xref: /openbmc/linux/arch/arm/mm/ioremap.c (revision 95b384f9)
1 /*
2  *  linux/arch/arm/mm/ioremap.c
3  *
4  * Re-map IO memory to kernel address space so that we can access it.
5  *
6  * (C) Copyright 1995 1996 Linus Torvalds
7  *
8  * Hacked for ARM by Phil Blundell <philb@gnu.org>
9  * Hacked to allow all architectures to build, and various cleanups
10  * by Russell King
11  *
12  * This allows a driver to remap an arbitrary region of bus memory into
13  * virtual space.  One should *only* use readl, writel, memcpy_toio and
14  * so on with such remapped areas.
15  *
16  * Because the ARM only has a 32-bit address space we can't address the
17  * whole of the (physical) PCI space at once.  PCI huge-mode addressing
18  * allows us to circumvent this restriction by splitting PCI space into
19  * two 2GB chunks and mapping only one at a time into processor memory.
20  * We use MMU protection domains to trap any attempt to access the bank
21  * that is not currently mapped.  (This isn't fully implemented yet.)
22  */
23 #include <linux/module.h>
24 #include <linux/errno.h>
25 #include <linux/mm.h>
26 #include <linux/vmalloc.h>
27 #include <linux/io.h>
28 #include <linux/sizes.h>
29 
30 #include <asm/cp15.h>
31 #include <asm/cputype.h>
32 #include <asm/cacheflush.h>
33 #include <asm/early_ioremap.h>
34 #include <asm/mmu_context.h>
35 #include <asm/pgalloc.h>
36 #include <asm/tlbflush.h>
37 #include <asm/system_info.h>
38 
39 #include <asm/mach/map.h>
40 #include <asm/mach/pci.h>
41 #include "mm.h"
42 
43 
44 LIST_HEAD(static_vmlist);
45 
46 static struct static_vm *find_static_vm_paddr(phys_addr_t paddr,
47 			size_t size, unsigned int mtype)
48 {
49 	struct static_vm *svm;
50 	struct vm_struct *vm;
51 
52 	list_for_each_entry(svm, &static_vmlist, list) {
53 		vm = &svm->vm;
54 		if (!(vm->flags & VM_ARM_STATIC_MAPPING))
55 			continue;
56 		if ((vm->flags & VM_ARM_MTYPE_MASK) != VM_ARM_MTYPE(mtype))
57 			continue;
58 
59 		if (vm->phys_addr > paddr ||
60 			paddr + size - 1 > vm->phys_addr + vm->size - 1)
61 			continue;
62 
63 		return svm;
64 	}
65 
66 	return NULL;
67 }
68 
69 struct static_vm *find_static_vm_vaddr(void *vaddr)
70 {
71 	struct static_vm *svm;
72 	struct vm_struct *vm;
73 
74 	list_for_each_entry(svm, &static_vmlist, list) {
75 		vm = &svm->vm;
76 
77 		/* static_vmlist is ascending order */
78 		if (vm->addr > vaddr)
79 			break;
80 
81 		if (vm->addr <= vaddr && vm->addr + vm->size > vaddr)
82 			return svm;
83 	}
84 
85 	return NULL;
86 }
87 
88 void __init add_static_vm_early(struct static_vm *svm)
89 {
90 	struct static_vm *curr_svm;
91 	struct vm_struct *vm;
92 	void *vaddr;
93 
94 	vm = &svm->vm;
95 	vm_area_add_early(vm);
96 	vaddr = vm->addr;
97 
98 	list_for_each_entry(curr_svm, &static_vmlist, list) {
99 		vm = &curr_svm->vm;
100 
101 		if (vm->addr > vaddr)
102 			break;
103 	}
104 	list_add_tail(&svm->list, &curr_svm->list);
105 }
106 
107 int ioremap_page(unsigned long virt, unsigned long phys,
108 		 const struct mem_type *mtype)
109 {
110 	return ioremap_page_range(virt, virt + PAGE_SIZE, phys,
111 				  __pgprot(mtype->prot_pte));
112 }
113 EXPORT_SYMBOL(ioremap_page);
114 
115 void __check_vmalloc_seq(struct mm_struct *mm)
116 {
117 	unsigned int seq;
118 
119 	do {
120 		seq = init_mm.context.vmalloc_seq;
121 		memcpy(pgd_offset(mm, VMALLOC_START),
122 		       pgd_offset_k(VMALLOC_START),
123 		       sizeof(pgd_t) * (pgd_index(VMALLOC_END) -
124 					pgd_index(VMALLOC_START)));
125 		mm->context.vmalloc_seq = seq;
126 	} while (seq != init_mm.context.vmalloc_seq);
127 }
128 
129 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
130 /*
131  * Section support is unsafe on SMP - If you iounmap and ioremap a region,
132  * the other CPUs will not see this change until their next context switch.
