xref: /openbmc/linux/arch/arm/mm/kasan_init.c (revision 1f012283)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file contains kasan initialization code for ARM.
4  *
5  * Copyright (c) 2018 Samsung Electronics Co., Ltd.
6  * Author: Andrey Ryabinin <ryabinin.a.a@gmail.com>
7  * Author: Linus Walleij <linus.walleij@linaro.org>
8  */
9 
10 #define pr_fmt(fmt) "kasan: " fmt
11 #include <linux/kasan.h>
12 #include <linux/kernel.h>
13 #include <linux/memblock.h>
14 #include <linux/sched/task.h>
15 #include <linux/start_kernel.h>
16 #include <linux/pgtable.h>
17 #include <asm/cputype.h>
18 #include <asm/highmem.h>
19 #include <asm/mach/map.h>
20 #include <asm/memory.h>
21 #include <asm/page.h>
22 #include <asm/pgalloc.h>
23 #include <asm/procinfo.h>
24 #include <asm/proc-fns.h>
25 
26 #include "mm.h"
27 
28 static pgd_t tmp_pgd_table[PTRS_PER_PGD] __initdata __aligned(PGD_SIZE);
29 
30 pmd_t tmp_pmd_table[PTRS_PER_PMD] __page_aligned_bss;
31 
32 static __init void *kasan_alloc_block(size_t size)
33 {
34 	return memblock_alloc_try_nid(size, size, __pa(MAX_DMA_ADDRESS),
35 				      MEMBLOCK_ALLOC_NOLEAKTRACE, NUMA_NO_NODE);
36 }
37 
38 static void __init kasan_pte_populate(pmd_t *pmdp, unsigned long addr,
39 				      unsigned long end, bool early)
40 {
41 	unsigned long next;
42 	pte_t *ptep = pte_offset_kernel(pmdp, addr);
43 
44 	do {
45 		pte_t entry;
46 		void *p;
47 
48 		next = addr + PAGE_SIZE;
49 
50 		if (!early) {
51 			if (!pte_none(READ_ONCE(*ptep)))
52 				continue;
53 
54 			p = kasan_alloc_block(PAGE_SIZE);
55 			if (!p) {
56 				panic("%s failed to allocate shadow page for address 0x%lx\n",
57 				      __func__, addr);
58 				return;
59 			}
60 			memset(p, KASAN_SHADOW_INIT, PAGE_SIZE);
61 			entry = pfn_pte(virt_to_pfn(p),
62 					__pgprot(pgprot_val(PAGE_KERNEL)));
63 		} else if (pte_none(READ_ONCE(*ptep))) {
64 			/*
65 			 * The early shadow memory is mapping all KASan
66 			 * operations to one and the same page in memory,
67 			 * "kasan_early_shadow_page" so that the instrumentation
68 			 * will work on a scratch area until we can set up the
69 			 * proper KASan shadow memory.
70 			 */
71 			entry = pfn_pte(virt_to_pfn(kasan_early_shadow_page),
72 					__pgprot(_L_PTE_DEFAULT | L_PTE_DIRTY | L_PTE_XN));
73 		} else {
74 			/*
75 			 * Early shadow mappings are PMD_SIZE aligned, so if the
76 			 * first entry is already set, they must all be set.
77 			 */
78 			return;
79 		}
80 
81 		set_pte_at(&init_mm, addr, ptep, entry);
82 	} while (ptep++, addr = next, addr != end);
83 }
84 
85 /*
86  * The pmd (page middle directory) is only used on LPAE
87  */
88 static void __init kasan_pmd_populate(pud_t *pudp, unsigned long addr,
89 				      unsigned long end, bool early)
90 {
91 	unsigned long next;
92 	pmd_t *pmdp = pmd_offset(pudp, addr);
93 
94 	do {
95 		if (pmd_none(*pmdp)) {
96 			/*
97 			 * We attempt to allocate a shadow block for the PMDs
98 			 * used by the PTEs for this address if it isn't already
99 			 * allocated.
