xref: /openbmc/linux/arch/arm/mm/nommu.c (revision 4f6cce39)
1 /*
2  *  linux/arch/arm/mm/nommu.c
3  *
4  * ARM uCLinux supporting functions.
5  */
6 #include <linux/module.h>
7 #include <linux/mm.h>
8 #include <linux/pagemap.h>
9 #include <linux/io.h>
10 #include <linux/memblock.h>
11 #include <linux/kernel.h>
12 
13 #include <asm/cacheflush.h>
14 #include <asm/cp15.h>
15 #include <asm/sections.h>
16 #include <asm/page.h>
17 #include <asm/setup.h>
18 #include <asm/traps.h>
19 #include <asm/mach/arch.h>
20 #include <asm/cputype.h>
21 #include <asm/mpu.h>
22 #include <asm/procinfo.h>
23 
24 #include "mm.h"
25 
26 unsigned long vectors_base;
27 
28 #ifdef CONFIG_ARM_MPU
29 struct mpu_rgn_info mpu_rgn_info;
30 
31 /* Region number */
32 static void rgnr_write(u32 v)
33 {
34 	asm("mcr        p15, 0, %0, c6, c2, 0" : : "r" (v));
35 }
36 
37 /* Data-side / unified region attributes */
38 
39 /* Region access control register */
40 static void dracr_write(u32 v)
41 {
42 	asm("mcr        p15, 0, %0, c6, c1, 4" : : "r" (v));
43 }
44 
45 /* Region size register */
46 static void drsr_write(u32 v)
47 {
48 	asm("mcr        p15, 0, %0, c6, c1, 2" : : "r" (v));
49 }
50 
51 /* Region base address register */
52 static void drbar_write(u32 v)
53 {
54 	asm("mcr        p15, 0, %0, c6, c1, 0" : : "r" (v));
55 }
56 
57 static u32 drbar_read(void)
58 {
59 	u32 v;
60 	asm("mrc        p15, 0, %0, c6, c1, 0" : "=r" (v));
61 	return v;
62 }
63 /* Optional instruction-side region attributes */
64 
65 /* I-side Region access control register */
66 static void iracr_write(u32 v)
67 {
68 	asm("mcr        p15, 0, %0, c6, c1, 5" : : "r" (v));
69 }
70 
71 /* I-side Region size register */
72 static void irsr_write(u32 v)
73 {
74 	asm("mcr        p15, 0, %0, c6, c1, 3" : : "r" (v));
75 }
76 
77 /* I-side Region base address register */
78 static void irbar_write(u32 v)
79 {
80 	asm("mcr        p15, 0, %0, c6, c1, 1" : : "r" (v));
81 }
82 
83 static unsigned long irbar_read(void)
84 {
85 	unsigned long v;
86 	asm("mrc        p15, 0, %0, c6, c1, 1" : "=r" (v));
87 	return v;
88 }
89 
90 /* MPU initialisation functions */
91 void __init adjust_lowmem_bounds_mpu(void)
92 {
93 	phys_addr_t phys_offset = PHYS_OFFSET;
94 	phys_addr_t aligned_region_size, specified_mem_size, rounded_mem_size;
95 	struct memblock_region *reg;
96 	bool first = true;
97 	phys_addr_t mem_start;
98 	phys_addr_t mem_end;
99 
100 	for_each_memblock(memory, reg) {
101 		if (first) {
102 			/*
103 			 * Initially only use memory continuous from
104 			 * PHYS_OFFSET */
105 			if (reg->base != phys_offset)
106 				panic("First memory bank must be contiguous from PHYS_OFFSET");
107 
108 			mem_start = reg->base;
109 			mem_end = reg->base + reg->size;
110 			specified_mem_size = reg->size;
111 			first = false;
112 		} else {
113 			/*
114 			 * memblock auto merges contiguous blocks, remove
115 			 * all blocks afterwards in one go (we can't remove
116 			 * blocks separately while iterating)
117 			 */
118 			pr_notice("Ignoring RAM after %pa, memory at %pa ignored\n",
119 				  &mem_end, &reg->base);
120 			memblock_remove(reg->base, 0 - reg->base);
121 			break;
122 		}
123 	}
124 
125 	/*
126 	 * MPU has curious alignment requirements: Size must be power of 2, and
127 	 * region start must be aligned to the region size
128 	 */
129 	if (phys_offset != 0)
130 		pr_info("PHYS_OFFSET != 0 => MPU Region size constrained by alignment requirements\n");
131 
132 	/*
133 	 * Maximum aligned region might overflow phys_addr_t if phys_offset is
134 	 * 0. Hence we keep everything below 4G until we take the smaller of
135 	 * the aligned_region_size and rounded_mem_size, one of which is
136 	 * guaranteed to be smaller than the maximum physical address.