133  * Meanwhile, (eg) if an interrupt comes in on one of those other CPUs
134  * which requires the new ioremap'd region to be referenced, the CPU will
135  * reference the _old_ region.
136  *
137  * Note that get_vm_area_caller() allocates a guard 4K page, so we need to
138  * mask the size back to 1MB aligned or we will overflow in the loop below.
139  */
140 static void unmap_area_sections(unsigned long virt, unsigned long size)
141 {
142 	unsigned long addr = virt, end = virt + (size & ~(SZ_1M - 1));
143 	pgd_t *pgd;
144 	pud_t *pud;
145 	pmd_t *pmdp;
146 
147 	flush_cache_vunmap(addr, end);
148 	pgd = pgd_offset_k(addr);
149 	pud = pud_offset(pgd, addr);
150 	pmdp = pmd_offset(pud, addr);
151 	do {
152 		pmd_t pmd = *pmdp;
153 
154 		if (!pmd_none(pmd)) {
155 			/*
156 			 * Clear the PMD from the page table, and
157 			 * increment the vmalloc sequence so others
158 			 * notice this change.
159 			 *
160 			 * Note: this is still racy on SMP machines.
161 			 */
162 			pmd_clear(pmdp);
163 			init_mm.context.vmalloc_seq++;
164 
165 			/*
166 			 * Free the page table, if there was one.
167 			 */
168 			if ((pmd_val(pmd) & PMD_TYPE_MASK) == PMD_TYPE_TABLE)
169 				pte_free_kernel(&init_mm, pmd_page_vaddr(pmd));
170 		}
171 
172 		addr += PMD_SIZE;
173 		pmdp += 2;
174 	} while (addr < end);
175 
176 	/*
177 	 * Ensure that the active_mm is up to date - we want to
178 	 * catch any use-after-iounmap cases.
179 	 */
180 	if (current->active_mm->context.vmalloc_seq != init_mm.context.vmalloc_seq)
181 		__check_vmalloc_seq(current->active_mm);
182 
183 	flush_tlb_kernel_range(virt, end);
184 }
185 
186 static int
187 remap_area_sections(unsigned long virt, unsigned long pfn,
188 		    size_t size, const struct mem_type *type)
189 {
190 	unsigned long addr = virt, end = virt + size;
191 	pgd_t *pgd;
192 	pud_t *pud;
193 	pmd_t *pmd;
194 
195 	/*
196 	 * Remove and free any PTE-based mapping, and
197 	 * sync the current kernel mapping.
198 	 */
199 	unmap_area_sections(virt, size);
200 
201 	pgd = pgd_offset_k(addr);
202 	pud = pud_offset(pgd, addr);
203 	pmd = pmd_offset(pud, addr);
204 	do {
205 		pmd[0] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
206 		pfn += SZ_1M >> PAGE_SHIFT;
207 		pmd[1] = __pmd(__pfn_to_phys(pfn) | type->prot_sect);
208 		pfn += SZ_1M >> PAGE_SHIFT;
209 		flush_pmd_entry(pmd);
210 
211 		addr += PMD_SIZE;
212 		pmd += 2;
213 	} while (addr < end);
214 
215 	return 0;
216 }
217 
218 static int
219 remap_area_supersections(unsigned long virt, unsigned long pfn,
220 			 size_t size, const struct mem_type *type)
221 {
222 	unsigned long addr = virt, end = virt + size;
223 	pgd_t *pgd;
224 	pud_t *pud;
225 	pmd_t *pmd;
226 
227 	/*
228 	 * Remove and free any PTE-based mapping, and
229 	 * sync the current kernel mapping.
