xref: /openbmc/linux/arch/arm/mm/ioremap.c (revision d78c317f)
1 /*
2  *  linux/arch/arm/mm/ioremap.c
3  *
4  * Re-map IO memory to kernel address space so that we can access it.
5  *
6  * (C) Copyright 1995 1996 Linus Torvalds
7  *
8  * Hacked for ARM by Phil Blundell <philb@gnu.org>
9  * Hacked to allow all architectures to build, and various cleanups
10  * by Russell King
11  *
12  * This allows a driver to remap an arbitrary region of bus memory into
13  * virtual space.  One should *only* use readl, writel, memcpy_toio and
14  * so on with such remapped areas.
15  *
16  * Because the ARM only has a 32-bit address space we can't address the
17  * whole of the (physical) PCI space at once.  PCI huge-mode addressing
18  * allows us to circumvent this restriction by splitting PCI space into
19  * two 2GB chunks and mapping only one at a time into processor memory.
20  * We use MMU protection domains to trap any attempt to access the bank
21  * that is not currently mapped.  (This isn't fully implemented yet.)
22  */
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/mm.h>
26 #include <linux/vmalloc.h>
27 #include <linux/io.h>
28 
29 #include <asm/cputype.h>
30 #include <asm/cacheflush.h>
31 #include <asm/mmu_context.h>
32 #include <asm/pgalloc.h>
33 #include <asm/tlbflush.h>
34 #include <asm/sizes.h>
35 
36 #include <asm/mach/map.h>
37 #include "mm.h"
38 
39 int ioremap_page(unsigned long virt, unsigned long phys,
40 		 const struct mem_type *mtype)
41 {
42 	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
43 				  __pgprot(mtype->prot_pte));
44 }
45 EXPORT_SYMBOL(ioremap_page);
46 
47 void __check_kvm_seq(struct mm_struct *mm)
48 {
49 	unsigned int seq;
50 
51 	do {
52 		seq = init_mm.context.kvm_seq;
53 		memcpy(pgd_offset(mm, VMALLOC_START),
54 		       pgd_offset_k(VMALLOC_START),
55 		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
56 					pgd_index(VMALLOC_START)));
57 		mm->context.kvm_seq = seq;
58 	} while (seq != init_mm.context.kvm_seq);
59 }
60 
61 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
62 /*
63  * Section support is unsafe on SMP - If you iounmap and ioremap a region,
64  * the other CPUs will not see this change until their next context switch.
65  * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
66  * which requires the new ioremap'd region to be referenced, the CPU will
67  * reference the _old_ region.
68  *
69  * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
70  * mask the size back to 1MB aligned or we will overflow in the loop below.
71  */
72 static void unmap_area_sections(unsigned long virt, unsigned long size)
73 {
74 	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
75 	pgd_t *pgd;
76 	pud_t *pud;
77 	pmd_t *pmdp;
78 
79 	flush_cache_vunmap(addr, end);
80 	pgd = pgd_offset_k(addr);
81 	pud = pud_offset(pgd, addr);
82 	pmdp = pmd_offset(pud, addr);
83 	do {
84 		pmd_t pmd = *pmdp;
85 
86 		if (!pmd_none(pmd)) {
87 			/*
88 			 * Clear the PMD from the page table, and
89 			 * increment the kvm sequence so others
90 			 * notice this change.
91 			 *
92 			 * Note: this is still racy on SMP machines.
93 			 */
94 			pmd_clear(pmdp);
95 			init_mm.context.kvm_seq++;
96 
97 			/*
98 			 * Free the page table, if there was one.
99 			 */
100 			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
101 				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
102 		}
103 
104 		addr += PMD_SIZE;
105 		pmdp += 2;
106 	} while (addr < end);
107 
108 	/*
109 	 * Ensure that the active_mm is up to date - we want to
110 	 * catch any use-after-iounmap cases.
