1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/arch/arm/mm/ioremap.c 4 * 5 * Re-map IO memory to kernel address space so that we can access it. 6 * 7 * (C) Copyright 1995 1996 Linus Torvalds 8 * 9 * Hacked for ARM by Phil Blundell <philb@gnu.org> 10 * Hacked to allow all architectures to build, and various cleanups 11 * by Russell King 12 * 13 * This allows a driver to remap an arbitrary region of bus memory into 14 * virtual space. One should *only* use readl, writel, memcpy_toio and 15 * so on with such remapped areas. 16 * 17 * Because the ARM only has a 32-bit address space we can't address the 18 * whole of the (physical) PCI space at once. PCI huge-mode addressing 19 * allows us to circumvent this restriction by splitting PCI space into 20 * two 2GB chunks and mapping only one at a time into processor memory. 21 * We use MMU protection domains to trap any attempt to access the bank 22 * that is not currently mapped. (This isn't fully implemented yet.) 23 */ 24 #include <linux/module.h> 25 #include <linux/errno.h> 26 #include <linux/mm.h> 27 #include <linux/vmalloc.h> 28 #include <linux/io.h> 29 #include <linux/sizes.h> 30 31 #include <asm/cp15.h> 32 #include <asm/cputype.h> 33 #include <asm/cacheflush.h> 34 #include <asm/early_ioremap.h> 35 #include <asm/mmu_context.h> 36 #include <asm/pgalloc.h> 37 #include <asm/tlbflush.h> 38 #include <asm/system_info.h> 39 40 #include <asm/mach/map.h> 41 #include <asm/mach/pci.h> 42 #include "mm.h" 43 44 45 LIST_HEAD(static_vmlist); 46 47 static struct static_vm *find_static_vm_paddr(phys_addr_t paddr, 48 size_t size, unsigned int mtype) 49 { 50 struct static_vm *svm; 51 struct vm_struct *vm; 52 53 list_for_each_entry(svm, &static_vmlist, list) { 54 vm = &svm->vm; 55 if (!(vm->flags & VM_ARM_STATIC_MAPPING)) 56 continue; 57 if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype)) 58 continue; 59 60 if (vm->phys_addr > paddr || 61 paddr + size - 1 > vm->phys_addr + vm->size - 1) 62 continue; 63 64 return svm; 65 } 66 67 return NULL; 68 } 69 70 struct static_vm *find_static_vm_vaddr(void *vaddr) 71 { 72 struct static_vm *svm; 73 struct vm_struct *vm; 74 75 list_for_each_entry(svm, &static_vmlist, list) { 76 vm = &svm->vm; 77 78 /* static_vmlist is ascending order */ 79 if (vm->addr > vaddr) 80 break; 81 82 if (vm->addr <= vaddr && vm->addr + vm->size > vaddr) 83 return svm; 84 } 85 86 return NULL; 87 } 88 89 void __init add_static_vm_early(struct static_vm *svm) 90 { 91 struct static_vm *curr_svm; 92 struct vm_struct *vm; 93 void *vaddr; 94 95 vm = &svm->vm; 96 vm_area_add_early(vm); 97 vaddr = vm->addr; 98 99 list_for_each_entry(curr_svm, &static_vmlist, list) { 100 vm = &curr_svm->vm; 101 102 if (vm->addr > vaddr) 103 break; 104 } 105 list_add_tail(&svm->list, &curr_svm->list); 106 } 107 108 int ioremap_page(unsigned long virt, unsigned long phys, 109 const struct mem_type *mtype) 110 { 111 return ioremap_page_range(virt, virt + PAGE_SIZE, phys, 112 __pgprot(mtype->prot_pte)); 113 } 114 EXPORT_SYMBOL(ioremap_page); 115 116 void __check_vmalloc_seq(struct mm_struct *mm) 117 { 118 unsigned int seq; 119 120 do { 121 seq = init_mm.context.vmalloc_seq; 122 memcpy(pgd_offset(mm, VMALLOC_START), 123 pgd_offset_k(VMALLOC_START), 124 sizeof(pgd_t) * (pgd_index(VMALLOC_END) - 125 pgd_index(VMALLOC_START))); 126 mm->context.vmalloc_seq = seq; 127 } while (seq != init_mm.context.vmalloc_seq); 128 } 129 130 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE) 131 /* 132 * Section support is unsafe on SMP - If you iounmap and ioremap a region, 133 * the other CPUs will not see this change until their next context switch. 