100 			 */
101 			void *p = early ? kasan_early_shadow_pte :
102 				kasan_alloc_block(PAGE_SIZE);
103 
104 			if (!p) {
105 				panic("%s failed to allocate shadow block for address 0x%lx\n",
106 				      __func__, addr);
107 				return;
108 			}
109 			pmd_populate_kernel(&init_mm, pmdp, p);
110 			flush_pmd_entry(pmdp);
111 		}
112 
113 		next = pmd_addr_end(addr, end);
114 		kasan_pte_populate(pmdp, addr, next, early);
115 	} while (pmdp++, addr = next, addr != end);
116 }
117 
118 static void __init kasan_pgd_populate(unsigned long addr, unsigned long end,
119 				      bool early)
120 {
121 	unsigned long next;
122 	pgd_t *pgdp;
123 	p4d_t *p4dp;
124 	pud_t *pudp;
125 
126 	pgdp = pgd_offset_k(addr);
127 
128 	do {
129 		/*
130 		 * Allocate and populate the shadow block of p4d folded into
131 		 * pud folded into pmd if it doesn't already exist
132 		 */
133 		if (!early && pgd_none(*pgdp)) {
134 			void *p = kasan_alloc_block(PAGE_SIZE);
135 
136 			if (!p) {
137 				panic("%s failed to allocate shadow block for address 0x%lx\n",
138 				      __func__, addr);
139 				return;
140 			}
141 			pgd_populate(&init_mm, pgdp, p);
142 		}
143 
144 		next = pgd_addr_end(addr, end);
145 		/*
146 		 * We just immediately jump over the p4d and pud page
147 		 * directories since we believe ARM32 will never gain four
148 		 * nor five level page tables.
149 		 */
150 		p4dp = p4d_offset(pgdp, addr);
151 		pudp = pud_offset(p4dp, addr);
152 
153 		kasan_pmd_populate(pudp, addr, next, early);
154 	} while (pgdp++, addr = next, addr != end);
155 }
156 
157 extern struct proc_info_list *lookup_processor_type(unsigned int);
158 
159 void __init kasan_early_init(void)
160 {
161 	struct proc_info_list *list;
162 
163 	/*
164 	 * locate processor in the list of supported processor
165 	 * types.  The linker builds this table for us from the
166 	 * entries in arch/arm/mm/proc-*.S
167 	 */
168 	list = lookup_processor_type(read_cpuid_id());
169 	if (list) {
170 #ifdef MULTI_CPU
171 		processor = *list->proc;
172 #endif
173 	}
174 
175 	BUILD_BUG_ON((KASAN_SHADOW_END - (1UL << 29)) != KASAN_SHADOW_OFFSET);
176 	/*
177 	 * We walk the page table and set all of the shadow memory to point
178 	 * to the scratch page.
179 	 */
180 	kasan_pgd_populate(KASAN_SHADOW_START, KASAN_SHADOW_END, true);
181 }
182 
183 static void __init clear_pgds(unsigned long start,
184 			unsigned long end)
185 {
186 	for (; start && start < end; start += PMD_SIZE)
187 		pmd_clear(pmd_off_k(start));
188 }
189 
190 static int __init create_mapping(void *start, void *end)
191 {
192 	void *shadow_start, *shadow_end;
193 
194 	shadow_start = kasan_mem_to_shadow(start);
195 	shadow_end = kasan_mem_to_shadow(end);
196 
197 	pr_info("Mapping kernel virtual memory block: %px-%px at shadow: %px-%px\n",
198 		start, end, shadow_start, shadow_end);
199 
200 	kasan_pgd_populate((unsigned long)shadow_start & PAGE_MASK,
201 			   PAGE_ALIGN((unsigned long)shadow_end), false);
202 	return 0;
203 }
204 
205 void __init kasan_init(void)
206 {
207 	phys_addr_t pa_start, pa_end;
208 	u64 i;
209 
210 	/*
211 	 * We are going to perform proper setup of shadow memory.
212 	 *
213 	 * At first we should unmap early shadow (clear_pgds() call bellow).
214 	 * However, instrumented code can't execute without shadow memory.
