xref: /openbmc/linux/arch/arm/mm/nommu.c (revision 8a10bc9d)
1 /*
2  *  linux/arch/arm/mm/nommu.c
3  *
4  * ARM uCLinux supporting functions.
5  */
6 #include <linux/module.h>
7 #include <linux/mm.h>
8 #include <linux/pagemap.h>
9 #include <linux/io.h>
10 #include <linux/memblock.h>
11 #include <linux/kernel.h>
12 
13 #include <asm/cacheflush.h>
14 #include <asm/sections.h>
15 #include <asm/page.h>
16 #include <asm/setup.h>
17 #include <asm/traps.h>
18 #include <asm/mach/arch.h>
19 #include <asm/cputype.h>
20 #include <asm/mpu.h>
21 #include <asm/procinfo.h>
22 
23 #include "mm.h"
24 
25 #ifdef CONFIG_ARM_MPU
26 struct mpu_rgn_info mpu_rgn_info;
27 
28 /* Region number */
29 static void rgnr_write(u32 v)
30 {
31 	asm("mcr        p15, 0, %0, c6, c2, 0" : : "r" (v));
32 }
33 
34 /* Data-side / unified region attributes */
35 
36 /* Region access control register */
37 static void dracr_write(u32 v)
38 {
39 	asm("mcr        p15, 0, %0, c6, c1, 4" : : "r" (v));
40 }
41 
42 /* Region size register */
43 static void drsr_write(u32 v)
44 {
45 	asm("mcr        p15, 0, %0, c6, c1, 2" : : "r" (v));
46 }
47 
48 /* Region base address register */
49 static void drbar_write(u32 v)
50 {
51 	asm("mcr        p15, 0, %0, c6, c1, 0" : : "r" (v));
52 }
53 
54 static u32 drbar_read(void)
55 {
56 	u32 v;
57 	asm("mrc        p15, 0, %0, c6, c1, 0" : "=r" (v));
58 	return v;
59 }
60 /* Optional instruction-side region attributes */
61 
62 /* I-side Region access control register */
63 static void iracr_write(u32 v)
64 {
65 	asm("mcr        p15, 0, %0, c6, c1, 5" : : "r" (v));
66 }
67 
68 /* I-side Region size register */
69 static void irsr_write(u32 v)
70 {
71 	asm("mcr        p15, 0, %0, c6, c1, 3" : : "r" (v));
72 }
73 
74 /* I-side Region base address register */
75 static void irbar_write(u32 v)
76 {
77 	asm("mcr        p15, 0, %0, c6, c1, 1" : : "r" (v));
78 }
79 
80 static unsigned long irbar_read(void)
81 {
82 	unsigned long v;
83 	asm("mrc        p15, 0, %0, c6, c1, 1" : "=r" (v));
84 	return v;
85 }
86 
87 /* MPU initialisation functions */
88 void __init sanity_check_meminfo_mpu(void)
89 {
90 	int i;
91 	struct membank *bank = meminfo.bank;
92 	phys_addr_t phys_offset = PHYS_OFFSET;
93 	phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
94 
95 	/* Initially only use memory continuous from PHYS_OFFSET */
96 	if (bank_phys_start(&bank[0]) != phys_offset)
97 		panic("First memory bank must be contiguous from PHYS_OFFSET");
98 
99 	/* Banks have already been sorted by start address */
100 	for (i = 1; i < meminfo.nr_banks; i++) {
101 		if (bank[i].start <= bank_phys_end(&bank[0]) &&
102 		    bank_phys_end(&bank[i]) > bank_phys_end(&bank[0])) {
103 			bank[0].size = bank_phys_end(&bank[i]) - bank[0].start;
104 		} else {
105 			pr_notice("Ignoring RAM after 0x%.8lx. "
106 			"First non-contiguous (ignored) bank start: 0x%.8lx\n",
107 				(unsigned long)bank_phys_end(&bank[0]),
108 				(unsigned long)bank_phys_start(&bank[i]));
109 			break;
110 		}
111 	}
112 	/* All contiguous banks are now merged in to the first bank */
113 	meminfo.nr_banks = 1;
114 	specified_mem_size = bank[0].size;
115 
116 	/*
117 	 * MPU has curious alignment requirements: Size must be power of 2, and
118 	 * region start must be aligned to the region size
119 	 */
120 	if (phys_offset != 0)
121 		pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
122 
123 	/*
124 	 * Maximum aligned region might overflow phys_addr_t if phys_offset is
125 	 * 0. Hence we keep everything below 4G until we take the smaller of
126 	 * the aligned_region_size and rounded_mem_size, one of which is
127 	 * guaranteed to be smaller than the maximum physical address.