134 * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs 135 * which requires the new ioremap'd region to be referenced, the CPU will 136 * reference the _old_ region. 137 * 138 * Note that get_vm_area_caller() allocates a guard 4K page, so we need to 139 * mask the size back to 1MB aligned or we will overflow in the loop below. 140 */ 141 static void unmap_area_sections(unsigned long virt, unsigned long size) 142 { 143 unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1)); 144 pgd_t *pgd; 145 p4d_t *p4d; 146 pud_t *pud; 147 pmd_t *pmdp; 148 149 flush_cache_vunmap(addr, end); 150 pgd = pgd_offset_k(addr); 151 p4d = p4d_offset(pgd, addr); 152 pud = pud_offset(p4d, addr); 153 pmdp = pmd_offset(pud, addr); 154 do { 155 pmd_t pmd = *pmdp; 156 157 if (!pmd_none(pmd)) { 158 /* 159 * Clear the PMD from the page table, and 160 * increment the vmalloc sequence so others 161 * notice this change. 162 * 163 * Note: this is still racy on SMP machines. 164 */ 165 pmd_clear(pmdp); 166 init_mm.context.vmalloc_seq++; 167 168 /* 169 * Free the page table, if there was one. 170 */ 171 if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE) 172 pte_free_kernel(&init_mm, pmd_page_vaddr(pmd)); 173 } 174 175 addr += PMD_SIZE; 176 pmdp += 2; 177 } while (addr < end); 178 179 /* 180 * Ensure that the active_mm is up to date - we want to 181 * catch any use-after-iounmap cases. 182 */ 183 if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq) 184 __check_vmalloc_seq(current->active_mm); 185 186 flush_tlb_kernel_range(virt, end); 187 } 188 189 static int 190 remap_area_sections(unsigned long virt, unsigned long pfn, 191 size_t size, const struct mem_type *type) 192 { 193 unsigned long addr = virt, end = virt + size; 194 pgd_t *pgd; 195 p4d_t *p4d; 196 pud_t *pud; 197 pmd_t *pmd; 198 199 /* 200 * Remove and free any PTE-based mapping, and 201 * sync the current kernel mapping. 202 */ 203 unmap_area_sections(virt, size); 204 205 pgd = pgd_offset_k(addr); 206 p4d = p4d_offset(pgd, addr); 207 pud = pud_offset(p4d, addr); 208 pmd = pmd_offset(pud, addr); 209 do { 210 pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect); 211 pfn += SZ_1M >> PAGE_SHIFT; 212 pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect); 213 pfn += SZ_1M >> PAGE_SHIFT; 214 flush_pmd_entry(pmd); 215 216 addr += PMD_SIZE; 217 pmd += 2; 218 } while (addr < end); 219 220 return 0; 221 } 222 223 static int 224 remap_area_supersections(unsigned long virt, unsigned long pfn, 225 size_t size, const struct mem_type *type) 226 { 227 unsigned long addr = virt, end = virt + size; 228 pgd_t *pgd; 229 p4d_t *p4d; 230 pud_t *pud; 231 pmd_t *pmd; 232 233 /* 234 * Remove and free any PTE-based mapping, and 235 * sync the current kernel mapping. 236 */ 237 unmap_area_sections(virt, size); 238 239 pgd = pgd_offset_k(virt); 240 p4d = p4d_offset(pgd, addr); 241 pud = pud_offset(p4d, addr); 242 pmd = pmd_offset(pud, addr); 243 do { 244 unsigned long super_pmd_val, i; 245 246 super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect | 247 PMD_SECT_SUPER; 248 super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20; 249 250 for (i = 0; i < 8; i++) { 251 pmd[0] = __pmd(super_pmd_val); 252 pmd[1] = __pmd(super_pmd_val); 253 flush_pmd_entry(pmd); 254 255 addr += PMD_SIZE; 256 pmd += 2; 257 } 258 259 pfn += SUPERSECTION_SIZE >> PAGE_SHIFT; 260 } while (addr < end); 261 262 return 0; 263 } 264 #endif 265 266 static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn, 267 unsigned long offset, size_t size, unsigned int mtype, void *caller) 268 { 269 const struct mem_type *type; 270 int err; 271 unsigned long addr; 272 struct vm_struct *area; 273 phys_addr_t paddr = __pfn_to_phys(pfn); 274 275 #ifndef CONFIG_ARM_LPAE 276 /* 277 * High mappings must be supersection aligned 278 */ 279 if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK)) 280 return NULL; 281 #endif 282 283 type = get_mem_type(mtype); 284 if (!type) 285 return NULL; 286 287 /* 288 * Page align the mapping size, taking account of any offset. 289 */ 290 size = PAGE_ALIGN(offset + size); 291 292 /* 293 * Try to reuse one of the static mapping whenever possible. 294 */ 295 if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) { 296 struct static_vm *svm; 297 298 svm = find_static_vm_paddr(paddr, size, mtype); 299 if (svm) { 300 addr = (unsigned long)svm->vm.addr; 301 addr += paddr - svm->vm.phys_addr; 302 return (void __iomem *) (offset + addr); 303 } 304 } 305 306 /* 307 * Don't allow RAM to be mapped with mismatched attributes - this 308 * causes problems with ARMv6+ 309 */ 310 if (WARN_ON(pfn_valid(pfn) && mtype != MT_MEMORY_RW)) 311 return NULL; 312 313 area = get_vm_area_caller(size, VM_IOREMAP, caller); 314 if (!area) 315 return NULL; 316 addr = (unsigned long)area->addr; 317 area->phys_addr = paddr; 318 319 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE) 320 if (DOMAIN_IO == 0 && 321 (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) || 322 cpu_is_xsc3()) && pfn >= 0x100000 && 323 !((paddr | size | addr) & ~SUPERSECTION_MASK)) { 324 area->flags |= VM_ARM_SECTION_MAPPING; 325 err = remap_area_supersections(addr, pfn, size, type); 326 } else if (!((paddr | size | addr) & ~PMD_MASK)) { 327 area->flags |= VM_ARM_SECTION_MAPPING; 328 err = remap_area_sections(addr, pfn, size, type); 329 } else 330 #endif 331 err = ioremap_page_range(addr, addr + size, paddr, 332 __pgprot(type->prot_pte)); 333 334 if (err) { 335 vunmap((void *)addr); 336 return NULL; 337 } 338 339 flush_cache_vmap(addr, addr + size); 340 return (void __iomem *) (offset + addr); 341 } 342 343 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size, 344 unsigned int mtype, void *caller) 345 { 346 phys_addr_t last_addr; 347 unsigned long offset = phys_addr & ~PAGE_MASK; 348 unsigned long pfn = __phys_to_pfn(phys_addr); 349 350 /* 351 * Don't allow wraparound or zero size 352 */ 353 last_addr = phys_addr + size - 1; 354 if (!size || last_addr < phys_addr) 355 return NULL; 356 357 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype, 358 caller); 359 } 360 361 /* 362 * Remap an arbitrary physical address space into the kernel virtual 363 * address space. Needed when the kernel wants to access high addresses 364 * directly. 365 * 366 * NOTE! We need to allow non-page-aligned mappings too: we will obviously 367 * have to convert them into an offset in a page-aligned mapping, but the 368 * caller shouldn't need to know that small detail. 