230 	 */
231 	unmap_area_sections(virt, size);
232 
233 	pgd = pgd_offset_k(virt);
234 	pud = pud_offset(pgd, addr);
235 	pmd = pmd_offset(pud, addr);
236 	do {
237 		unsigned long super_pmd_val, i;
238 
239 		super_pmd_val = __pfn_to_phys(pfn) | type->prot_sect |
240 				PMD_SECT_SUPER;
241 		super_pmd_val |= ((pfn >> (32 - PAGE_SHIFT)) & 0xf) << 20;
242 
243 		for (i = 0; i < 8; i++) {
244 			pmd[0] = __pmd(super_pmd_val);
245 			pmd[1] = __pmd(super_pmd_val);
246 			flush_pmd_entry(pmd);
247 
248 			addr += PMD_SIZE;
249 			pmd += 2;
250 		}
251 
252 		pfn += SUPERSECTION_SIZE >> PAGE_SHIFT;
253 	} while (addr < end);
254 
255 	return 0;
256 }
257 #endif
258 
259 static void __iomem * __arm_ioremap_pfn_caller(unsigned long pfn,
260 	unsigned long offset, size_t size, unsigned int mtype, void *caller)
261 {
262 	const struct mem_type *type;
263 	int err;
264 	unsigned long addr;
265 	struct vm_struct *area;
266 	phys_addr_t paddr = __pfn_to_phys(pfn);
267 
268 #ifndef CONFIG_ARM_LPAE
269 	/*
270 	 * High mappings must be supersection aligned
271 	 */
272 	if (pfn >= 0x100000 && (paddr & ~SUPERSECTION_MASK))
273 		return NULL;
274 #endif
275 
276 	type = get_mem_type(mtype);
277 	if (!type)
278 		return NULL;
279 
280 	/*
281 	 * Page align the mapping size, taking account of any offset.
282 	 */
283 	size = PAGE_ALIGN(offset + size);
284 
285 	/*
286 	 * Try to reuse one of the static mapping whenever possible.
287 	 */
288 	if (size && !(sizeof(phys_addr_t) == 4 && pfn >= 0x100000)) {
289 		struct static_vm *svm;
290 
291 		svm = find_static_vm_paddr(paddr, size, mtype);
292 		if (svm) {
293 			addr = (unsigned long)svm->vm.addr;
294 			addr += paddr - svm->vm.phys_addr;
295 			return (void __iomem *) (offset + addr);
296 		}
297 	}
298 
299 	/*
300 	 * Don't allow RAM to be mapped with mismatched attributes - this
301 	 * causes problems with ARMv6+
302 	 */
303 	if (WARN_ON(pfn_valid(pfn) && mtype != MT_MEMORY_RW))
304 		return NULL;
305 
306 	area = get_vm_area_caller(size, VM_IOREMAP, caller);
307  	if (!area)
308  		return NULL;
309  	addr = (unsigned long)area->addr;
310 	area->phys_addr = paddr;
311 
312 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
313 	if (DOMAIN_IO == 0 &&
314 	    (((cpu_architecture() >= CPU_ARCH_ARMv6) && (get_cr() & CR_XP)) ||
315 	       cpu_is_xsc3()) && pfn >= 0x100000 &&
316 	       !((paddr | size | addr) & ~SUPERSECTION_MASK)) {
317 		area->flags |= VM_ARM_SECTION_MAPPING;
318 		err = remap_area_supersections(addr, pfn, size, type);
319 	} else if (!((paddr | size | addr) & ~PMD_MASK)) {
320 		area->flags |= VM_ARM_SECTION_MAPPING;
321 		err = remap_area_sections(addr, pfn, size, type);
322 	} else
323 #endif
324 		err = ioremap_page_range(addr, addr + size, paddr,
325 					 __pgprot(type->prot_pte));
326 
327 	if (err) {
328  		vunmap((void *)addr);
329  		return NULL;
330  	}
331 
332 	flush_cache_vmap(addr, addr + size);
333 	return (void __iomem *) (offset + addr);
334 }
335 
336 void __iomem *__arm_ioremap_caller(phys_addr_t phys_addr, size_t size,
337 	unsigned int mtype, void *caller)
338 {
339 	phys_addr_t last_addr;
340  	unsigned long offset = phys_addr & ~PAGE_MASK;
341  	unsigned long pfn = __phys_to_pfn(phys_addr);
342 
343  	/*
344  	 * Don't allow wraparound or zero size
345 	 */
346 	last_addr = phys_addr + size - 1;
347 	if (!size || last_addr < phys_addr)
348 		return NULL;
349 
350 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
351 			caller);
352 }
353 
354 /*
355  * Remap an arbitrary physical address space into the kernel virtual
356  * address space. Needed when the kernel wants to access high addresses
357  * directly.
358  *
359  * NOTE! We need to allow non-page-aligned mappings too: we will obviously
360  * have to convert them into an offset in a page-aligned mapping, but the
361  * caller shouldn't need to know that small detail.
