xref: /openbmc/linux/arch/arm/mm/ioremap.c (revision b4a6aaea)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/arch/arm/mm/ioremap.c
4  *
5  * Re-map IO memory to kernel address space so that we can access it.
6  *
7  * (C) Copyright 1995 1996 Linus Torvalds
8  *
9  * Hacked for ARM by Phil Blundell <philb@gnu.org>
10  * Hacked to allow all architectures to build, and various cleanups
11  * by Russell King
12  *
13  * This allows a driver to remap an arbitrary region of bus memory into
14  * virtual space.  One should *only* use readl, writel, memcpy_toio and
15  * so on with such remapped areas.
16  *
17  * Because the ARM only has a 32-bit address space we can't address the
18  * whole of the (physical) PCI space at once.  PCI huge-mode addressing
19  * allows us to circumvent this restriction by splitting PCI space into
20  * two 2GB chunks and mapping only one at a time into processor memory.
21  * We use MMU protection domains to trap any attempt to access the bank
22  * that is not currently mapped.  (This isn't fully implemented yet.)
23  */
24 #include <linux/module.h>
25 #include <linux/errno.h>
26 #include <linux/mm.h>
27 #include <linux/vmalloc.h>
28 #include <linux/io.h>
29 #include <linux/sizes.h>
30 #include <linux/memblock.h>
31 
32 #include <asm/cp15.h>
33 #include <asm/cputype.h>
34 #include <asm/cacheflush.h>
35 #include <asm/early_ioremap.h>
36 #include <asm/mmu_context.h>
37 #include <asm/pgalloc.h>
38 #include <asm/tlbflush.h>
39 #include <asm/set_memory.h>
40 #include <asm/system_info.h>
41 
42 #include <asm/mach/map.h>
43 #include <asm/mach/pci.h>
44 #include "mm.h"
45 
46 
47 LIST_HEAD(static_vmlist);
48 
49 static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
50 			size_t size, unsigned int mtype)
51 {
52 	struct static_vm *svm;
53 	struct vm_struct *vm;
54 
55 	list_for_each_entry(svm, &static_vmlist, list) {
56 		vm = &svm->vm;
57 		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
58 			continue;
59 		if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
60 			continue;
61 
62 		if (vm->phys_addr > paddr ||
63 			paddr + size - 1 > vm->phys_addr + vm->size - 1)
64 			continue;
65 
66 		return svm;
67 	}
68 
69 	return NULL;
70 }
71 
72 struct static_vm *find_static_vm_vaddr(void *vaddr)
73 {
74 	struct static_vm *svm;
75 	struct vm_struct *vm;
76 
77 	list_for_each_entry(svm, &static_vmlist, list) {
78 		vm = &svm->vm;
79 
80 		/* static_vmlist is ascending order */
81 		if (vm->addr > vaddr)
82 			break;
83 
84 		if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
85 			return svm;
86 	}
87 
88 	return NULL;
89 }
90 
91 void __init add_static_vm_early(struct static_vm *svm)
92 {
93 	struct static_vm *curr_svm;
94 	struct vm_struct *vm;
95 	void *vaddr;
96 
97 	vm = &svm->vm;
98 	vm_area_add_early(vm);
99 	vaddr = vm->addr;
100 
101 	list_for_each_entry(curr_svm, &static_vmlist, list) {
102 		vm = &curr_svm->vm;
103 
104 		if (vm->addr > vaddr)
105 			break;
106 	}
107 	list_add_tail(&svm->list, &curr_svm->list);
108 }
109 
110 int ioremap_page(unsigned long virt, unsigned long phys,
111 		 const struct mem_type *mtype)
112 {
113 	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
114 				  __pgprot(mtype->prot_pte));
115 }
116 EXPORT_SYMBOL(ioremap_page);
117 
118 void __check_vmalloc_seq(struct mm_struct *mm)
119 {
120 	unsigned int seq;
121 
122 	do {
123 		seq = init_mm.context.vmalloc_seq;
124 		memcpy(pgd_offset(mm, VMALLOC_START),
125 		       pgd_offset_k(VMALLOC_START),
126 		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
127 					pgd_index(VMALLOC_START)));
128 		mm->context.vmalloc_seq = seq;
129 	} while (seq != init_mm.context.vmalloc_seq);
130 }
131 
132 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
133 /*
134  * Section support is unsafe on SMP - If you iounmap and ioremap a region,
135  * the other CPUs will not see this change until their next context switch.
136  * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
137  * which requires the new ioremap'd region to be referenced, the CPU will
138  * reference the _old_ region.
139  *
140  * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
141  * mask the size back to 1MB aligned or we will overflow in the loop below.
142  */
143 static void unmap_area_sections(unsigned long virt, unsigned long size)
144 {
145 	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
146 	pmd_t *pmdp = pmd_off_k(addr);
147 
148 	do {
149 		pmd_t pmd = *pmdp;
150 
151 		if (!pmd_none(pmd)) {
152 			/*
153 			 * Clear the PMD from the page table, and
154 			 * increment the vmalloc sequence so others
155 			 * notice this change.