137 	 */
138 	aligned_region_size = (phys_offset - 1) ^ (phys_offset);
139 	/* Find the max power-of-two sized region that fits inside our bank */
140 	rounded_mem_size = (1 <<  __fls(specified_mem_size)) - 1;
141 
142 	/* The actual region size is the smaller of the two */
143 	aligned_region_size = aligned_region_size < rounded_mem_size
144 				? aligned_region_size + 1
145 				: rounded_mem_size + 1;
146 
147 	if (aligned_region_size != specified_mem_size) {
148 		pr_warn("Truncating memory from %pa to %pa (MPU region constraints)",
149 				&specified_mem_size, &aligned_region_size);
150 		memblock_remove(mem_start + aligned_region_size,
151 				specified_mem_size - aligned_region_size);
152 
153 		mem_end = mem_start + aligned_region_size;
154 	}
155 
156 	pr_debug("MPU Region from %pa size %pa (end %pa))\n",
157 		&phys_offset, &aligned_region_size, &mem_end);
158 
159 }
160 
161 static int mpu_present(void)
162 {
163 	return ((read_cpuid_ext(CPUID_EXT_MMFR0) & MMFR0_PMSA) == MMFR0_PMSAv7);
164 }
165 
166 static int mpu_max_regions(void)
167 {
168 	/*
169 	 * We don't support a different number of I/D side regions so if we
170 	 * have separate instruction and data memory maps then return
171 	 * whichever side has a smaller number of supported regions.
172 	 */
173 	u32 dregions, iregions, mpuir;
174 	mpuir = read_cpuid(CPUID_MPUIR);
175 
176 	dregions = iregions = (mpuir & MPUIR_DREGION_SZMASK) >> MPUIR_DREGION;
177 
178 	/* Check for separate d-side and i-side memory maps */
179 	if (mpuir & MPUIR_nU)
180 		iregions = (mpuir & MPUIR_IREGION_SZMASK) >> MPUIR_IREGION;
181 
182 	/* Use the smallest of the two maxima */
183 	return min(dregions, iregions);
184 }
185 
186 static int mpu_iside_independent(void)
187 {
188 	/* MPUIR.nU specifies whether there is *not* a unified memory map */
189 	return read_cpuid(CPUID_MPUIR) & MPUIR_nU;
190 }
191 
192 static int mpu_min_region_order(void)
193 {
194 	u32 drbar_result, irbar_result;
195 	/* We've kept a region free for this probing */
196 	rgnr_write(MPU_PROBE_REGION);
197 	isb();
198 	/*
199 	 * As per ARM ARM, write 0xFFFFFFFC to DRBAR to find the minimum
200 	 * region order
201 	*/
202 	drbar_write(0xFFFFFFFC);
203 	drbar_result = irbar_result = drbar_read();
204 	drbar_write(0x0);
205 	/* If the MPU is non-unified, we use the larger of the two minima*/
206 	if (mpu_iside_independent()) {
207 		irbar_write(0xFFFFFFFC);
208 		irbar_result = irbar_read();
209 		irbar_write(0x0);
210 	}
211 	isb(); /* Ensure that MPU region operations have completed */
212 	/* Return whichever result is larger */
213 	return __ffs(max(drbar_result, irbar_result));
214 }
215 
216 static int mpu_setup_region(unsigned int number, phys_addr_t start,
217 			unsigned int size_order, unsigned int properties)
218 {
219 	u32 size_data;
220 
221 	/* We kept a region free for probing resolution of MPU regions*/
222 	if (number > mpu_max_regions() || number == MPU_PROBE_REGION)
223 		return -ENOENT;
224 
225 	if (size_order > 32)
226 		return -ENOMEM;
227 
228 	if (size_order < mpu_min_region_order())
229 		return -ENOMEM;
230 