128 	 */
129 	aligned_region_size = (phys_offset - 1) ^ (phys_offset);
130 	/* Find the max power-of-two sized region that fits inside our bank */
131 	rounded_mem_size = (1 <<  __fls(bank[0].size)) - 1;
132 
133 	/* The actual region size is the smaller of the two */
134 	aligned_region_size = aligned_region_size < rounded_mem_size
135 				? aligned_region_size + 1
136 				: rounded_mem_size + 1;
137 
138 	if (aligned_region_size != specified_mem_size)
139 		pr_warn("Truncating memory from 0x%.8lx to 0x%.8lx (MPU region constraints)",
140 				(unsigned long)specified_mem_size,
141 				(unsigned long)aligned_region_size);
142 
143 	meminfo.bank[0].size = aligned_region_size;
144 	pr_debug("MPU Region from 0x%.8lx size 0x%.8lx (end 0x%.8lx))\n",
145 		(unsigned long)phys_offset,
146 		(unsigned long)aligned_region_size,
147 		(unsigned long)bank_phys_end(&bank[0]));
148 
149 }
150 
151 static int mpu_present(void)
152 {
153 	return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
154 }
155 
156 static int mpu_max_regions(void)
157 {
158 	/*
159 	 * We don't support a different number of I/D side regions so if we
160 	 * have separate instruction and data memory maps then return
161 	 * whichever side has a smaller number of supported regions.
162 	 */
163 	u32 dregions, iregions, mpuir;
164 	mpuir = read_cpuid(CPUID_MPUIR);
165 
166 	dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
167 
168 	/* Check for separate d-side and i-side memory maps */
169 	if (mpuir & MPUIR_nU)
170 		iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
171 
172 	/* Use the smallest of the two maxima */
173 	return min(dregions, iregions);
174 }
175 
176 static int mpu_iside_independent(void)
177 {
178 	/* MPUIR.nU specifies whether there is *not* a unified memory map */
179 	return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
180 }
181 
182 static int mpu_min_region_order(void)
183 {
184 	u32 drbar_result, irbar_result;
185 	/* We've kept a region free for this probing */
186 	rgnr_write(MPU_PROBE_REGION);
187 	isb();
188 	/*
189 	 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
190 	 * region order
191 	*/
192 	drbar_write(0xFFFFFFFC);
193 	drbar_result = irbar_result = drbar_read();
194 	drbar_write(0x0);
195 	/* If the MPU is non-unified, we use the larger of the two minima*/
196 	if (mpu_iside_independent()) {
197 		irbar_write(0xFFFFFFFC);
198 		irbar_result = irbar_read();
199 		irbar_write(0x0);
200 	}
201 	isb(); /* Ensure that MPU region operations have completed */
202 	/* Return whichever result is larger */
203 	return __ffs(max(drbar_result, irbar_result));
204 }
205 
206 static int mpu_setup_region(unsigned int number, phys_addr_t start,
207 			unsigned int size_order, unsigned int properties)
208 {
209 	u32 size_data;
210 
211 	/* We kept a region free for probing resolution of MPU regions*/
212 	if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
213 		return -ENOENT;
214 
215 	if (size_order > 32)
216 		return -ENOMEM;
217 
218 	if (size_order < mpu_min_region_order())
219 		return -ENOMEM;
220 
221 	/* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */
222 	size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
223 
224 	dsb(); /* Ensure all previous data accesses occur with old mappings */
225 	rgnr_write(number);
226 	isb();
227 	drbar_write(start);
228 	dracr_write(properties);
229 	isb(); /* Propagate properties before enabling region */
230 	drsr_write(size_data);
231 
232 	/* Check for independent I-side registers */
233 	if (mpu_iside_independent()) {
234 		irbar_write(start);
235 		iracr_write(properties);
236 		isb();
237 		irsr_write(size_data);
238 	}
239 	isb();
240 
241 	/* Store region info (we treat i/d side the same, so only store d) */
242 	mpu_rgn_info.rgns[number].dracr = properties;
243 	mpu_rgn_info.rgns[number].drbar = start;
244 	mpu_rgn_info.rgns[number].drsr = size_data;
245 	return 0;
246 }
247 
248 /*
249 * Set up default MPU regions, doing nothing if there is no MPU
250 */
251 void __init mpu_setup(void)
252 {
253 	int region_err;
254 	if (!mpu_present())
255 		return;
256 
257 	region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
258 					ilog2(meminfo.bank[0].size),
259 					MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
260 	if (region_err) {
261 		panic("MPU region initialization failure! %d", region_err);
262 	} else {
263 		pr_info("Using ARMv7 PMSA Compliant MPU. "
264 			 "Region independence: %s, Max regions: %d\n",
265 			mpu_iside_independent() ? "Yes" : "No",
266 			mpu_max_regions());
267 	}
268 }
269 #else
270 static void sanity_check_meminfo_mpu(void) {}
271 static void __init mpu_setup(void) {}
272 #endif /* CONFIG_ARM_MPU */
273 
274 void __init arm_mm_memblock_reserve(void)
275 {
276 #ifndef CONFIG_CPU_V7M
277 	/*
278 	 * Register the exception vector page.