156 			 *
157 			 * Note: this is still racy on SMP machines.
158 			 */
159 			pmd_clear(pmdp);
160 			init_mm.context.vmalloc_seq++;
161 
162 			/*
163 			 * Free the page table, if there was one.
164 			 */
165 			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
166 				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
167 		}
168 
169 		addr += PMD_SIZE;
170 		pmdp += 2;
171 	} while (addr < end);
172 
173 	/*
174 	 * Ensure that the active_mm is up to date - we want to
175 	 * catch any use-after-iounmap cases.
176 	 */
177 	if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
178 		__check_vmalloc_seq(current->active_mm);
179 
180 	flush_tlb_kernel_range(virt, end);
181 }
182 
183 static int
184 remap_area_sections(unsigned long virt, unsigned long pfn,
185 		    size_t size, const struct mem_type *type)
186 {
187 	unsigned long addr = virt, end = virt + size;
188 	pmd_t *pmd = pmd_off_k(addr);
189 
190 	/*
191 	 * Remove and free any PTE-based mapping, and
192 	 * sync the current kernel mapping.
193 	 */
194 	unmap_area_sections(virt, size);
195 
196 	do {
197 		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
198 		pfn += SZ_1M >> PAGE_SHIFT;
199 		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
200 		pfn += SZ_1M >> PAGE_SHIFT;
201 		flush_pmd_entry(pmd);
202 
203 		addr += PMD_SIZE;
204 		pmd += 2;
205 	} while (addr < end);
206 
207 	return 0;
208 }
209 
210 static int
211 remap_area_supersections(unsigned long virt, unsigned long pfn,
212 			 size_t size, const struct mem_type *type)
213 {
214 	unsigned long addr = virt, end = virt + size;
215 	pmd_t *pmd = pmd_off_k(addr);
216 
217 	/*
218 	 * Remove and free any PTE-based mapping, and
219 	 * sync the current kernel mapping.
220 	 */
221 	unmap_area_sections(virt, size);
222 	do {
223 		unsigned long super_pmd_val, i;
224 
225 		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
226 				PMD_SECT_SUPER;
227 		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
228 
229 		for (i = 0; i < 8; i++) {
230 			pmd[0] = __pmd(super_pmd_val);
231 			pmd[1] = __pmd(super_pmd_val);
232 			flush_pmd_entry(pmd);
233 
234 			addr += PMD_SIZE;
235 			pmd += 2;
236 		}
237 
238 		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
239 	} while (addr < end);
240 
241 	return 0;
242 }
243 #endif
244 
245 static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
246 	unsigned long offset, size_t size, unsigned int mtype, void *caller)
247 {
248 	const struct mem_type *type;
249 	int err;
250 	unsigned long addr;
251 	struct vm_struct *area;
252 	phys_addr_t paddr = __pfn_to_phys(pfn);
253 
254 #ifndef CONFIG_ARM_LPAE
255 	/*
256 	 * High mappings must be supersection aligned
257 	 */
258 	if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
259 		return NULL;
260 #endif
261 
262 	type = get_mem_type(mtype);
263 	if (!type)
264 		return NULL;
265 
266 	/*
267 	 * Page align the mapping size, taking account of any offset.
268 	 */
269 	size = PAGE_ALIGN(offset + size);
270 
271 	/*
272 	 * Try to reuse one of the static mapping whenever possible.
273 	 */
274 	if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
275 		struct static_vm *svm;
276 
277 		svm = find_static_vm_paddr(paddr, size, mtype);
278 		if (svm) {
279 			addr = (unsigned long)svm->vm.addr;
280 			addr += paddr - svm->vm.phys_addr;
281 			return (void __iomem *) (offset + addr);
282 		}
283 	}
284 
285 	/*
286 	 * Don't allow RAM to be mapped with mismatched attributes - this
287 	 * causes problems with ARMv6+
288 	 */
289 	if (WARN_ON(memblock_is_map_memory(PFN_PHYS(pfn)) &&
290 		    mtype != MT_MEMORY_RW))
291 		return NULL;
292 
293 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
294  	if (!area)
295  		return NULL;
296  	addr = (unsigned long)area->addr;
297 	area->phys_addr = paddr;
298 
299 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
300 	if (DOMAIN_IO == 0 &&
301 	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
302 	       cpu_is_xsc3()) && pfn >= 0x100000 &&
303 	       !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
304 		area->flags |= VM_ARM_SECTION_MAPPING;
305 		err = remap_area_supersections(addr, pfn, size, type);
306 	} else if (!((paddr | size | addr) & ~PMD_MASK)) {
307 		area->flags |= VM_ARM_SECTION_MAPPING;
308 		err = remap_area_sections(addr, pfn, size, type);
309 	} else
310 #endif
311 		err = ioremap_page_range(addr, addr + size, paddr,
312 					 __pgprot(type->prot_pte));
313 
314 	if (err) {
315  		vunmap((void *)addr);
316  		return NULL;
317  	}
318 
319 	flush_cache_vmap(addr, addr + size);
320 	return (void __iomem *) (offset + addr);
321 }
322 
323 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
324 	unsigned int mtype, void *caller)
325 {
326 	phys_addr_t last_addr;
327  	unsigned long offset = phys_addr & ~PAGE_MASK;
328  	unsigned long pfn = __phys_to_pfn(phys_addr);
329 
330  	/*
331  	 * Don't allow wraparound or zero size
332 	 */
333 	last_addr = phys_addr + size - 1;
334 	if (!size || last_addr < phys_addr)
335 		return NULL;
336 
337 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
338 			caller);
339 }
340 
341 /*
342  * Remap an arbitrary physical address space into the kernel virtual
343  * address space. Needed when the kernel wants to access high addresses
344  * directly.