231 	/* Writing N to bits 5:1 (RSR_SZ)  specifies region size 2^N+1 */
232 	size_data = ((size_order - 1) << MPU_RSR_SZ) | 1 << MPU_RSR_EN;
233 
234 	dsb(); /* Ensure all previous data accesses occur with old mappings */
235 	rgnr_write(number);
236 	isb();
237 	drbar_write(start);
238 	dracr_write(properties);
239 	isb(); /* Propagate properties before enabling region */
240 	drsr_write(size_data);
241 
242 	/* Check for independent I-side registers */
243 	if (mpu_iside_independent()) {
244 		irbar_write(start);
245 		iracr_write(properties);
246 		isb();
247 		irsr_write(size_data);
248 	}
249 	isb();
250 
251 	/* Store region info (we treat i/d side the same, so only store d) */
252 	mpu_rgn_info.rgns[number].dracr = properties;
253 	mpu_rgn_info.rgns[number].drbar = start;
254 	mpu_rgn_info.rgns[number].drsr = size_data;
255 	return 0;
256 }
257 
258 /*
259 * Set up default MPU regions, doing nothing if there is no MPU
260 */
261 void __init mpu_setup(void)
262 {
263 	int region_err;
264 	if (!mpu_present())
265 		return;
266 
267 	region_err = mpu_setup_region(MPU_RAM_REGION, PHYS_OFFSET,
268 					ilog2(memblock.memory.regions[0].size),
269 					MPU_AP_PL1RW_PL0RW | MPU_RGN_NORMAL);
270 	if (region_err) {
271 		panic("MPU region initialization failure! %d", region_err);
272 	} else {
273 		pr_info("Using ARMv7 PMSA Compliant MPU. "
274 			 "Region independence: %s, Max regions: %d\n",
275 			mpu_iside_independent() ? "Yes" : "No",
276 			mpu_max_regions());
277 	}
278 }
279 #else
280 static void adjust_lowmem_bounds_mpu(void) {}
281 static void __init mpu_setup(void) {}
282 #endif /* CONFIG_ARM_MPU */
283 
284 #ifdef CONFIG_CPU_CP15
285 #ifdef CONFIG_CPU_HIGH_VECTOR
286 static unsigned long __init setup_vectors_base(void)
287 {
288 	unsigned long reg = get_cr();
289 
290 	set_cr(reg | CR_V);
291 	return 0xffff0000;
292 }
293 #else /* CONFIG_CPU_HIGH_VECTOR */
294 /* Write exception base address to VBAR */
295 static inline void set_vbar(unsigned long val)
296 {
297 	asm("mcr p15, 0, %0, c12, c0, 0" : : "r" (val) : "cc");
298 }
299 
300 /*
301  * Security extensions, bits[7:4], permitted values,
302  * 0b0000 - not implemented, 0b0001/0b0010 - implemented
303  */
304 static inline bool security_extensions_enabled(void)
305 {
306 	return !!cpuid_feature_extract(CPUID_EXT_PFR1, 4);
307 }
308 
309 static unsigned long __init setup_vectors_base(void)
310 {
311 	unsigned long base = 0, reg = get_cr();
312 
313 	set_cr(reg & ~CR_V);
314 	if (security_extensions_enabled()) {
315 		if (IS_ENABLED(CONFIG_REMAP_VECTORS_TO_RAM))
316 			base = CONFIG_DRAM_BASE;
317 		set_vbar(base);
318 	} else if (IS_ENABLED(CONFIG_REMAP_VECTORS_TO_RAM)) {
319 		if (CONFIG_DRAM_BASE != 0)
320 			pr_err("Security extensions not enabled, vectors cannot be remapped to RAM, vectors base will be 0x00000000\n");
321 	}
322 
323 	return base;
324 }
325 #endif /* CONFIG_CPU_HIGH_VECTOR */
326 #endif /* CONFIG_CPU_CP15 */
327 
328 void __init arm_mm_memblock_reserve(void)
329 {
330 #ifndef CONFIG_CPU_V7M
331 	vectors_base = IS_ENABLED(CONFIG_CPU_CP15) ? setup_vectors_base() : 0;
332 	/*
333 	 * Register the exception vector page.