279 	 * some architectures which the DRAM is the exception vector to trap,
280 	 * alloc_page breaks with error, although it is not NULL, but "0."
281 	 */
282 	memblock_reserve(CONFIG_VECTORS_BASE, PAGE_SIZE);
283 #else /* ifndef CONFIG_CPU_V7M */
284 	/*
285 	 * There is no dedicated vector page on V7-M. So nothing needs to be
286 	 * reserved here.
287 	 */
288 #endif
289 }
290 
291 void __init sanity_check_meminfo(void)
292 {
293 	phys_addr_t end;
294 	sanity_check_meminfo_mpu();
295 	end = bank_phys_end(&meminfo.bank[meminfo.nr_banks - 1]);
296 	high_memory = __va(end - 1) + 1;
297 }
298 
299 /*
300  * early_paging_init() recreates boot time page table setup, allowing machines
301  * to switch over to a high (>4G) address space on LPAE systems
302  */
303 void __init early_paging_init(const struct machine_desc *mdesc,
304 			      struct proc_info_list *procinfo)
305 {
306 }
307 
308 /*
309  * paging_init() sets up the page tables, initialises the zone memory
310  * maps, and sets up the zero page, bad page and bad page tables.
311  */
312 void __init paging_init(const struct machine_desc *mdesc)
313 {
314 	early_trap_init((void *)CONFIG_VECTORS_BASE);
315 	mpu_setup();
316 	bootmem_init();
317 }
318 
319 /*
320  * We don't need to do anything here for nommu machines.
321  */
322 void setup_mm_for_reboot(void)
323 {
324 }
325 
326 void flush_dcache_page(struct page *page)
327 {
328 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
329 }
330 EXPORT_SYMBOL(flush_dcache_page);
331 
332 void flush_kernel_dcache_page(struct page *page)
333 {
334 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
335 }
336 EXPORT_SYMBOL(flush_kernel_dcache_page);
337 
338 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
339 		       unsigned long uaddr, void *dst, const void *src,
340 		       unsigned long len)
341 {
342 	memcpy(dst, src, len);
343 	if (vma->vm_flags & VM_EXEC)
344 		__cpuc_coherent_user_range(uaddr, uaddr + len);
345 }
346 
347 void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
348 				size_t size, unsigned int mtype)
349 {
350 	if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
351 		return NULL;
352 	return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
353 }
354 EXPORT_SYMBOL(__arm_ioremap_pfn);
355 
356 void __iomem *__arm_ioremap_pfn_caller(unsigned long pfn, unsigned long offset,
357 			   size_t size, unsigned int mtype, void *caller)
358 {
359 	return __arm_ioremap_pfn(pfn, offset, size, mtype);
360 }
361 
362 void __iomem *__arm_ioremap(phys_addr_t phys_addr, size_t size,
363 			    unsigned int mtype)
364 {
365 	return (void __iomem *)phys_addr;
366 }
367 EXPORT_SYMBOL(__arm_ioremap);
368 
369 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
370 
371 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
372 				   unsigned int mtype, void *caller)
373 {
374 	return __arm_ioremap(phys_addr, size, mtype);
375 }
376 
377 void (*arch_iounmap)(volatile void __iomem *);
378 
379 void __arm_iounmap(volatile void __iomem *addr)
380 {
381 }
382 EXPORT_SYMBOL(__arm_iounmap);
383