 315 mpu_setup(); 316 bootmem_init(); 317 } 318 319 /* 320 * We don't need to do anything here for nommu machines. 321 */ 322 void setup_mm_for_reboot(void) 323 { 324 } 325 326 void flush_dcache_page(struct page *page) 327 { 328 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); 329 } 330 EXPORT_SYMBOL(flush_dcache_page); 331 332 void flush_kernel_dcache_page(struct page *page) 333 { 334 __cpuc_flush_dcache_area(page_address(page), PAGE_SIZE); 335 } 336 EXPORT_SYMBOL(flush_kernel_dcache_page); 337 338 void copy_to_user_page(struct vm_area_struct *vma, struct page *page, 339 unsigned long uaddr, void *dst, const void *src, 340 unsigned long len) 341 { 342 memcpy(dst, src, len); 343 if (vma->vm_flags & VM_EXEC) 344 __cpuc_coherent_user_range(uaddr, uaddr + len); 345 } 346 347 void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset, 348 size_t size, unsigned int mtype) 349 { 350 if (pfn >= (0x100000000ULL >> PAGE_SHIFT)) 351 return NULL; 352 return (void __iomem *) (offset + (pfn << PAGE_SHIFT)); 353 } 354 EXPORT_SYMBOL(__arm_ioremap_pfn); 355 356 void __iomem *__arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset, 357 size_t size, unsigned int mtype, void *caller) 358 { 359 return __arm_ioremap_pfn(pfn, offset, size, mtype); 360 } 361 362 void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size, 363 unsigned int mtype) 364 { 365 return (void __iomem *)phys_addr; 366 } 367 EXPORT_SYMBOL(__arm_ioremap); 368 369 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *); 370 371 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size, 372 unsigned int mtype, void *caller) 373 { 374 return __arm_ioremap(phys_addr, size, mtype); 375 } 376 377 void (*arch_iounmap)(volatile void __iomem *); 378 379 void __arm_iounmap(volatile void __iomem *addr) 380 { 381 } 382 EXPORT_SYMBOL(__arm_iounmap); 383