1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/ioremap.c 4 * 5 * Re-map IO memory to kernel address space so that we can access it. 6 * 7 * (C) Copyright 1995 1996 Linus Torvalds 8 * 9 * Hacked for ARM by Phil Blundell <philb@gnu.org> 10 * Hacked to allow all architectures to build, and various cleanups 11 * by Russell King 12 * 13 * This allows a driver to remap an arbitrary region of bus memory into 14 * virtual space. One should *only* use readl, writel, memcpy_toio and 15 * so on with such remapped areas. 16 * 17 * Because the ARM only has a 32-bit address space we can't address the 18 * whole of the (physical) PCI space at once. PCI huge-mode addressing 19 * allows us to circumvent this restriction by splitting PCI space into 20 * two 2GB chunks and mapping only one at a time into processor memory. 21 * We use MMU protection domains to trap any attempt to access the bank 22 * that is not currently mapped. (This isn't fully implemented yet.) 23 */ 24 #include <linux/module.h> 25 #include <linux/errno.h> 26 #include <linux/mm.h> 27 #include <linux/vmalloc.h> 28 #include <linux/io.h> 29 #include <linux/sizes.h> 30 #include <linux/memblock.h> 31 32 #include <asm/cp15.h> 33 #include <asm/cputype.h> 34 #include <asm/cacheflush.h> 35 #include <asm/early_ioremap.h> 36 #include <asm/mmu_context.h> 37 #include <asm/pgalloc.h> 38 #include <asm/tlbflush.h> 39 #include <asm/system_info.h> 40 41 #include <asm/mach/map.h> 42 #include <asm/mach/pci.h> 43 #include "mm.h" 44 45 46 LIST_HEAD(static_vmlist); 47 48 static struct static_vm *find_static_vm_paddr(phys_addr_t paddr, 49 size_t size, unsigned int mtype) 50 { 51 struct static_vm *svm; 52 struct vm_struct *vm; 53 54 list_for_each_entry(svm, &static_vmlist, list) { 55 vm = &svm->vm; 56 if (!(vm->flags & VM_ARM_STATIC_MAPPING)) 57 continue; 58 if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype)) 59 continue; 60 61 if (vm->phys_addr > paddr || 62 paddr + size - 1 > vm->phys_addr + vm->size - 1) 63 continue; 64 65 return svm; 66 } 67 68 return NULL; 69 } 70 71 struct static_vm *find_static_vm_vaddr(void *vaddr) 72 { 73 struct static_vm *svm; 74 struct vm_struct *vm; 75 76 list_for_each_entry(svm, &static_vmlist, list) { 77 vm = &svm->vm; 78 79 /* static_vmlist is ascending order */ 80 if (vm->addr > vaddr) 81 break; 82 83 if (vm->addr <= vaddr && vm->addr + vm->size > vaddr) 84 return svm; 85 } 86 87 return NULL; 88 } 89 90 void __init add_static_vm_early(struct static_vm *svm) 91 { 92 struct static_vm *curr_svm; 93 struct vm_struct *vm; 94 void *vaddr; 95 96 vm = &svm->vm; 97 vm_area_add_early(vm); 98 vaddr = vm->addr; 99 100 list_for_each_entry(curr_svm, &static_vmlist, list) { 101 vm = &curr_svm->vm; 102 103 if (vm->addr > vaddr) 104 break; 105 } 106 list_add_tail(&svm->list, &curr_svm->list); 107 } 108 109 int ioremap_page(unsigned long virt, unsigned long phys, 110 const struct mem_type *mtype) 111 { 112 return ioremap_page_range(virt, virt + PAGE_SIZE, phys, 113 __pgprot(mtype->prot_pte)); 114 } 115 EXPORT_SYMBOL(ioremap_page); 116 117 void __check_vmalloc_seq(struct mm_struct *mm) 118 { 119 unsigned int seq; 120 121 do { 122 seq = init_mm.context.vmalloc_seq; 123 memcpy(pgd_offset(mm, VMALLOC_START), 124 pgd_offset_k(VMALLOC_START), 125 sizeof(pgd_t) * (pgd_index(VMALLOC_END) - 126 pgd_index(VMALLOC_START))); 127 mm->context.vmalloc_seq = seq; 128 } while (seq != init_mm.context.vmalloc_seq); 129 } 130 131 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE) 132 /* 133 * Section support is unsafe on SMP - If you iounmap and ioremap a region, 134 * the other CPUs will not see this change until their next context switch. 135 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs 136 * which requires the new ioremap'd region to be referenced, the CPU will 137 * reference the _old_ region. 138 * 139 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to 140 * mask the size back to 1MB aligned or we will overflow in the loop below. 141 */ 142 static void unmap_area_sections(unsigned long virt, unsigned long size) 143 { 144 unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1)); 145 pmd_t *pmdp = pmd_off_k(addr); 146 147 do { 148 pmd_t pmd = *pmdp; 149 150 if (!pmd_none(pmd)) { 151 /* 152 * Clear the PMD from the page table, and 153 * increment the vmalloc sequence so others 154 * notice this change. 155 * 156 * Note: this is still racy on SMP machines. 