362  */
363 void __iomem *
364 __arm_ioremap_pfn(unsigned long pfn, unsigned long offset, size_t size,
365 		  unsigned int mtype)
366 {
367 	return __arm_ioremap_pfn_caller(pfn, offset, size, mtype,
368 					__builtin_return_address(0));
369 }
370 EXPORT_SYMBOL(__arm_ioremap_pfn);
371 
372 void __iomem * (*arch_ioremap_caller)(phys_addr_t, size_t,
373 				      unsigned int, void *) =
374 	__arm_ioremap_caller;
375 
376 void __iomem *ioremap(resource_size_t res_cookie, size_t size)
377 {
378 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE,
379 				   __builtin_return_address(0));
380 }
381 EXPORT_SYMBOL(ioremap);
382 
383 void __iomem *ioremap_cache(resource_size_t res_cookie, size_t size)
384 	__alias(ioremap_cached);
385 
386 void __iomem *ioremap_cached(resource_size_t res_cookie, size_t size)
387 {
388 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_CACHED,
389 				   __builtin_return_address(0));
390 }
391 EXPORT_SYMBOL(ioremap_cache);
392 EXPORT_SYMBOL(ioremap_cached);
393 
394 void __iomem *ioremap_wc(resource_size_t res_cookie, size_t size)
395 {
396 	return arch_ioremap_caller(res_cookie, size, MT_DEVICE_WC,
397 				   __builtin_return_address(0));
398 }
399 EXPORT_SYMBOL(ioremap_wc);
400 
401 /*
402  * Remap an arbitrary physical address space into the kernel virtual
403  * address space as memory. Needed when the kernel wants to execute
404  * code in external memory. This is needed for reprogramming source
405  * clocks that would affect normal memory for example. Please see
406  * CONFIG_GENERIC_ALLOCATOR for allocating external memory.
407  */
408 void __iomem *
409 __arm_ioremap_exec(phys_addr_t phys_addr, size_t size, bool cached)
410 {
411 	unsigned int mtype;
412 
413 	if (cached)
414 		mtype = MT_MEMORY_RWX;
415 	else
416 		mtype = MT_MEMORY_RWX_NONCACHED;
417 
418 	return __arm_ioremap_caller(phys_addr, size, mtype,
419 			__builtin_return_address(0));
420 }
421 
422 void *arch_memremap_wb(phys_addr_t phys_addr, size_t size)
423 {
424 	return (__force void *)arch_ioremap_caller(phys_addr, size,
425 						   MT_MEMORY_RW,
426 						   __builtin_return_address(0));
427 }
428 
429 void __iounmap(volatile void __iomem *io_addr)
430 {
431 	void *addr = (void *)(PAGE_MASK & (unsigned long)io_addr);
432 	struct static_vm *svm;
433 
434 	/* If this is a static mapping, we must leave it alone */
435 	svm = find_static_vm_vaddr(addr);
436 	if (svm)
437 		return;
438 
439 #if !defined(CONFIG_SMP) && !defined(CONFIG_ARM_LPAE)
440 	{
441 		struct vm_struct *vm;
442 
443 		vm = find_vm_area(addr);
444 
445 		/*
446 		 * If this is a section based mapping we need to handle it
447 		 * specially as the VM subsystem does not know how to handle
448 		 * such a beast.
449 		 */
450 		if (vm && (vm->flags & VM_ARM_SECTION_MAPPING))
451 			unmap_area_sections((unsigned long)vm->addr, vm->size);
452 	}
453 #endif
454 
455 	vunmap(addr);
456 }
457 
458 void (*arch_iounmap)(volatile void __iomem *) = __iounmap;
459 
460 void iounmap(volatile void __iomem *cookie)
461 {
462 	arch_iounmap(cookie);
463 }
464 EXPORT_SYMBOL(iounmap);
465 
466 #ifdef CONFIG_PCI
467 static int pci_ioremap_mem_type = MT_DEVICE;
468 
469 void pci_ioremap_set_mem_type(int mem_type)
470 {
471 	pci_ioremap_mem_type = mem_type;
472 }
473 
474 int pci_ioremap_io(unsigned int offset, phys_addr_t phys_addr)
475 {
476 	BUG_ON(offset + SZ_64K > IO_SPACE_LIMIT);
477 
478 	return ioremap_page_range(PCI_IO_VIRT_BASE + offset,
479 				  PCI_IO_VIRT_BASE + offset + SZ_64K,
480 				  phys_addr,
481 				  __pgprot(get_mem_type(pci_ioremap_mem_type)->prot_pte));
482 }
483 EXPORT_SYMBOL_GPL(pci_ioremap_io);
484 #endif
485 
486 /*
487  * Must be called after early_fixmap_init
488  */
489 void __init early_ioremap_init(void)
490 {
491 	early_ioremap_setup();
492 }
493