215 	 *
216 	 * To keep the early shadow memory MMU tables around while setting up
217 	 * the proper shadow memory, we copy swapper_pg_dir (the initial page
218 	 * table) to tmp_pgd_table and use that to keep the early shadow memory
219 	 * mapped until the full shadow setup is finished. Then we swap back
220 	 * to the proper swapper_pg_dir.
221 	 */
222 
223 	memcpy(tmp_pgd_table, swapper_pg_dir, sizeof(tmp_pgd_table));
224 #ifdef CONFIG_ARM_LPAE
225 	/* We need to be in the same PGD or this won't work */
226 	BUILD_BUG_ON(pgd_index(KASAN_SHADOW_START) !=
227 		     pgd_index(KASAN_SHADOW_END));
228 	memcpy(tmp_pmd_table,
229 	       (void*)pgd_page_vaddr(*pgd_offset_k(KASAN_SHADOW_START)),
230 	       sizeof(tmp_pmd_table));
231 	set_pgd(&tmp_pgd_table[pgd_index(KASAN_SHADOW_START)],
232 		__pgd(__pa(tmp_pmd_table) | PMD_TYPE_TABLE | L_PGD_SWAPPER));
233 #endif
234 	cpu_switch_mm(tmp_pgd_table, &init_mm);
235 	local_flush_tlb_all();
236 
237 	clear_pgds(KASAN_SHADOW_START, KASAN_SHADOW_END);
238 
239 	kasan_populate_early_shadow(kasan_mem_to_shadow((void *)VMALLOC_START),
240 				    kasan_mem_to_shadow((void *)-1UL) + 1);
241 
242 	for_each_mem_range(i, &pa_start, &pa_end) {
243 		void *start = __va(pa_start);
244 		void *end = __va(pa_end);
245 
246 		/* Do not attempt to shadow highmem */
247 		if (pa_start >= arm_lowmem_limit) {
248 			pr_info("Skip highmem block at %pa-%pa\n", &pa_start, &pa_end);
249 			continue;
250 		}
251 		if (pa_end > arm_lowmem_limit) {
252 			pr_info("Truncating shadow for memory block at %pa-%pa to lowmem region at %pa\n",
253 				&pa_start, &pa_end, &arm_lowmem_limit);
254 			end = __va(arm_lowmem_limit);
255 		}
256 		if (start >= end) {
257 			pr_info("Skipping invalid memory block %pa-%pa (virtual %p-%p)\n",
258 				&pa_start, &pa_end, start, end);
259 			continue;
260 		}
261 
262 		create_mapping(start, end);
263 	}
264 
265 	/*
266 	 * 1. The module global variables are in MODULES_VADDR ~ MODULES_END,
267 	 *    so we need to map this area.
268 	 * 2. PKMAP_BASE ~ PKMAP_BASE+PMD_SIZE's shadow and MODULES_VADDR
269 	 *    ~ MODULES_END's shadow is in the same PMD_SIZE, so we can't
270 	 *    use kasan_populate_zero_shadow.
271 	 */
272 	create_mapping((void *)MODULES_VADDR, (void *)(PKMAP_BASE + PMD_SIZE));
273 
274 	/*
275 	 * KAsan may reuse the contents of kasan_early_shadow_pte directly, so
276 	 * we should make sure that it maps the zero page read-only.
277 	 */
278 	for (i = 0; i < PTRS_PER_PTE; i++)
279 		set_pte_at(&init_mm, KASAN_SHADOW_START + i*PAGE_SIZE,
280 			   &kasan_early_shadow_pte[i],
281 			   pfn_pte(virt_to_pfn(kasan_early_shadow_page),
282 				__pgprot(pgprot_val(PAGE_KERNEL)
283 					 | L_PTE_RDONLY)));
284 
285 	cpu_switch_mm(swapper_pg_dir, &init_mm);
286 	local_flush_tlb_all();
287 
288 	memset(kasan_early_shadow_page, 0, PAGE_SIZE);
289 	pr_info("Kernel address sanitizer initialized\n");
290 	init_task.kasan_depth = 0;
291 }
292