111 	 */
112 	if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
113 		__check_kvm_seq(current->active_mm);
114 
115 	flush_tlb_kernel_range(virt, end);
116 }
117 
118 static int
119 remap_area_sections(unsigned long virt, unsigned long pfn,
120 		    size_t size, const struct mem_type *type)
121 {
122 	unsigned long addr = virt, end = virt + size;
123 	pgd_t *pgd;
124 	pud_t *pud;
125 	pmd_t *pmd;
126 
127 	/*
128 	 * Remove and free any PTE-based mapping, and
129 	 * sync the current kernel mapping.
130 	 */
131 	unmap_area_sections(virt, size);
132 
133 	pgd = pgd_offset_k(addr);
134 	pud = pud_offset(pgd, addr);
135 	pmd = pmd_offset(pud, addr);
136 	do {
137 		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
138 		pfn += SZ_1M >> PAGE_SHIFT;
139 		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
140 		pfn += SZ_1M >> PAGE_SHIFT;
141 		flush_pmd_entry(pmd);
142 
143 		addr += PMD_SIZE;
144 		pmd += 2;
145 	} while (addr < end);
146 
147 	return 0;
148 }
149 
150 static int
151 remap_area_supersections(unsigned long virt, unsigned long pfn,
152 			 size_t size, const struct mem_type *type)
153 {
154 	unsigned long addr = virt, end = virt + size;
155 	pgd_t *pgd;
156 	pud_t *pud;
157 	pmd_t *pmd;
158 
159 	/*
160 	 * Remove and free any PTE-based mapping, and
161 	 * sync the current kernel mapping.
162 	 */
163 	unmap_area_sections(virt, size);
164 
165 	pgd = pgd_offset_k(virt);
166 	pud = pud_offset(pgd, addr);
167 	pmd = pmd_offset(pud, addr);
168 	do {
169 		unsigned long super_pmd_val, i;
170 
171 		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
172 				PMD_SECT_SUPER;
173 		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
174 
175 		for (i = 0; i < 8; i++) {
176 			pmd[0] = __pmd(super_pmd_val);
177 			pmd[1] = __pmd(super_pmd_val);
178 			flush_pmd_entry(pmd);
179 
180 			addr += PMD_SIZE;
181 			pmd += 2;
182 		}
183 
184 		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
185 	} while (addr < end);
186 
187 	return 0;
188 }
189 #endif
190 
191 void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
192 	unsigned long offset, size_t size, unsigned int mtype, void *caller)
193 {
194 	const struct mem_type *type;
195 	int err;
196 	unsigned long addr;
197  	struct vm_struct * area;
198 
199 #ifndef CONFIG_ARM_LPAE
200 	/*
201 	 * High mappings must be supersection aligned
202 	 */
203 	if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
204 		return NULL;
205 #endif
206 
207 	type = get_mem_type(mtype);
208 	if (!type)
209 		return NULL;
210 
211 	/*
212 	 * Page align the mapping size, taking account of any offset.
213 	 */
214 	size = PAGE_ALIGN(offset + size);
215 
216 	/*
217 	 * Try to reuse one of the static mapping whenever possible.
218 	 */
219 	read_lock(&vmlist_lock);
220 	for (area = vmlist; area; area = area->next) {
221 		if (!size || (sizeof(phys_addr_t) == 4 && pfn >= 0x100000))
222 			break;
223 		if (!(area->flags & VM_ARM_STATIC_MAPPING))
224 			continue;
225 		if ((area->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
226 			continue;
227 		if (__phys_to_pfn(area->phys_addr) > pfn ||
228 		    __pfn_to_phys(pfn) + size-1 > area->phys_addr + area->size-1)
229 			continue;
230 		/* we can drop the lock here as we know *area is static */
231 		read_unlock(&vmlist_lock);
232 		addr = (unsigned long)area->addr;
233 		addr += __pfn_to_phys(pfn) - area->phys_addr;
234 		return (void __iomem *) (offset + addr);
235 	}
236 	read_unlock(&vmlist_lock);
237 
238 	/*
239 	 * Don't allow RAM to be mapped - this causes problems with ARMv6+
240 	 */
241 	if (WARN_ON(pfn_valid(pfn)))
242 		return NULL;
243 
244 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
245  	if (!area)
246  		return NULL;
247  	addr = (unsigned long)area->addr;
248 
249 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
250 	if (DOMAIN_IO == 0 &&
