xref: /openbmc/linux/arch/arm/mm/ioremap.c (revision 95e9fd10)
1 /*
2  *  linux/arch/arm/mm/ioremap.c
3  *
4  * Re-map IO memory to kernel address space so that we can access it.
5  *
6  * (C) Copyright 1995 1996 Linus Torvalds
7  *
8  * Hacked for ARM by Phil Blundell <philb@gnu.org>
9  * Hacked to allow all architectures to build, and various cleanups
10  * by Russell King
11  *
12  * This allows a driver to remap an arbitrary region of bus memory into
13  * virtual space.  One should *only* use readl, writel, memcpy_toio and
14  * so on with such remapped areas.
15  *
16  * Because the ARM only has a 32-bit address space we can't address the
17  * whole of the (physical) PCI space at once.  PCI huge-mode addressing
18  * allows us to circumvent this restriction by splitting PCI space into
19  * two 2GB chunks and mapping only one at a time into processor memory.
20  * We use MMU protection domains to trap any attempt to access the bank
21  * that is not currently mapped.  (This isn't fully implemented yet.)
22  */
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/mm.h>
26 #include <linux/vmalloc.h>
27 #include <linux/io.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/cp15.h>
31 #include <asm/cputype.h>
32 #include <asm/cacheflush.h>
33 #include <asm/mmu_context.h>
34 #include <asm/pgalloc.h>
35 #include <asm/tlbflush.h>
36 #include <asm/system_info.h>
37 
38 #include <asm/mach/map.h>
39 #include "mm.h"
40 
41 int ioremap_page(unsigned long virt, unsigned long phys,
42 		 const struct mem_type *mtype)
43 {
44 	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
45 				  __pgprot(mtype->prot_pte));
46 }
47 EXPORT_SYMBOL(ioremap_page);
48 
49 void __check_kvm_seq(struct mm_struct *mm)
50 {
51 	unsigned int seq;
52 
53 	do {
54 		seq = init_mm.context.kvm_seq;
55 		memcpy(pgd_offset(mm, VMALLOC_START),
56 		       pgd_offset_k(VMALLOC_START),
57 		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
58 					pgd_index(VMALLOC_START)));
59 		mm->context.kvm_seq = seq;
60 	} while (seq != init_mm.context.kvm_seq);
61 }
62 
63 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
64 /*
65  * Section support is unsafe on SMP - If you iounmap and ioremap a region,
66  * the other CPUs will not see this change until their next context switch.
67  * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
68  * which requires the new ioremap'd region to be referenced, the CPU will
69  * reference the _old_ region.
70  *
71  * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
72  * mask the size back to 1MB aligned or we will overflow in the loop below.
73  */
74 static void unmap_area_sections(unsigned long virt, unsigned long size)
75 {
76 	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
77 	pgd_t *pgd;
78 	pud_t *pud;
79 	pmd_t *pmdp;
80 
81 	flush_cache_vunmap(addr, end);
82 	pgd = pgd_offset_k(addr);
83 	pud = pud_offset(pgd, addr);
84 	pmdp = pmd_offset(pud, addr);
85 	do {
86 		pmd_t pmd = *pmdp;
87 
88 		if (!pmd_none(pmd)) {
89 			/*
90 			 * Clear the PMD from the page table, and
91 			 * increment the kvm sequence so others
92 			 * notice this change.
93 			 *
94 			 * Note: this is still racy on SMP machines.
95 			 */
96 			pmd_clear(pmdp);
97 			init_mm.context.kvm_seq++;
98 
99 			/*
100 			 * Free the page table, if there was one.
101 			 */
102 			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
103 				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
104 		}
105 
106 		addr += PMD_SIZE;
107 		pmdp += 2;
108 	} while (addr < end);
109 
110 	/*
111 	 * Ensure that the active_mm is up to date - we want to
112 	 * catch any use-after-iounmap cases.
113 	 */
114 	if (current->active_mm->context.kvm_seq != init_mm.context.kvm_seq)
115 		__check_kvm_seq(current->active_mm);
116 
117 	flush_tlb_kernel_range(virt, end);
118 }
119 
120 static int
121 remap_area_sections(unsigned long virt, unsigned long pfn,
122 		    size_t size, const struct mem_type *type)
123 {
124 	unsigned long addr = virt, end = virt + size;
125 	pgd_t *pgd;
126 	pud_t *pud;
127 	pmd_t *pmd;
128 
129 	/*
130 	 * Remove and free any PTE-based mapping, and
131 	 * sync the current kernel mapping.