345  *
346  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
347  * have to convert them into an offset in a page-aligned mapping, but the
348  * caller shouldn't need to know that small detail.
349  */
350 void __iomem *
351 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
352 		  unsigned int mtype)
353 {
354 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
355 					__builtin_return_address(0));
356 }
357 EXPORT_SYMBOL(__arm_ioremap_pfn);
358 
359 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
360 				      unsigned int, void *) =
361 	__arm_ioremap_caller;
362 
363 void __iomem *ioremap(resource_size_t res_cookie, size_t size)
364 {
365 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
366 				   __builtin_return_address(0));
367 }
368 EXPORT_SYMBOL(ioremap);
369 
370 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
371 {
372 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
373 				   __builtin_return_address(0));
374 }
375 EXPORT_SYMBOL(ioremap_cache);
376 
377 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
378 {
379 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
380 				   __builtin_return_address(0));
381 }
382 EXPORT_SYMBOL(ioremap_wc);
383 
384 /*
385  * Remap an arbitrary physical address space into the kernel virtual
386  * address space as memory. Needed when the kernel wants to execute
387  * code in external memory. This is needed for reprogramming source
388  * clocks that would affect normal memory for example. Please see
389  * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
390  */
391 void __iomem *
392 __arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
393 {
394 	unsigned int mtype;
395 
396 	if (cached)
397 		mtype = MT_MEMORY_RWX;
398 	else
399 		mtype = MT_MEMORY_RWX_NONCACHED;
400 
401 	return __arm_ioremap_caller(phys_addr, size, mtype,
402 			__builtin_return_address(0));
403 }
404 
405 void __arm_iomem_set_ro(void __iomem *ptr, size_t size)
406 {
407 	set_memory_ro((unsigned long)ptr, PAGE_ALIGN(size) / PAGE_SIZE);
408 }
409 
410 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
411 {
412 	return (__force void *)arch_ioremap_caller(phys_addr, size,
413 						   MT_MEMORY_RW,
414 						   __builtin_return_address(0));
415 }
416 
417 void __iounmap(volatile void __iomem *io_addr)
418 {
419 	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
420 	struct static_vm *svm;
421 
422 	/* If this is a static mapping, we must leave it alone */
423 	svm = find_static_vm_vaddr(addr);
424 	if (svm)
425 		return;
426 
427 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
428 	{
429 		struct vm_struct *vm;
430 
431 		vm = find_vm_area(addr);
432 
433 		/*
434 		 * If this is a section based mapping we need to handle it
435 		 * specially as the VM subsystem does not know how to handle
436 		 * such a beast.
437 		 */
438 		if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
439 			unmap_area_sections((unsigned long)vm->addr, vm->size);
440 	}
441 #endif
442 
443 	vunmap(addr);
444 }
445 
446 void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
447 
448 void iounmap(volatile void __iomem *cookie)
449 {
450 	arch_iounmap(cookie);
451 }
452 EXPORT_SYMBOL(iounmap);
453 
454 #ifdef CONFIG_PCI
455 static int pci_ioremap_mem_type = MT_DEVICE;
456 
457 void pci_ioremap_set_mem_type(int mem_type)
458 {
459 	pci_ioremap_mem_type = mem_type;
460 }
461 
462 int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
463 {
464 	BUG_ON(offset + SZ_64K - 1 > IO_SPACE_LIMIT);
465 
466 	return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
467 				  PCI_IO_VIRT_BASE + offset + SZ_64K,
468 				  phys_addr,
469 				  __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
470 }
471 EXPORT_SYMBOL_GPL(pci_ioremap_io);
472 
473 void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size)
474 {
475 	return arch_ioremap_caller(res_cookie, size, MT_UNCACHED,
476 				   __builtin_return_address(0));
477 }
478 EXPORT_SYMBOL_GPL(pci_remap_cfgspace);
479 #endif
480 
481 /*
482  * Must be called after early_fixmap_init
483  */
484 void __init early_ioremap_init(void)
485 {
486 	early_ioremap_setup();
487 }
488