251 	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
252 	       cpu_is_xsc3()) && pfn >= 0x100000 &&
253 	       !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
254 		area->flags |= VM_ARM_SECTION_MAPPING;
255 		err = remap_area_supersections(addr, pfn, size, type);
256 	} else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
257 		area->flags |= VM_ARM_SECTION_MAPPING;
258 		err = remap_area_sections(addr, pfn, size, type);
259 	} else
260 #endif
261 		err = ioremap_page_range(addr, addr + size, __pfn_to_phys(pfn),
262 					 __pgprot(type->prot_pte));
263 
264 	if (err) {
265  		vunmap((void *)addr);
266  		return NULL;
267  	}
268 
269 	flush_cache_vmap(addr, addr + size);
270 	return (void __iomem *) (offset + addr);
271 }
272 
273 void __iomem *__arm_ioremap_caller(unsigned long phys_addr, size_t size,
274 	unsigned int mtype, void *caller)
275 {
276 	unsigned long last_addr;
277  	unsigned long offset = phys_addr & ~PAGE_MASK;
278  	unsigned long pfn = __phys_to_pfn(phys_addr);
279 
280  	/*
281  	 * Don't allow wraparound or zero size
282 	 */
283 	last_addr = phys_addr + size - 1;
284 	if (!size || last_addr < phys_addr)
285 		return NULL;
286 
287 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
288 			caller);
289 }
290 
291 /*
292  * Remap an arbitrary physical address space into the kernel virtual
293  * address space. Needed when the kernel wants to access high addresses
294  * directly.
295  *
296  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
297  * have to convert them into an offset in a page-aligned mapping, but the
298  * caller shouldn't need to know that small detail.
299  */
300 void __iomem *
301 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
302 		  unsigned int mtype)
303 {
304 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
305 			__builtin_return_address(0));
306 }
307 EXPORT_SYMBOL(__arm_ioremap_pfn);
308 
309 void __iomem *
310 __arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
311 {
312 	return __arm_ioremap_caller(phys_addr, size, mtype,
313 			__builtin_return_address(0));
314 }
315 EXPORT_SYMBOL(__arm_ioremap);
316 
317 /*
318  * Remap an arbitrary physical address space into the kernel virtual
319  * address space as memory. Needed when the kernel wants to execute
320  * code in external memory. This is needed for reprogramming source
321  * clocks that would affect normal memory for example. Please see
322  * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
323  */
324 void __iomem *
325 __arm_ioremap_exec(unsigned long phys_addr, size_t size, bool cached)
326 {
327 	unsigned int mtype;
328 
329 	if (cached)
330 		mtype = MT_MEMORY;
331 	else
332 		mtype = MT_MEMORY_NONCACHED;
333 
334 	return __arm_ioremap_caller(phys_addr, size, mtype,
335 			__builtin_return_address(0));
336 }
337 
338 void __iounmap(volatile void __iomem *io_addr)
339 {
340 	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
341 	struct vm_struct *vm;
342 
343 	read_lock(&vmlist_lock);
344 	for (vm = vmlist; vm; vm = vm->next) {
345 		if (vm->addr > addr)
346 			break;
347 		if (!(vm->flags & VM_IOREMAP))
348 			continue;
349 		/* If this is a static mapping we must leave it alone */
350 		if ((vm->flags & VM_ARM_STATIC_MAPPING) &&
351 		    (vm->addr <= addr) && (vm->addr + vm->size > addr)) {
352 			read_unlock(&vmlist_lock);
353 			return;
354 		}
355 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
356 		/*
357 		 * If this is a section based mapping we need to handle it
358 		 * specially as the VM subsystem does not know how to handle
359 		 * such a beast.
360 		 */
361 		if ((vm->addr == addr) &&
362 		    (vm->flags & VM_ARM_SECTION_MAPPING)) {
363 			unmap_area_sections((unsigned long)vm->addr, vm->size);
364 			break;
365 		}
366 #endif
367 	}
368 	read_unlock(&vmlist_lock);
369 
370 	vunmap(addr);
371 }
372 EXPORT_SYMBOL(__iounmap);
373