132 	 */
133 	unmap_area_sections(virt, size);
134 
135 	pgd = pgd_offset_k(addr);
136 	pud = pud_offset(pgd, addr);
137 	pmd = pmd_offset(pud, addr);
138 	do {
139 		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
140 		pfn += SZ_1M >> PAGE_SHIFT;
141 		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
142 		pfn += SZ_1M >> PAGE_SHIFT;
143 		flush_pmd_entry(pmd);
144 
145 		addr += PMD_SIZE;
146 		pmd += 2;
147 	} while (addr < end);
148 
149 	return 0;
150 }
151 
152 static int
153 remap_area_supersections(unsigned long virt, unsigned long pfn,
154 			 size_t size, const struct mem_type *type)
155 {
156 	unsigned long addr = virt, end = virt + size;
157 	pgd_t *pgd;
158 	pud_t *pud;
159 	pmd_t *pmd;
160 
161 	/*
162 	 * Remove and free any PTE-based mapping, and
163 	 * sync the current kernel mapping.
164 	 */
165 	unmap_area_sections(virt, size);
166 
167 	pgd = pgd_offset_k(virt);
168 	pud = pud_offset(pgd, addr);
169 	pmd = pmd_offset(pud, addr);
170 	do {
171 		unsigned long super_pmd_val, i;
172 
173 		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
174 				PMD_SECT_SUPER;
175 		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
176 
177 		for (i = 0; i < 8; i++) {
178 			pmd[0] = __pmd(super_pmd_val);
179 			pmd[1] = __pmd(super_pmd_val);
180 			flush_pmd_entry(pmd);
181 
182 			addr += PMD_SIZE;
183 			pmd += 2;
184 		}
185 
186 		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
187 	} while (addr < end);
188 
189 	return 0;
190 }
191 #endif
192 
193 void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
194 	unsigned long offset, size_t size, unsigned int mtype, void *caller)
195 {
196 	const struct mem_type *type;
197 	int err;
198 	unsigned long addr;
199  	struct vm_struct * area;
200 
201 #ifndef CONFIG_ARM_LPAE
202 	/*
203 	 * High mappings must be supersection aligned
204 	 */
205 	if (pfn >= 0x100000 && (__pfn_to_phys(pfn) & ~SUPERSECTION_MASK))
206 		return NULL;
207 #endif
208 
209 	type = get_mem_type(mtype);
210 	if (!type)
211 		return NULL;
212 
213 	/*
214 	 * Page align the mapping size, taking account of any offset.
215 	 */
216 	size = PAGE_ALIGN(offset + size);
217 
218 	/*
219 	 * Try to reuse one of the static mapping whenever possible.
220 	 */
221 	read_lock(&vmlist_lock);
222 	for (area = vmlist; area; area = area->next) {
223 		if (!size || (sizeof(phys_addr_t) == 4 && pfn >= 0x100000))
224 			break;
225 		if (!(area->flags & VM_ARM_STATIC_MAPPING))
226 			continue;
227 		if ((area->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
228 			continue;
229 		if (__phys_to_pfn(area->phys_addr) > pfn ||
230 		    __pfn_to_phys(pfn) + size-1 > area->phys_addr + area->size-1)
231 			continue;
232 		/* we can drop the lock here as we know *area is static */
233 		read_unlock(&vmlist_lock);
234 		addr = (unsigned long)area->addr;
235 		addr += __pfn_to_phys(pfn) - area->phys_addr;
236 		return (void __iomem *) (offset + addr);
237 	}
238 	read_unlock(&vmlist_lock);
239 
240 	/*
241 	 * Don't allow RAM to be mapped - this causes problems with ARMv6+
242 	 */
243 	if (WARN_ON(pfn_valid(pfn)))
244 		return NULL;
245 
246 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
247  	if (!area)
248  		return NULL;
249  	addr = (unsigned long)area->addr;
250 
251 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
252 	if (DOMAIN_IO == 0 &&
253 	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
254 	       cpu_is_xsc3()) && pfn >= 0x100000 &&
255 	       !((__pfn_to_phys(pfn) | size | addr) & ~SUPERSECTION_MASK)) {
256 		area->flags |= VM_ARM_SECTION_MAPPING;
257 		err = remap_area_supersections(addr, pfn, size, type);
258 	} else if (!((__pfn_to_phys(pfn) | size | addr) & ~PMD_MASK)) {
259 		area->flags |= VM_ARM_SECTION_MAPPING;
260 		err = remap_area_sections(addr, pfn, size, type);