369 */ 370 void __iomem * 371 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size, 372 unsigned int mtype) 373 { 374 return __arm_ioremap_pfn_caller(pfn, offset, size, mtype, 375 __builtin_return_address(0)); 376 } 377 EXPORT_SYMBOL(__arm_ioremap_pfn); 378 379 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t, 380 unsigned int, void *) = 381 __arm_ioremap_caller; 382 383 void __iomem *ioremap(resource_size_t res_cookie, size_t size) 384 { 385 return arch_ioremap_caller(res_cookie, size, MT_DEVICE, 386 __builtin_return_address(0)); 387 } 388 EXPORT_SYMBOL(ioremap); 389 390 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size) 391 { 392 return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED, 393 __builtin_return_address(0)); 394 } 395 EXPORT_SYMBOL(ioremap_cache); 396 397 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size) 398 { 399 return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC, 400 __builtin_return_address(0)); 401 } 402 EXPORT_SYMBOL(ioremap_wc); 403 404 /* 405 * Remap an arbitrary physical address space into the kernel virtual 406 * address space as memory. Needed when the kernel wants to execute 407 * code in external memory. This is needed for reprogramming source 408 * clocks that would affect normal memory for example. Please see 409 * CONFIG_GENERIC_ALLOCATOR for allocating external memory. 410 */ 411 void __iomem * 412 __arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached) 413 { 414 unsigned int mtype; 415 416 if (cached) 417 mtype = MT_MEMORY_RWX; 418 else 419 mtype = MT_MEMORY_RWX_NONCACHED; 420 421 return __arm_ioremap_caller(phys_addr, size, mtype, 422 __builtin_return_address(0)); 423 } 424 425 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size) 426 { 427 return (__force void *)arch_ioremap_caller(phys_addr, size, 428 MT_MEMORY_RW, 429 __builtin_return_address(0)); 430 } 431 432 void __iounmap(volatile void __iomem *io_addr) 433 { 434 void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr); 435 struct static_vm *svm; 436 437 /* If this is a static mapping, we must leave it alone */ 438 svm = find_static_vm_vaddr(addr); 439 if (svm) 440 return; 441 442 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE) 443 { 444 struct vm_struct *vm; 445 446 vm = find_vm_area(addr); 447 448 /* 449 * If this is a section based mapping we need to handle it 450 * specially as the VM subsystem does not know how to handle 451 * such a beast. 452 */ 453 if (vm && (vm->flags & VM_ARM_SECTION_MAPPING)) 454 unmap_area_sections((unsigned long)vm->addr, vm->size); 455 } 456 #endif 457 458 vunmap(addr); 459 } 460 461 void (*arch_iounmap)(volatile void __iomem *) = __iounmap; 462 463 void iounmap(volatile void __iomem *cookie) 464 { 465 arch_iounmap(cookie); 466 } 467 EXPORT_SYMBOL(iounmap); 468 469 #ifdef CONFIG_PCI 470 static int pci_ioremap_mem_type = MT_DEVICE; 471 472 void pci_ioremap_set_mem_type(int mem_type) 473 { 474 pci_ioremap_mem_type = mem_type; 475 } 476 477 int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr) 478 { 479 BUG_ON(offset + SZ_64K - 1 > IO_SPACE_LIMIT); 480 481 return ioremap_page_range(PCI_IO_VIRT_BASE + offset, 482 PCI_IO_VIRT_BASE + offset + SZ_64K, 483 phys_addr, 484 __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte)); 485 } 486 EXPORT_SYMBOL_GPL(pci_ioremap_io); 487 488 void __iomem *pci_remap_cfgspace(resource_size_t res_cookie, size_t size) 489 { 490 return arch_ioremap_caller(res_cookie, size, MT_UNCACHED, 491 __builtin_return_address(0)); 492 } 493 EXPORT_SYMBOL_GPL(pci_remap_cfgspace); 494 #endif 495 496 /* 497 * Must be called after early_fixmap_init 498 */ 499 void __init early_ioremap_init(void) 500 { 501 early_ioremap_setup(); 502 } 503