157 */ 158 pmd_clear(pmdp); 159 init_mm.context.vmalloc_seq++; 160 161 /* 162 * Free the page table, if there was one. 163 */ 164 if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE) 165 pte_free_kernel(&init_mm, pmd_page_vaddr(pmd)); 166 } 167 168 addr += PMD_SIZE; 169 pmdp += 2; 170 } while (addr < end); 171 172 /* 173 * Ensure that the active_mm is up to date - we want to 174 * catch any use-after-iounmap cases. 175 */ 176 if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq) 177 __check_vmalloc_seq(current->active_mm); 178 179 flush_tlb_kernel_range(virt, end); 180 } 181 182 static int 183 remap_area_sections(unsigned long virt, unsigned long pfn, 184 size_t size, const struct mem_type *type) 185 { 186 unsigned long addr = virt, end = virt + size; 187 pmd_t *pmd = pmd_off_k(addr); 188 189 /* 190 * Remove and free any PTE-based mapping, and 191 * sync the current kernel mapping. 192 */ 193 unmap_area_sections(virt, size); 194 195 do { 196 pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect); 197 pfn += SZ_1M >> PAGE_SHIFT; 198 pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect); 199 pfn += SZ_1M >> PAGE_SHIFT; 200 flush_pmd_entry(pmd); 201 202 addr += PMD_SIZE; 203 pmd += 2; 204 } while (addr < end); 205 206 return 0; 207 } 208 209 static int 210 remap_area_supersections(unsigned long virt, unsigned long pfn, 211 size_t size, const struct mem_type *type) 212 { 213 unsigned long addr = virt, end = virt + size; 214 pmd_t *pmd = pmd_off_k(addr); 215 216 /* 217 * Remove and free any PTE-based mapping, and 218 * sync the current kernel mapping. 219 */ 220 unmap_area_sections(virt, size); 221 do { 222 unsigned long super_pmd_val, i; 223 224 super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect | 225 PMD_SECT_SUPER; 226 super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20; 227 228 for (i = 0; i < 8; i++) { 229 pmd[0] = __pmd(super_pmd_val); 230 pmd[1] = __pmd(super_pmd_val); 231 flush_pmd_entry(pmd); 232 233 addr += PMD_SIZE; 234 pmd += 2; 235 } 236 237 pfn += SUPERSECTION_SIZE >> PAGE_SHIFT; 238 } while (addr < end); 239 240 return 0; 241 } 242 #endif 243 244 static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn, 245 unsigned long offset, size_t size, unsigned int mtype, void *caller) 246 { 247 const struct mem_type *type; 248 int err; 249 unsigned long addr; 250 struct vm_struct *area; 251 phys_addr_t paddr = __pfn_to_phys(pfn); 252 253 #ifndef CONFIG_ARM_LPAE 254 /* 255 * High mappings must be supersection aligned 256 */ 257 if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK)) 258 return NULL; 259 #endif 260 261 type = get_mem_type(mtype); 262 if (!type) 263 return NULL; 264 265 /* 266 * Page align the mapping size, taking account of any offset. 267 */ 268 size = PAGE_ALIGN(offset + size); 269 270 /* 271 * Try to reuse one of the static mapping whenever possible. 272 */ 273 if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) { 274 struct static_vm *svm; 275 276 svm = find_static_vm_paddr(paddr, size, mtype); 277 if (svm) { 278 addr = (unsigned long)svm->vm.addr; 279 addr += paddr - svm->vm.phys_addr; 280 return (void __iomem *) (offset + addr); 281 } 282 } 283 284 /* 285 * Don't allow RAM to be mapped with mismatched attributes - this 286 * causes problems with ARMv6+ 287 */ 288 if (WARN_ON(memblock_is_map_memory(PFN_PHYS(pfn)) && 289 mtype != MT_MEMORY_RW)) 290 return NULL; 291 292 area = get_vm_area_caller(size, VM_IOREMAP, caller); 293 if (!area) 294 return NULL; 295 addr = (unsigned long)area->addr; 296 area->phys_addr = paddr; 297 298 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE) 299 if (DOMAIN_IO == 0 && 300 (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) || 301 cpu_is_xsc3()) && pfn >= 0x100000 && 302 !((paddr | size | addr) & ~SUPERSECTION_MASK)) { 303 area->flags |= VM_ARM_SECTION_MAPPING; 304 err = remap_area_supersections(addr, pfn, size, type); 305 } else if (!