334 	 * some architectures which the DRAM is the exception vector to trap,
335 	 * alloc_page breaks with error, although it is not NULL, but "0."
336 	 */
337 	memblock_reserve(vectors_base, 2 * PAGE_SIZE);
338 #else /* ifndef CONFIG_CPU_V7M */
339 	/*
340 	 * There is no dedicated vector page on V7-M. So nothing needs to be
341 	 * reserved here.
342 	 */
343 #endif
344 }
345 
346 void __init adjust_lowmem_bounds(void)
347 {
348 	phys_addr_t end;
349 	adjust_lowmem_bounds_mpu();
350 	end = memblock_end_of_DRAM();
351 	high_memory = __va(end - 1) + 1;
352 	memblock_set_current_limit(end);
353 }
354 
355 /*
356  * paging_init() sets up the page tables, initialises the zone memory
357  * maps, and sets up the zero page, bad page and bad page tables.
358  */
359 void __init paging_init(const struct machine_desc *mdesc)
360 {
361 	early_trap_init((void *)vectors_base);
362 	mpu_setup();
363 	bootmem_init();
364 }
365 
366 /*
367  * We don't need to do anything here for nommu machines.
368  */
369 void setup_mm_for_reboot(void)
370 {
371 }
372 
373 void flush_dcache_page(struct page *page)
374 {
375 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
376 }
377 EXPORT_SYMBOL(flush_dcache_page);
378 
379 void flush_kernel_dcache_page(struct page *page)
380 {
381 	__cpuc_flush_dcache_area(page_address(page), PAGE_SIZE);
382 }
383 EXPORT_SYMBOL(flush_kernel_dcache_page);
384 
385 void copy_to_user_page(struct vm_area_struct *vma, struct page *page,
386 		       unsigned long uaddr, void *dst, const void *src,
387 		       unsigned long len)
388 {
389 	memcpy(dst, src, len);
390 	if (vma->vm_flags & VM_EXEC)
391 		__cpuc_coherent_user_range(uaddr, uaddr + len);
392 }
393 
394 void __iomem *__arm_ioremap_pfn(unsigned long pfn, unsigned long offset,
395 				size_t size, unsigned int mtype)
396 {
397 	if (pfn >= (0x100000000ULL >> PAGE_SHIFT))
398 		return NULL;
399 	return (void __iomem *) (offset + (pfn << PAGE_SHIFT));
400 }
401 EXPORT_SYMBOL(__arm_ioremap_pfn);
402 
403 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
404 				   unsigned int mtype, void *caller)
405 {
406 	return (void __iomem *)phys_addr;
407 }
408 
409 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, unsigned int, void *);
410 
411 void __iomem *ioremap(resource_size_t res_cookie, size_t size)
412 {
413 	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE,
414 				    __builtin_return_address(0));
415 }
416 EXPORT_SYMBOL(ioremap);
417 
418 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
419 	__alias(ioremap_cached);
420 
421 void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size)
422 {
423 	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
424 				    __builtin_return_address(0));
425 }
426 EXPORT_SYMBOL(ioremap_cache);
427 EXPORT_SYMBOL(ioremap_cached);
428 
429 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
430 {
431 	return __arm_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
432 				    __builtin_return_address(0));
433 }
434 EXPORT_SYMBOL(ioremap_wc);
435 
436 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
437 {
438 	return (void *)phys_addr;
439 }
440 
441 void __iounmap(volatile void __iomem *addr)
442 {
443 }
444 EXPORT_SYMBOL(__iounmap);
445 
446 void (*arch_iounmap)(volatile void __iomem *);
447 
448 void iounmap(volatile void __iomem *addr)
449 {
450 }
451 EXPORT_SYMBOL(iounmap);
452