261 	} else
262 #endif
263 		err = ioremap_page_range(addr, addr + size, __pfn_to_phys(pfn),
264 					 __pgprot(type->prot_pte));
265 
266 	if (err) {
267  		vunmap((void *)addr);
268  		return NULL;
269  	}
270 
271 	flush_cache_vmap(addr, addr + size);
272 	return (void __iomem *) (offset + addr);
273 }
274 
275 void __iomem *__arm_ioremap_caller(unsigned long phys_addr, size_t size,
276 	unsigned int mtype, void *caller)
277 {
278 	unsigned long last_addr;
279  	unsigned long offset = phys_addr & ~PAGE_MASK;
280  	unsigned long pfn = __phys_to_pfn(phys_addr);
281 
282  	/*
283  	 * Don't allow wraparound or zero size
284 	 */
285 	last_addr = phys_addr + size - 1;
286 	if (!size || last_addr < phys_addr)
287 		return NULL;
288 
289 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
290 			caller);
291 }
292 
293 /*
294  * Remap an arbitrary physical address space into the kernel virtual
295  * address space. Needed when the kernel wants to access high addresses
296  * directly.
297  *
298  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
299  * have to convert them into an offset in a page-aligned mapping, but the
300  * caller shouldn't need to know that small detail.
301  */
302 void __iomem *
303 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
304 		  unsigned int mtype)
305 {
306 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
307 			__builtin_return_address(0));
308 }
309 EXPORT_SYMBOL(__arm_ioremap_pfn);
310 
311 void __iomem * (*arch_ioremap_caller)(unsigned long, size_t,
312 				      unsigned int, void *) =
313 	__arm_ioremap_caller;
314 
315 void __iomem *
316 __arm_ioremap(unsigned long phys_addr, size_t size, unsigned int mtype)
317 {
318 	return arch_ioremap_caller(phys_addr, size, mtype,
319 		__builtin_return_address(0));
320 }
321 EXPORT_SYMBOL(__arm_ioremap);
322 
323 /*
324  * Remap an arbitrary physical address space into the kernel virtual
325  * address space as memory. Needed when the kernel wants to execute
326  * code in external memory. This is needed for reprogramming source
327  * clocks that would affect normal memory for example. Please see
328  * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
329  */
330 void __iomem *
331 __arm_ioremap_exec(unsigned long phys_addr, size_t size, bool cached)
332 {
333 	unsigned int mtype;
334 
335 	if (cached)
336 		mtype = MT_MEMORY;
337 	else
338 		mtype = MT_MEMORY_NONCACHED;
339 
340 	return __arm_ioremap_caller(phys_addr, size, mtype,
341 			__builtin_return_address(0));
342 }
343 
344 void __iounmap(volatile void __iomem *io_addr)
345 {
346 	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
347 	struct vm_struct *vm;
348 
349 	read_lock(&vmlist_lock);
350 	for (vm = vmlist; vm; vm = vm->next) {
351 		if (vm->addr > addr)
352 			break;
353 		if (!(vm->flags & VM_IOREMAP))
354 			continue;
355 		/* If this is a static mapping we must leave it alone */
356 		if ((vm->flags & VM_ARM_STATIC_MAPPING) &&
357 		    (vm->addr <= addr) && (vm->addr + vm->size > addr)) {
358 			read_unlock(&vmlist_lock);
359 			return;
360 		}
361 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
362 		/*
363 		 * If this is a section based mapping we need to handle it
364 		 * specially as the VM subsystem does not know how to handle
365 		 * such a beast.
366 		 */
367 		if ((vm->addr == addr) &&
368 		    (vm->flags & VM_ARM_SECTION_MAPPING)) {
369 			unmap_area_sections((unsigned long)vm->addr, vm->size);
370 			break;
371 		}
372 #endif
373 	}
374 	read_unlock(&vmlist_lock);
375 
376 	vunmap(addr);
377 }
378 
379 void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
380 
381 void __arm_iounmap(volatile void __iomem *io_addr)
382 {
383 	arch_iounmap(io_addr);
384 }
385 EXPORT_SYMBOL(__arm_iounmap);
386