((paddr | size | addr) & ~PMD_MASK)) { 306 area->flags |= VM_ARM_SECTION_MAPPING; 307 err = remap_area_sections(addr, pfn, size, type); 308 } else 309 #endif 310 err = ioremap_page_range(addr, addr + size, paddr, 311 __pgprot(type->prot_pte)); 312 313 if (err) { 314 vunmap((void *)addr); 315 return NULL; 316 } 317 318 flush_cache_vmap(addr, addr + size); 319 return (void __iomem *) (offset + addr); 320 } 321 322 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size, 323 unsigned int mtype, void *caller) 324 { 325 phys_addr_t last_addr; 326 unsigned long offset = phys_addr & ~PAGE_MASK; 327 unsigned long pfn = __phys_to_pfn(phys_addr); 328 329 /* 330 * Don't allow wraparound or zero size 331 */ 332 last_addr = phys_addr + size - 1; 333 if (!size || last_addr < phys_addr) 334 return NULL; 335 336 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype, 337 caller); 338 } 339 340 /* 341 * Remap an arbitrary physical address space into the kernel virtual 342 * address space. Needed when the kernel wants to access high addresses 343 * directly. 344 * 345 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 346 * have to convert them into an offset in a page-aligned mapping, but the 347 * caller shouldn't need to know that small detail. 348 */ 349 void __iomem * 350 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size, 351 unsigned int mtype) 352 { 353 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype, 354 __builtin_return_address(0)); 355 } 356 EXPORT_SYMBOL(__arm_ioremap_pfn); 357 358 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, 359 unsigned int, void *) = 360 __arm_ioremap_caller; 361 362 void __iomem *ioremap(resource_size_t res_cookie, size_t size) 363 { 364 return arch_ioremap_caller(res_cookie, size, MT_DEVICE, 365 __builtin_return_address(0)); 366 } 367 EXPORT_SYMBOL(ioremap); 368 369 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size) 370 { 371 return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED, 372 __builtin_return_address(0)); 373 } 374 EXPORT_SYMBOL(ioremap_cache); 375 376 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size) 377 { 378 return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC, 379 __builtin_return_address(0)); 380 } 381 EXPORT_SYMBOL(ioremap_wc); 382 383 /* 384 * Remap an arbitrary physical address space into the kernel virtual 385 * address space as memory. Needed when the kernel wants to execute 386 * code in external memory. This is needed for reprogramming source 387 * clocks that would affect normal memory for example. Please see 388 * CONFIG_GENERIC_ALLOCATOR for allocating external memory. 389 */ 390 void __iomem * 391 __arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached) 392 { 393 unsigned int mtype; 394 395 if (cached) 396 mtype = MT_MEMORY_RWX; 397 else 398 mtype = MT_MEMORY_RWX_NONCACHED; 399 400 return __arm_ioremap_caller(phys_addr, size, mtype, 401 __builtin_return_address(0)); 402 } 403 404 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size) 405 { 406 return (__force void *)arch_ioremap_caller(phys_addr, size, 407 MT_MEMORY_RW, 408 __builtin_return_address(0)); 409 } 410 411 void __iounmap(volatile void __iomem *io_addr) 412 { 413 void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr); 414 struct static_vm *svm; 415 416 /* If this is a static mapping, we must leave it alone */ 417 svm = find_static_vm_vaddr(addr); 418 if (svm) 419 return; 420 421 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE) 422 { 423 struct vm_struct *vm; 424 425 vm = find_vm_area(addr); 426 427 /* 428 * If this is a section based mapping we need to handle it 429 * specially as the VM subsystem does not know how to handle 430 * such a beast. 431 */ 432 if (vm && (vm->flags & VM_ARM_SECTION_MAPPING)) 433 unmap_area_sections((unsigned long)vm->addr, vm->size); 434 } 435 #endif 436 437 vunmap(addr); 438 } 439 440 void (*arch_iounmap)(volatile void __iomem *) = __iounmap; 441 442 void iounmap(volatile void __iomem *cookie) 443 { 444 arch_iounmap(cookie); 445 } 446 EXPORT_SYMBOL(iounmap); 447 448 #ifdef CONFIG_PCI 449 static int pci_ioremap_mem_type = MT_DEVICE; 450 451 void pci_ioremap_set_mem_type(int mem_type) 452 { 453 pci_ioremap_mem_type = mem_type; 454 } 455 456 int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr) 457 { 458 BUG_ON(offset + SZ_64K - 1 > IO_SPACE_LIMIT); 459 460 return ioremap_page_range(PCI_IO_VIRT_BASE + offset, 461 PCI_IO_VIRT_BASE + offset + SZ_64K, 462 phys_addr, 463 __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte)); 464 } 465 EXPORT_SYMBOL_GPL(pci_ioremap_io); 466 467 void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size) 468 { 469 return arch_ioremap_caller(res_cookie, size, MT_UNCACHED, 470 __builtin_return_address(0)); 471 } 472 EXPORT_SYMBOL_GPL(pci_remap_cfgspace); 473 #endif 474 475 /* 476 * Must be called after early_fixmap_init 477 */ 478 void __init early_ioremap_init(void) 479 { 480 early_ioremap_setup(); 481 } 482